ANALISE CONJUNTA PARA EXPERIMENTOS EM BLOCOS CASUALIZADOS COMPLETOS AUMENTADOS*

MARIA CRISTINA STOLF NOGUEIRA**
F. PIMENTEL GOMES ***

RESUMO

O presente estudo visa a efetuar uma ana lise conjunta de experimentos em blocos casualizados completos aumentados. Cada experimento apresenta os mesmos t = c + z tratamentos, distribuídos em r blocos, onde os c tratamentos são considerados comuns, pois aparecem nos r blocos, e os z tratamentos são considerados regulares, pois aparecem uma unica vez em um dos r blocos. Os blocos são formados por k parcelas, sendo k = c + p;, on de p; (j = 1, ..., r) é o número de tratamen tos regulares no bloco j.

Para desenvolve-lo, considerou-se o conjunto dos experimentos como um delineamento comum em blocos incompletos. Admitindo-se que os experimentos apresentassem variâncias

^{*} Trabalho de dissertação apresentado para a obtenção do Título de Mestre em Experimentação e Estatística, ESALQ USP, Piracicaba, SP, 1976, Entregue para publicação em 23.11.1978.

^{**} Departamento de Matemática e Estatística, E.S.A. "Luiz de Queiroz", USP.

^{***} Departamento de Matemática e Estatística, E.S.A. "Luiz de Queiroz", USP.

residuais semelhantes.

No exemplo estudado, os tratamentos se repartem em seis classes de associação, com diferenças mínimas significativas (para o teste de Tukey) (Δ) entre dois deles dadas a seguir:

1 - Dois tratamentos comuns:

 Δ 5% = 15,955 t/ha; Δ 1% = 13,755 t/ha.

2 - Um tratamento comum e um regular:

 Δ 5% de 23,047 a 23,216 t/ha; Δ 1% de 26,733 a 26,930 t/ha.

3 - Dois tratamentos regulares, com λ = 3:

 Δ 5% de 28,515 a 28,659 t/ha; Δ 1% de 33,075 a 33,243 t/ha.

4 - Dois tratamentos regulares, com λ = 2:

 Δ 5% de 29,064 a 29,950 t/ha; Δ 1% de 33,711 a 34,739 t/ha.

5 - Dois tratamentos regulares, $\lambda = 1$:

 Δ 5% de 29,160 a 29,994 t/ha; Δ 1% de 33,823 a 34,791 t/ha.

6 - Dois tratamentos regulares, com λ = 0:

 Δ 5% de 30,281 a 30,628 t/ha; Δ 1% de 35,124 a 35,526 t/ha.

Verifica-se, pois, que essas diferenças minimas significativas são bem menores no caso de dois tratamentos comuns, mas não são muito discrepantes nos demais casos.

INTRODUÇÃO

Em resposta às necessidades de um delineamento experimental mais eficientes na comparação plântulas ("seedlings") e "variedades" (que melhor se chamariam clones) nas fases iniciais de um programa de melhoramento de cana-de-açúcar, abacaxi, etc., FEDERER (1956), no Havaí, desenvolveu um novo tipo de delineamento experimental, qual seja delineamento aumentado. Basicamente os delineamen tos aumentados, para os blocos casualizados completos e quadrado latino, apresentam um conjunto tratamentos comuns, repetidos b vezes, e um segundo grupo de tratamentos, denominados tratamentos regulares, que aparecem uma única vez. Α análise do delineamento padrão utilizado (com exceção das parcelas adicionais nos blocos) é efetuada para os tratamentos comuns, enquanto que a análise do deli neamento aumentado é realizada para os tratamentos comuns e regulares conjuntamente. Este delineamen to possui uma gama de aplicação muito mais podendo ser utilizado em todos os campos onde desejam combinar num mesmo experimento, cultivares novos já selecionados com cultivares promissores.

PIMENTEL GOMES & GUIMARÃES (1958) propuseram uma análise intrablocos de um grupo de experimentos em blocos completos casualizados, onde alguns tratamentos são comuns para todos os experimentos. Es tes tratamentos foram considerados como tratamentos comuns, e os demais, específicos para cada experimento, foram denominados tratamentos regulares.

A análise do delineamento estudado é um caso especial de blocos incompletos equilibrados intra e intergrupos. Os experimentos, considerados como um delineamento usual em blocos incompletos, foram analisados conjuntamente, admitindo-se que apresentassem variâncias residuais semelhantes.

FEDERER (1961a, 1961b) definiu o delineamento aumentado como um delineamento padrão qualquer onde novos tratamentos são adicionados, podendo ser

em blocos completos, incompletos, linhas, colunas, etc., e os tratamentos adicionais podem ou não ser repetidos o mesmo número de vezes. O número de tratamentos adicionais dentro dos blocos, linhas, colunas, etc., pode ser constante, mas também pode variar.

PAVATE (1961) sugeriu um método simplificado para obtenção dos componentes dos tratamentos ajustados para efetuar a análise conjunta de um grupo de experimentos, quanto estes individualmente tenham sido planejados em delineamento de blocos incompletos equilibrados. Considerou o trabalho de PIMENTEL GOMES e GUIMARÃES (1958), como um caso especial do método geral sugerido.

CORSTEN (1962) sugeriu uma investida sistemática no problema da construção dos delineamentos em blocos incompletos apresentando os tratamentos em diferentes repetições, mas por outro lado equilibrado no sentido de que, a exatidão das comaparações entre alguns pares de tratamentos dependa somente do número de repetições, e não da escolha do par particular de tratamento do grupo de pares repetidos similarmente.

Considerou o delineamento aumentado (FEDERER, 1961a) como um caso particular pertencente a uma classe do delineamento experimental muito ampla, sem nenhuma dificuldade no seu planejamento, mas que, no geral, perde na propriedade do equilibrio referido.

AFONJA (1968) sugeriu método específico para análise conjunta de um grupo de experimentos, com alguns tratamentos comuns.

PIMENTEL GOMES (1970) sugeriu análise conjunta de um grupo de experimentos em blocos casualizados com alguns tratamentos comuns, quando o número de repetições para os tratamentos varia de um experimento para outro.

MARTINEZ (1972) disse que, a partir de 1962, o Instituto de Melhoramento da Produção de Açúcar (IMPA), introduziu no México os delineamentos aumentados de FEDERER (1961a), que substitui o antigo delineamento empregado na fase denominada 30 x 30 do programa de seleção. Atualmente, no México, os delineamentos aumentados empregados na experimentação com cana-de-açúcar são de uso geral. Des creveu eilustrou no capítulo dedicado aos delineamentos aumentados uma metodologia estatística para a análise deste tipo de experimento, como, também, para uma série de experimentos similares.

FEDERER & RAGHAVARAO (1975) definiram o delineamento aumentado como um delineamento onde os
tratamentos comuns são repetidos r vezes, e os tra
tamentos regulares são repetidos menos que r vezes. Apresentaram a estimativa da variância dos
contrastes entre efeitos de tratamento comum, de
tratamentos regulares, de tratamentos comuns versus tratamentos regulares, ou entre todos os trata
mentos comuns e todos os regulares, simultaneamente para delineamentos em blocos aumentados e para
delineamentos em linhas e colunas aumentados.

FEDERER, NAIR & RAGHAVARAO (1975) apresentaram análise estatística para três generalizações do delineamento de <u>n</u> linhas por <u>n</u> colunas aumentados, para um número específico de n = 3,4,5,6,7,com v tratamentos comuns e repetidos em r_1 tratamentos regulares, sem repetição.

A finalidade deste trabalho consiste na realização da análise conjunta de uma série de experimentos planejados em delineamentos de blocos casualizados completos aumentados, em diferentes regiões, em uma mesma época e com os mesmos tratamentos, com o objetivo de observar de uma maneira geral o comportamento dos tratamentos estudados, e entre eles apontar o melhor (ou os melhores) em todas as regiões observadas.

MATERIAL E MÉTODO

- Material

O material utilizado para aplicação do método em estudo, refere-se a dados hipotéticos da produção agrícola em t/ha de 5 experimentos em blocos casualizados completos aumentados, de competição de "variedades" de cana-de-açúcar.

Cada experimento apresenta os mesmos t=c+z tratamentos, distribuídos em r blocos, onde os c tratamentos são considerados comuns, pois aparecem nos r blocos, e os z tratamentos são considerados regulares, pois aparecem uma única vez em um dos r blocos. Os blocos são formados por k parcelas, com k=c+pj, onde pj $(j=1,\ldots,r)$ o número de tratamentos regulares por bloco.

Hipoteticamente, cada experimento se caracter<u>i</u> za por apresentar:

- Número total de tratamentos, t = 15 "varieda des" de cana-de-açúcar;
- Número de tratamentos comuns, c = 3 "varieda des" de cana-de-açúcar, indicadas por A, B, C;
- Número de tratamentos regulares, z = 12 "variedades" de cana-de-açúcar, indicadas por a, b, c, d, e, f, g, h, i, j, k, l;
- Número de blocos por experimento, r = 4;
- Número de repetições para os tratamentos comuns = 4;
- Número de repetições para os tratamentos regulares = 1;
- Número de parcelas por bloco, k = 6;

- Número de tratamentos regulares por bloco,
 p; = 3;
- λ = 1 para tratamentos comuns e regulares;
- λ = 0 ou 1 para 2 tratamentos regulares.

Ao considerar o conjunto de experimentos, as características são as seguintes:

- Número de experimentos, g = 5;
- Número de blocos, b = r.g = 20;
- Número de repetições para tratamentos comuns,

$$r_{c} = b = r.g = 20;$$

- Número de repetições para tratamentos regula res,

$$r_z = g = 5;$$

- Número total de parcelas, $n = b \cdot k = 120$.

- Método

O presente estudo propõe realizar uma análise conjunta de um grupo de experimentos em blocos casualizados completos aumentados (FEDERER, 1956).

Para desenvolvê-la considerou-se o conjunto dos experimentos, com um delineamento comum em blo cos incompletos, baseado nos trabalhos realizados por PIMENTEL GOMES e GUIMARÃES (1958), PAVATE (1961) e PIMENTEL GOMES (1970), admitindo-se que os experimentos apresentassem variâncias residuais semelhantes.

Tabela 1 - Dados hipotéticos em t/ha.

Experi- mentos	Blocos	Ē	Tratamentos	ento	s comun	sunı		T	ratam	Tratamentos	1	regulares		Total blocos
П	1 3 4	££££	107 94 103 97	3333	100 110 99 108	ලිලිලිලි	108 117 108 112	(10) (8) (4)	101 103 87 113	(11) (12) (9) (5)	119 104 102 104	(13) (15) (14) (7)	105 110 87 78	640 638 586 612
E ₂	8 7 6 5	00000	82 103 89 93	6666	90 90 101 102	$\widehat{\mathbb{G}}\widehat{\mathbb{G}}\widehat{\mathbb{G}}\widehat{\mathbb{G}}$	92 118 114 111	(4) (5) (8) (6)	112 82 118 66	(7) (9) (11) (10)	75 110 104 91	(13) (15) (12) (14)	88 105 113 96	539 608 639 559
н Э	9 10 11 12	££££	194 195 191 195	6666	189 182 188 188	$\widehat{\mathbb{G}}\widehat{\mathbb{G}}\widehat{\mathbb{G}}$	184 193 182 182	(4) (5) (6) (7)	193 200 162 173	(9) (8) (10) (12)	152 166 186 189	(13) (14) (11) (15)	171 198 203 199	1.083 1.134 1.112 1.125
E 4	13 14 15 16	££££	130 114 130 136	3 333	140 112 121 127	<u>ම</u> ෙමෙම	155 122 129 133	(5)	99 94 122 112	(9) (8) (12) (11)	89 113 102 113	(10) (15) (14) (13)	130 112 123 127	743 667 727 748
д 2	17 18 19 20	££££	143 148 150 137	5555	152 153 153 158	9999	154 147 148 157	(6) (10) (8) (4)	122 155 116 116	(11) (12) (9) (5)	138 157 133 146	(13) (15) (14) (7)	135 129 134 100	844 889 834 855
Total Ge	Geral													15.582

Tabela 2 - Totais dos tratamentos em t/ha.

Tratamentos	Variedades	Total dos Tratamentos em t/ha
1	A	2.631
2	В	2.662
3	С	2.766
4	a	687
5	ъ	654
6	С	550
7	đ	520
8	е	600
9	f	586
10	g	665
11	h	677
12	i	665
13	j	626
14	k	638
15	L	655

Tabela 3. Totais dos ensaios em t/h	Tabela	3.	Totais	dos	ensaios	em	t/ha.
-------------------------------------	--------	----	--------	-----	---------	----	-------

Experimentos	Total dos experimentos em t/ha.
E ₁	2.476
E 2	2.345
E ₃	4.454
E 4	2.885
E ₅	3.422

Modelo matemático:

$$Y_{hj} = m + t_h + b_j + e_{hj}$$
 $h = 1, 2, ..., t.$
 $j = 1, 2, ..., b.$

Ao partir do modelo Y = X $\hat{\beta}$ + ϵ , segundo PIMEN TEL GOMES (1968), chegamos ao sistema de equações normais X'X $\hat{\beta}$ = X'Y com X'X = S, portanto, S $\hat{\beta}$ = X'Y, onde,

$$\hat{\beta} = \begin{bmatrix} \hat{t} \\ \hat{b} \end{bmatrix}, \quad \hat{\tau} = \begin{bmatrix} \hat{t}_1 \\ \hat{t}_2 \\ \vdots \\ \hat{t}_t \end{bmatrix}, \quad \hat{b} = \begin{bmatrix} \hat{b}_1 \\ \hat{b}_2 \\ \vdots \\ \hat{b}_b \end{bmatrix}$$

- $\hat{\tau}$ = matriz (t x 1) correspondente às estimativas dos efeitos de tratamento;
- b = matriz (b x 1) correspondente às estimativas dos efeitos de blocos.

A matriz \underline{X} abrange duas submatrizes, a submatriz X_1 , que contém os coeficientes dos efeitos dos tratamentos, e a submatriz X_2 , que contém os coeficientes dos efeitos de blocos.

Portanto

$$S = X' \quad X = \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} \quad \begin{bmatrix} x_1 & x_2 \end{bmatrix}$$

$$= \begin{bmatrix} x'_1 & x_1 & x_1' & x_2 \\ x'_2 & x_1 & x_2' & x_2 \end{bmatrix} = \begin{bmatrix} R & N \\ N' & K \end{bmatrix}$$

onde,

$$X_1' X_1 = R = diagonal (r_1, r_2, ..., r_t), de dimen-sões (t x t);$$

$$X_2' X_2 = K = diagonal (k_1, k_2, ..., k_b), de dimen-sões (b x b);$$

 $X_1 X_2 = N = [n_{hj}]$, matriz de incidência, de dimensões (t x b).

$$X' Y = \begin{bmatrix} X'_1 & Y \\ X'_2 & Y \end{bmatrix} = \begin{bmatrix} T \\ B \end{bmatrix}$$

onde,

T = vetor dos totais dos tratamentos,

B = vetor dos totais dos blocos.

Portanto, obteremos:

$$\begin{bmatrix} R & N \\ N' & K \end{bmatrix} \qquad \cdot \qquad \begin{bmatrix} \hat{\tau} \\ \hat{b} \end{bmatrix} = \begin{bmatrix} T \\ B \end{bmatrix}$$

Para eliminar o efeito de blocos do sistema an terior, pré-multiplicamos ambos os membros pela ma triz

$$W = \begin{bmatrix} I_+ & -N & K^{-1} \end{bmatrix} ,$$

onde $I_t = diagonal (1, 1, ..., 1)$.

Obtemos o novo sistema

$$W S \hat{\beta} = W X' Y.$$

Assim teremos que:

$$WS = \begin{bmatrix} I_{t}, -N K^{-1} \end{bmatrix} \cdot \begin{bmatrix} R & N \\ N' & K \end{bmatrix}$$

$$\begin{bmatrix} R I_{t} - N K^{-1} N', N I_{t} - N K^{-1} K \end{bmatrix}$$

$$\begin{bmatrix} R - N K^{-1} N', \phi \end{bmatrix}.$$

Portanto

$$W S = \begin{bmatrix} C & \phi \end{bmatrix}$$
,

onde $C = R - N K^{-1} N'$.

Como neste caso $k_1 = k_2 = \dots = k_b = k$, teremos.

$$C = \left[R - \frac{1}{k} N N' \right]$$

A matriz N N' é constituída da seguinte forma:

$$\begin{bmatrix} r_1 & \lambda_{12} & \lambda_{13} & \cdots & \lambda_{1t} \\ \lambda_{21} & r_2 & \lambda_{23} & \cdots & \lambda_{2t} \\ \lambda_{31} & \lambda_{32} & r_3 & \cdots & \lambda_{3t} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \lambda_{t1} & \lambda_{t2} & \lambda_{t3} & \cdots & r_t \end{bmatrix}$$

onde,

$$\lambda_{hh} = \sum_{j} n_{hj}^2 = r_h$$
 (h = 1, 2, ..., t
e j = 1, 2, ..., b).

 $\lambda_{hh'} = \sum_{j} n_{hj} \cdot n_{h'j}$ representa o número de vezes que os tratamentos <u>h</u> e h' aparecem juntos dentro do mesmo bloco.

Assim, os elementos da matriz C, serão dados por duas fórmulas:

$$c_{hh} = r(1 - \frac{1}{k}),$$

$$c_{hh'} = -\frac{\lambda_{hh'}}{k} \quad (h \neq h').$$

Portanto:

Como \underline{k} é constante, temos:

$$\begin{bmatrix} T - N K^{-1}B \end{bmatrix} = \begin{bmatrix} T - \frac{1}{k} N B \end{bmatrix} = Q.$$

Portanto:

$$Q_h = T_h - \frac{1}{k} \sum_{j} n_{hj} \cdot B_{j}$$

Conclui-se, pois, que o sistema W S $\hat{\beta}$ = WX'Y poderá ser escrito assim:

$$C \hat{\tau} = Q$$

Para o caso em estudo, a matriz C será formada da sequinte forma:

- l Cálculo dos associados:
 - Entre tratamentos comuns: i = 1, 2, ..., c

$$\lambda_{ii} = \sum_{j} n_{ij}^2 = r.g = r_c$$
.

- Entre dois tratamentos comuns

$$\lambda_{ii'} = \sum_{j} n_{ij} \cdot n_{i'j} = r \cdot g = r_c$$
 (i \neq i').

- Entre tratamentos comuns e tratamentos regulares:

$$\ell = 1, 2, \ldots, z$$

$$\lambda_{il} = \lambda_{li} = \sum_{j} n_{ij} \cdot n_{lj} = g = r_{z}$$

- Entre tratamentos regulares:

$$\lambda_{\ell\ell} = \sum_{j} n_{\ell j}^2 = g = r_z$$
.

- Entre dois tratamentos regulares:

$$\lambda_{\ell\ell}$$
, = $\sum_{j} n_{\ell j} \cdot n_{\ell' j} = 0$ ($\ell \neq \ell'$)

quando o tratamento regular <u>l</u> não aparece junto com o tratamento <u>l'</u> dentro do mesmo bloco;

$$\lambda_{\ell\ell'} = \sum_{j} n_{\ell j} \cdot n_{\ell' j} = 1, 2, \dots, (p_{j}-1) \quad (\ell \neq \ell')$$

para o caso de dois tratamentos regulares l e l' que aparecem juntos dentro de um mesmo bloco.

- 2 Cálculo dos elementos da matriz \underline{C} ($C = R - N K^{-1} N'$)
 - Para tratamentos comuns:

$$c_{ii} = r_c (1 - \frac{1}{k}) = r \cdot g (1 - \frac{1}{k}).$$

- Para dois tratamentos comuns:

$$c_{ii}' = -\frac{\lambda_{ii'}}{k} = -\frac{r.g}{k} = -\frac{r_c}{k}$$
 (i \neq i').

- Para tratamentos comuns e tratamentos regula res:

$$c_{i\ell} = -\frac{\lambda_{i\ell}}{k} = -\frac{g}{k} = -\frac{r_z}{k}$$
.

- Para tratamentos regulares:

$$c_{\ell\ell} = r_z (1 - \frac{1}{k}) = g (1 - \frac{1}{k})$$
.

- Para dois tratamentos regulares:

$$c_{\ell\ell'} = -\frac{\lambda_{\ell\ell'}}{k} = 0 \qquad (\ell \neq \ell') .$$

quando dois tratamentos regulares não aparecem jun tos dentro de um mesmo bloco;

$$c_{\ell\ell} = -\frac{\lambda_{\ell\ell}}{k} \qquad (\ell \neq \ell')$$

quando os dois tratamentos regulares aparecem juntos dentro do mesmo bloco.

Como o sistema de equações normais $C \hat{\tau} = Q$ com efeito de blocos eliminado é indeterminado, por ser singular a matriz C, de dimensões $(t \times t)$ e de característica (t - 1), para torná-lo determinado há necessidade de introduzir no sistema uma matriz de restrição, com as mesmas dimensões $(t \times t)$ e característica igual ao grau de singularidade da matriz C.

A restrição introduzida para tornar o sistema determinado segue um procedimento similar ao utilizado por PIMENTEL GOMES (1967), resultando um novo sistema de equações,

$$A \hat{\tau} = \phi$$

onde,

A é uma matriz singular de dimensões (t x t), com característica igual ao grau de singularidade da matriz C.

Desta feita temos:

$$C \hat{\tau} = Q$$

$$\mathbf{A} \hat{\tau} = \mathbf{\Phi}$$

Subtraindo, obteremos:

$$(C - A) \hat{t} = Q,$$

onde

$$(C - A) = M ,$$

portanto

$$M \hat{\tau} = Q$$

onde a matriz \underline{M} é suposta não-singular de dimensões (t x t), portanto

$$\hat{\tau} = M^{-1} Q .$$

Através deste sistema obteremos as estimativas dos efeitos de tratamento (t_h) .

As médias ajustadas dos tratamentos serão calculadas através da fórmula:

$$\hat{m}_h = \hat{m} + \hat{t}_h$$
,

onde,

 \hat{m}_{h} = média ajustada do tratamento h;

 $\hat{m} = m\acute{e}dio geral = \frac{G}{b.k}$;

 \hat{t}_{h} = estimativa do efeito de tratamento \underline{h} .

Para comparação das médias ajustadas, a variân cia dos contrastes será calculada da seguinte forma:

$$\hat{\mathbf{v}} (\hat{\mathbf{t}}_{h} - \hat{\mathbf{t}}_{h}) = \hat{\mathbf{v}} (\hat{\mathbf{t}}_{h}) + \hat{\mathbf{v}} (\hat{\mathbf{t}}_{h}) - 2 \hat{\mathbf{cov}} (\hat{\mathbf{t}}_{h}, \hat{\mathbf{t}}_{h}).$$

As variâncias dos tratamentos e as covariâncias serão extraídas da matriz de dispersão,

$$D = \sigma^2 \cdot M^{-1} \cdot C \cdot M^{-1}$$
,

como trabalhamos com a estimativa de σ^2 , portanto:

$$D = s^2 M^{-1} C M^{-1}$$

Tabela 4 - Esquema da análise de variância

Causa da Variação	G. L.	s. Q.	Q. M.	(St.
Experimentos	(g - 1)	$\frac{1}{r \cdot k} = \frac{g}{1} \frac{e^2}{g} - \frac{G^2}{b \cdot k}$	ом Е	QM E/QM Int = F (exp.)
Blocos dentro de Experimentos	$\begin{bmatrix} g & (r-1) \end{bmatrix}$	SQ B - SQ Experimentos	÷	· ·
Blocos	(b - 1)	$\frac{1}{k} \frac{b}{j} \frac{B_2^2}{b_j} - \frac{G^2}{b \cdot k}$	÷	
Tratamentos (ajustados)	(t - 1)	î' Q = ½ î, Q	T MQ	QM I/QM Int = F (Trat.)
Interação (Trat. x Exp.)	(t-1)(g-1)	SQ Total - SQ B - SQ T - SQ R	QM Int (TxE)	QM Int/QM R = F (Int.)
Resíduo	$\begin{bmatrix} g & (c-1)(r-1) \end{bmatrix}$	S R E	QM R	•
Total	[b.k-1]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:	• •

$$D = \begin{bmatrix} \hat{\mathbf{v}} & (\hat{\mathbf{t}}_1) & \mathbf{cov} & (\hat{\mathbf{t}}_1, \hat{\mathbf{t}}_2) & \dots & \mathbf{cov} & (\hat{\mathbf{t}}_1, \hat{\mathbf{t}}_h) \\ \mathbf{cov} & (\hat{\mathbf{t}}_2, \hat{\mathbf{t}}_1) & \hat{\mathbf{v}} & (\hat{\mathbf{t}}_2) & \dots & \mathbf{cov} & (\hat{\mathbf{t}}_2, \hat{\mathbf{t}}_h) \\ \dots & \dots & \dots & \dots & \dots \\ \mathbf{cov} & (\hat{\mathbf{t}}_h, \hat{\mathbf{t}}_1) & \mathbf{cov} & (\hat{\mathbf{t}}_h, \hat{\mathbf{t}}_2) & \dots & \hat{\mathbf{v}} & (\hat{\mathbf{t}}_h) \end{bmatrix}$$

- Aplicação do Teste Tukey

As médias ajustadas dos tratamentos, serão com paradas entre si, através da aplicação do teste de Tukey. Cada contraste será estudado individualmente, e calcula-se para cada um a DMS ao nível de 5% e 1% de probabilidade.

Segundo PIMENTEL GOMES (1973), a fórmula utilizada para o cálculo da Diferença Mínima Significativa (DMS = Δ) é a seguinte:

DMS = q.
$$\sqrt{\frac{1}{2} \hat{V} (\hat{t}_h - \hat{t}_h)}$$

onde q é a amplitude total estudentizada com t tra tamentos e número de graus de liberdade de s².

RESULTADOS E DISCUSSÃO

Primeiramente consideremos os quadrados médios residuais, obtidos da análise estatística individual dos experimentos. Para que os experimentos possam ser agrupados sem dificuldades é preciso que esses quadrados médios residuais não sejam muito diferentes entre si. Estudos de BOX (1954), citado por PIMENTEL GOMES (1973), indicam que se todos os experimentos possuirem o mesmo número de parcelas, a relação entre o maior quadrado médio residual e o menor deles poderá ir até 3 ou 4 sem que isso cause prejuízos sérios à análise.

Tabela 5 - Resultados individuais dos quadrados medios residuais dos experimentos.

			Experim	entos	
	1	2	3	4	5
G.L.Residuo	6	6	6	6	6
S Q Residuo	229,3333	291,3333	107,5000	258,1667	188,6667
Q M Residuo	38,2222	48,5555	17,9167	43,0278	31,4445

Como podemos observar, os quadrados médios residuais para os experimentos não diferem muito entre si. Portanto, podem ser agrupados sem dificuldades.

Aplicando o método desenvolvido anteriormente, primeiramente obteremos a matriz.

$$C = R - N K^{-1} N' ,$$

ou

$$C = R - (1/k) N N',$$

$$R = diag. (r_1, r_2, r_3, r_4, \dots r_{15}).$$

Como

$$r_1 = r_2 = r_3 = 20$$
 , $r_4 = ... = r_{15} = 5$

temos

$$R = diag. (20, 20, 20, 5, ..., 5).$$

Tabela 6 - Matriz M de dimensões (15 x 20).

```
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```

Matriz K de dimensões (20 x 20):

$$K = diag. (k_1, k_2, ..., k_{20}).$$

Como

$$k_1 = k_2 = \dots = k_{20} = k = 6$$
,

temos

$$K = diag. (6, 6, 6, ..., 6).$$

Tabela 7 - Matriz N N' de dimensões (15 x 15).

20	20	20	5	5	5	5	5	5	5	5	5	5	5	5
20	20	20	5	5	5	5	5	5	5	5	5	5	5	5
20	20	20	5	5	5	5	5	5	5	5	5	5	5	5
5	5	5	5	2	0	3	0	1	0	1	0	3	0	0
5	5	5	2	5	0	2	1	1	0	0	1	0	2	1
5	5	5	0	0	5	0	0	1	3	3	0	2	1	0
5	5	5	3	2	0	5	1	0	0	0	1	1	0	2
5	5	5	0	1	0	1	5	2	0	. 1	1	0	3	1
5	5	5	1	1	1	0	2	5	1	0	0	1	2	1
5	5	5	0	0	3	0	0	1	5	1	2	0	1	2
5	5	5	1	0	3	0	1	0	1	5	1	3	0	0
5	5	5	0	1	0	1	1	0	2	1	5	0	1	3
5	5	5	3	0	2	1	0	1	0	3	0	5	0	0
5	5	5	0	2	1	0	3	2	1	0	1	0	5	0
5	5	5	0	1	0	2	1	1	2	0	3	0	0	5

Tabela 8 - Matriz C de dimensões (15 x 15).

- 3/6	- 5/6	- 5/6	•	- 1/6	•	- 2/6	- 1/6	- 1/6	- 8/6	•	- 3/6	•	•	8(1-1/6)
9/5 -	9/6 -	- 3/6	•	9/2 -	- 1/6	•	- 3/6	- 2/6	- 1/6	•	- 1/6	•		•
9/6 -	- 3/6	- 3/6	- 3/6	•	9/2 -	- 1/6	0	9/1 -	•	- 3/6	0	8(17/6)	•	0
- 3/6	9/6 -	9/6 -	•	9/1 -	•	9/1 -	9/1 -	0	9/2 -	9/1 -	(9/1-7)	•	9/1 -	- 3/6
- 5/6	9/6 -	9/6 -	9/1 -	•	- 3/6	•	- 1/6	0	- 1/6	8(1-1/6)	- 1/6	- 3/6	•	
- 5/6	9/6 -	9/6 ·	•	•	- 3/6	0	•	9/1 -	9/17)6	- 1/6	9/2 -	•	- 1/6	9/2 -
9/6 -	9/6 -	9/6 -	9/1 -	9/1 -	- 1/6	•	- 2/6	5(1-1/6)	- 1/6	•	•	9/1 -	9/2 -	- 1/6
9/6 -	9/6 -	9/6 -	•	9/1 -	•	9/1 -	5(1-1/6)	- 2/6	•	9/1 -	- 1/6	•	9/6 -	- 1/6
- 3/6	9/6 -	9/6 -	- 3/6	- 2/6	•	8(17/6)	9/1 -	•	•	0	- 1/6	9/1 -	•	- 2/6
- 5/6	9/6 -	9/6 -	•	•	2(1-1/6)	•	•	- 1/6	9/6 -	- 3/6	•	- 2/6	- 1/6	•
- 3/6	9/6 -	9/5 -	- 2/6	(9/1-4)6	•	9/2 -	- 1/6	9/1 -	•	•	- 1/6	•	- 2/6	- 2/6
9/6 -	9/6 -	9/6 -	(9/1-1)6	- 2/6	•	- 3/6	•	- 1/6	•	- 1/6	•,	- 3/6	•	•
9/02-	9/02-	(9/1-1)02	9/6 -	9/6 -	9/5 -	9/6 -	- 5/6	9/5 -	9/6 -	9/5 -	9/5 -	9/6 -	9/6 -	9/6 -
20(1-1/6) -20/6	50(1-1/6)	9/02-	9/6 -	9/6 -	9/6 -	- 5/6	9/6 -	9/6 -	9/6 -	9/6 -	9/6 -	9/6 -	9/6 -	9/6 -
20(1-1/6)	9/02-	9/02-	- 3/6	- 5/6	- 5/6	- 5/6	- 5/6	9/6 -	- 5/6	9/5 -	- 3/6	- 5/6	- 5/6	9/5 -

A matriz C obtida é singular, de característica (15-1=14) e de dimensões (15×15) , o que torna o sistema indeterminado. Para resolvê-lo há ne cessidade de introduzir no sistema uma matriz de restrição A, de dimensões (15×15) e de característica igual ao grau de singularidade da matriz C.

Desta feita obteremos

$$C \hat{\tau} = Q$$

$$\frac{A \hat{\tau}}{(C - A) \hat{\tau} = Q}$$

onde

$$(C - A) = M$$

Empregou-se neste caso a seguinte restrição:

$$-r.(g/k) \Sigma \hat{t}_h = -r.(g/k) \Sigma \hat{t}_i - (g/k) \Sigma \hat{t}_l = 0$$

onde

$$i = 1, ..., c;$$
 $\ell = 1, ..., z;$ $h = 1, ..., t.$

Portanto, teremos que:

$$-(20/6)\hat{t}_{1} - (20/6)\hat{t}_{2} - (20/6)\hat{t}_{3} - (5/6)\hat{t}_{4} - \dots - (5/6)\hat{t}_{15} = 0$$

Tabela 9 - Matriz M de dimensões (15 x 15).

L														I
&	•	•	•	•	•	•	•	•	•	•	•	•	•	0
•	8	•	•	•	•	•	•	•	0	•	0	0	•	•
•	•	8	•	0	•	•	•	•	0	•	•	•	•	•
9/5 -	- 5/6	9/6 -	5(1-1/6)	- 2/6	•	- 3/6	•	9/1 -	•	9/1 -	•	- 3/6	•	0
- 3/6	- 5/6	- 5/6	- 2/6	5(1-1/6)	•	- 2/6	9/1 -	9/1 -	•	•	9/1 -	•	- 2/6	9/1 -
- 3/6	- 5/6	9/6 -	•	•	(9/1-1)9	•	•	9/1 -	9/6 -	9/6 -	•	- 2/6	- 1/6	•
- 5/6	9/5 -	- 5/6	- 3/6	- 2/6	•	3(1-1/6)	9/1 -	0	•	•	9/1 -	9/1 -	0	- 2/6
9/6 -	- 5/6	9/6 -	c	- 1/6	•	- 1/6	8(1-1/6)	9/2 -	•	9/1 -	9/1 -	0	- 3/6	- 1/6
9/6 -	- 5/6	9/5 -	9/1 -	- 1/6	- 1/6	•	9/2 -	8(11/6)	9/1 -	•	•	9/1 -	- 2/6	9/1 -
9/5 -	- 5/6	9/6 -	•	•	- 3/6	•	•	9/1 -	8(1-1/6)	9/1 -	- 2/6	•	- 1/6	- 2/4
9/5 -	- 5/6	9/6 -	- 1/6	•	- 3/6	•	- 1/6	•	9/t -	(9/1-7)5	9/1 -	- 3/6	•	•
- 5/6	- 5/6	9/5 -	•	- 1/6	•	- 1/6	- 1/6	•	- 2/6	9/1 -	(9/17)6	•	- 1/6	- 3/6
- 5/6	- 5/6	- 5%	- 3/6	•	9/2 -	- 1/6	•	9/1 -	•	9/6 -	•	5(1-1/6)	•	•
9/6 -	9/6 -	9/6 -	•	9/2 -	- 1/6	•	- 3/6	9/2 -	- 1/6	•	- 1/6	•	(9/1-1)6	•
% -	9/5 -	- 5/6	•	- 1/6	•	- 2/6	- 1/6	- 1/6	- 2/6	•	- 3/6	•	•	(9/1-7)5

Tabela 10 - Matriz M⁻¹ de dimensões (15 x 15).

000000000	000000000	0,00000	0,005175	0,015¢07	0,0044%	0.023915	0,015037	0,013837	0,024235	95010000	0,034512	916200'0	9699000	M65.0	
0000000000	000000	00000000	0,004127	0,023932	0,013609	6,005035	0,034199	0,025346	0,034.555	0,004745	0,024.694	0,003369	0,249740	0,006674	
000000*0	000000000	0,00000	0,034368	0,005184	0,025681	0,015159	0,003970	0,013628	0,005675	0,035160	0,003328	0,251529	0,003389	0,002976	
0,00000	000000000000	000000000	0,004163	0,014932	0,005589	0,015178	0,015317	0,005892	0,024667	0,012819	0,249016	0,003328	0,014694	0,03512	
0,00000	0,00000	0000000000	0,015346	0,003382	0,035233	0,004842	0,012079	0,005721	0,016042	0,250683	0,012819	0,035160	0,004745	9504000	
0,00000	000000 . 0,00000,0	0000000	0,002751	0,004482	0,033505	0,004075	0,005848	0,01,469	0,249715	0,016042	0,024667	0,005675	0,024555	0,024235	
00000000	0,00000	0,00000	0,013688	0,015272	0,014442	0,005740	0,024674	0,247398	0,014469	0,005721	0,005892	0,013628	9,622,0	0,013837	
00000000	0,000000	0,00000	0,004923	0,016417	0,004827	0,013855	0,248970	0,024674	0,005848	0,012079	0,015317	0,003970	0,034199	0,015037	
00000000	000000*0	0,000000	0,034250	0,025454	6,002712	0,249806	0,013855	0,005740	0,004075	0,004842	0,015178	0,015149	0,005035	0,023915	
0000000	000000000	00000000	0,005632	0,002929	0,251405	0,002712	0,004827	0,034442	0,033505	0,035233	0,005589	0,025681	0,013609	0,00454	
000000	0,000000	0,00000	0,024270	0,248353	0,002929	0,025454	0,016417	0,015272	0,004462	0,003382	0,024932	0,005184	0,023932	0,015407	
0,000000	0,000000	0,00000	0,251317	0,024270	0,005632	0,034250	0,004923	0,013688	0,002751	0,015346	0,004163	0,034368	0,004127	0,005175	
0,00000	0,000000	0,050000	0,016660	0,016660	0,016661	0,016660	0,016665	0,016664	0,016661	0,016664	0,016664	0,016660	0,016661	0,016661	
0,00000	0,050000	0,000000	0,016660	0,016660	0,016661	0,016660	0,016665	0,016664	0,016661	0,016664	0,016664	0,016660	0,016661	0,016661	
0.05000	0,00000	0,00000	0,016660	0,016660	0,016661	0,016660	0,016665	0,016664	0,016661	0,016664	0,016664	0,016660	0,016661	199910'0	١

A matriz \underline{M} obtida, é não-singular, e não é simétrica.

- Cálculo de Q_h:

$$Q = \left[T - NK^{-1} B \right] = \left[T - 1/k N B \right],$$

portanto:

$$Q_h = T_h - (1/k) \sum_{j} n_{hj} \cdot B_j$$
;

$$\Sigma Q_{h} = 0$$
, (h = 1, 2, ..., t).

- Cálculo dos efeitos de tratamentos (\hat{t}_h) : $\hat{T} = M^{-1} \cdot Q$

\frac{\hat{\text{t}}_1}{		Q ₁		34,0000		1,7000
\hat{t}_2		Q_2		65,0000		3,2500
î ₃		Q ₃		169,0000		8,4500
t ₄		Q ₄		47,5000		10,5509
ŧ ₅		Q ₅		-2,0000		0,2561
ŧ ₆		Q ₆		- 99 , 6667		-21,4081
ŧ ₇	$= M^{-1}$	Q ₇	= M ⁻¹	-113,0000	=	-23,5564
ŧ ₈		Q ₈		-43,3333		-9, 5011
ŧ ₉		Q ₉		- 56 , 3333		-12,1381
ŧ ₁₀		Q ₁₀		8,1667		1,6631
ŧ ₁₁		Q ₁₁		13,1667		3,0452
ŧ ₁₂		Q ₁₂		-4,6667		0,4570
ŧ ₁₃		Q ₁₃		-16,3333		-2, 7731
ŧ ₁₄		Q ₁₄		-2,0000		- 0,7526
£15_		Q ₁₅		0,5000		0,2853

- Cálculo das somas de quadrados 5 SQ Experimentos = $(1/24)\sum_{g} E_{g}^{2} - G^{2}/120 = 122.553,3833$

- SQ Blocos (usual) = $(1/6) \sum_{j=0}^{2} B_{j}^{2} G^{2}/120 = 125.142,9667;$
- SQ Blocos d. Experimentos = SQ Blocos (usual) SQ Experimentos;
- SQ Blocos d. Experimentos = 2.589,5832;
- SQ Tratamentos (ajust.) = $\hat{T}'Q = \hat{t}_1Q_1 + \hat{t}_2Q_2 + ...$ $... + \hat{t}_{15}Q_{15};$
- SQ Tratamentos (ajust.) = 8.191,8252;
- SQ Residuo = Σ SQ Res. E_g = SQ Res. E₁+...+ SQ Res.E₅
 = 1.075,0000;
- SQ Total = $\sum_{1}^{15} \sum_{1}^{20} y_{hj}^2 G^2/120 = 143.093,3000;$
- SQ Interação Tratamentos x Experimentos = SQ Total SQ Resíduo SQ Blocos (usual) SQ Tratamentos
 (ajust.) = 8.683,5081.

Ao analisar a Tabela 11, verificamos que:

- a. O teste F para tratamentos ajustados é significativo ao nível de 1% de probabilidade, que indica a existência de diferença significativa en tre os tratamentos.
- b. O teste F para experimentos é altamente signifi

Tabela 11 - Análise da Variância.

Causa de Variação	G.L.	S.Q.	Q.M.	ĨΞ4
Experimentos	4	122,553,3833	30,638,3458	197,5869 **
Blocos d. Experimentos	15	2,589,5832	•	•
(Blocos)	19	(125.142,9667)	•	•
Tratamentos (ajustados)	14	8,191,8252	585,1304	3,7735 **
Interação (Trat. x Exper.)	99	8.683,5081	155,0626	6,1877 **
Residuo	30	1.075,0000	35,8333	
Total	119	143.093,3000		

(**) = Significativo ao nível de 1% de probabilidade.

cativo, o que indica a existência de diferença significativa entre os experimentos.

- c. O teste F para interação (tratamentos x experimentos) é significativo ao nível de 1% de proba
 bilidade, indicando que os tratamentos variam
 de comportamento de um experimento para o outro.
- Cálculo das médias ajustadas dos tratamentos

$$\hat{m}_h = \hat{m} + \hat{t}_h$$

 $\hat{m} = 15.582/120 = 129,850 t/ha.$

Ao analisar a Tabela 13, verifica-se que:

- a. O tratamento l correspondente à "variedade" A superou significativamente em produtividade, ao nível de 5% de probabilidade os seguintes trata mentos: 6 e 7, que correspondem às "variedades" c e d.
- b. O tratamento 2 correspondente à "variedade" <u>B</u> superou significativamente em produtividade, ao nível de 5% de probabilidade os seguintes trata mentos: 6 e 7, que correspondem às "variedades" c e d.
- c. O tratamento 3 correspondente à "variedade" C superou significativamente em produtividade, ao nível de 1% de probabilidade os seguintes trata mentos: 6 e 7, que correspondem respectivamente às "variedades" c e d.
- d. O tratamento 4 correspondente à "variedade" a superou significativamente em produtividade, ao nível de 5% de probabilidade o tratamento 6 que corresponde a "variedade" c, e ao nível de 1% de probabilidade o tratamento 7, correspondente à "variedade" d.

Tabela 12 - Médias ajustadas dos tratamentos (t/ha).

131,550 133,100 138,300 140,401 130,106
138,300 140,401
140,401
•
130 106
130,100
108,442
106,294
120,349
117,712
131,513
132,895
130,307
127,077
129,097
130,135

Tabela 13 - Comparação das médias. Aplicação do teste Tukey.

Contrastes e médias	respectivas (t/ha.)	▼ (ê _h - ê _h)	DMS 17	DMS 5%	Diferença entre me- dias (t/ha.)
1(131,550)	2(133,100)	15,506260	15,955	13,755	1,550
1(131,550)	3(138,300)	15,506260	15,955	13,755	6,750
1(131,550)	4(140,401)	44,140582	26,919	23,919	8,851
1(131,550)	5(130,106)	43,689830	26,778	23,086	1,444
1(131,550)	6(108,442)	44,154082	26,923	23,211	23,108 *
1(131,550)	7(106,294)	43,906265	26,847	23,146	25,256 *
1(131,550)	8(120,349)	43,775207	26,807	23,111	11,201
1(131,550)	9(117,712)	43,531574	26,733	23,047	13,828
1(131,550)	10(131,513)	43,891998	26,843	23,142	0,037
1(131,550)	11(132,895)	44,040952	26,889	23,181	1,345
1(131,550)	12(130,307)	43,782502	26,810	23,113	1,243
1(131,550)	13(127,077)	44,173296	26,930	23,216	4,473
1(131,550)	14(129,097)	43,895773	26,844	23,143	2,453
1(131,550)	15(130,135)	43,896507	26,845	23,143	1,415
2(133,100)	3(138,300)	15,506260	15,955	13,755	5,200
2(133,100)	4(140,401)	44,140582	26,919	23,208	7,301
2(133,100)	5(130,106)	43,689830	26,778	23,087	2,994
2(133,100)	6(108,442)	44,154082	26,923	23,211	24,658 *
2(133,100)	7(106,294)	43,906265	26,847	23,146	26,806 *
2(133,100)	8(120,349)	43,775207	26,807	23,111	12,751
2(133,100)	9(117,712)	43,531574	26,733	23,047	15,388
2(133,100)	10(131,513)	43,891998	26,843	23,142	1,587
2(133,100)	11(132,895)	44,040952	26,889	23,181	0,205
2(133,100)	12(130,307)	43,782502	26,810	23,113	2,793
2(133,100)	13(127,077)	44,173296	26,929	23,216	6,023
2(133,100)	14(129,097)	43,895773	26,844	23,143	4,003
2(133,100)	15(130,135)	43,896507	26,845	23,143	2,965
3(138,300)	4(140,401)	44,140582	26,919	23,208	2,101
3(138,300)	5(130,106)	43,680830	26,778	23,087	8,194
3(138,300)	6(108,442)	44,154082	26,923	23,211	29,858 **

continua ...

Tabela 13 - Continuação

Contrastes médias		respectivas (t/ha.)	$\hat{\mathbf{v}}$ $(\hat{\mathbf{t}}_h - \hat{\mathbf{t}}_h)$	DMS 1%	DMS 5%	Diferença entre mé- dias (t/ha.)
3(138,300)	,	7(106,294)	43,906265	26,847	23,146	32,006 **
3(138,300)	•	8(120,349)	43,775207	26,807	23,111	17,951
3(138,300)	,	9(117,712)	43,531574	26,733	23,047	20,588
3(138,300)	,	10(131,513)	43,891998	26,843	23,142	6,787
3(138,300)	,	11(132,895)	44,040952	26,889	23,181	5,405
3(138,300)	,	12(130,307)	43,782502	26,810	23,113	7,993
3(138,300)	,	13(127,077)	44,173296	26,929	23,216	11,223
3(138,300)	,	14(129,097)	43,895773	26,844	23,143	9,203
3(138,300)	,	15(130,135)	43,896507	26,845	23,143	8,165
4(140,401)	,	5(130,106)	69,953242	33,888	29,216	10,295
4(140,401)	,	6(108,442)	76,206905	35,370	30,494	31,959 *
4(140,401)	,	7(106,294)	67,083693	33,186	28,610	34,107 **
4(140,401)	,	8(120,349)	76,048912	35,334	30,462	20,052
4(140,401)	,	9(117,712)	73,086955	34,639	29,863	22,689
4(140,401)	,	10(131,513)	76,838256	35,516	30,620	8,888
4(140,401)	,	11(132,895)	73,082322	34,637	29,862	7,506
4(140,401)	,	12(130,307)	76,291766	35,390	30,511	10,094
4(140,401)	,	13(127,077)	67,314215	33,243	28,659	13,324
4(140,401)	,	14(129,097)	76,415392	35,419	30,535	11,304
4(140,401)	,	15(130,135)	76,091040	35,343	30,470	10,266
5(130,106)	,	6(108,442)	76,585398	35,458	30,569	21,664
5(130,106)	,	7(106,294)	69,351838	33,742	29,090	23,812
5(130,106)	,	8(120,349)	72,024880	34,386	29,645	9,757
5(130,106)	,	9(117,712)	72,136042	34,413	29,668	12,394
5(130,106)	•	10(131,513)	75,841510	35,285	30,420	1,407
5(130,106)	,	11(132,895)	76,332908	35,399	30,519	2,789
5(130,106)	•	12(130,307)	72,492327	34,497	29,741	0,201
5(130,106)	,	13(127,077)	75,905217	35,300.	30,433	3,029
5(130,106)	•	14(129,097)	69,813500	33,854	29,187	1,009
5(130,106)	,	15(130,135)	72,458072	34,489	29,734	0,029

continua ...

Tabela 13 - Continuação

Contrastes e médias	respectivas (t/ha.)	$\hat{\mathbf{v}}$ ($\hat{\mathbf{t}}_{\mathbf{h}} - \hat{\mathbf{t}}_{\mathbf{h}}$)	DMS 17 t/ha	DMS 5%	Diferença entre mé- dias (t/ha.)
6(108,442)	7(106,294)	76,877982	35,526	30,628	2,148
6(108,442),	8(120,349)	76,092262	35,344	30,471	11,907
6(108,442),	9(117,712)	72,866776	34,586	29,818	9,270
6(108,442),	10(131,513)	67,314267	33,243	28,659	23,071
6(108,442),	11(132,895)	66,928278	33,147	28,577	24,453
6(108,442),	12(130,307)	75,863389	35,290	30,425	21,865
6(108,442),	13(127,077)	70,021785	33,904	29,230	18,635
6(108,442),	14(129,097)	73,488177	34,734	29,945	20,655
6(108,442),	15(130,135)	76,328116	35,398	30,518	21,693
7(106,294),	8(120,349)	73,044700	34,629	29,854	14,055
7(106,294),	9(117,712)	75,317734	35,163	30,315	11,418
7(106,294),	10(131,513)	76,193223	35,367	30,491	25,219
7(106,294),	11(132,895)	76,105369	35,347	30,473	26,601
7(106,294),	12(130,307)	72,641698	34,533	29,772	24,013
7(106,294),	13(127,077)	73,040308	34,628	29,853	20,783
7(106,294),	14(129,097)	75 ,8 99311	35,299	30,432	22,803
7(106,294),	15(130,135)	70,044947	33,910	29,235	23,841
8(120,346),	9(117,712)	69,316130	33,733	29,082	2,634
8(120,346),	10(131,513)	75,513629	35,209	30,355	11,164
8(120,346),	11(132,895)	73,731461	34,791	29,994	12,546
8(120,346),	12(130,307)	72,468725	34,492	29,736	9,958
8(120,346),	13(127,077)	76,377466	35,410	30,528	6,728
8(120,346),	14(129,097)	66,725174	33,097	28,534	8,748
8(120,346),	15(130,135)	72,668534	34,539	29,777	9,786
9(117,712),	10(131,513)	72,596268	34,522	29,763	13,801
9(117,712),	11(132,895)	75,459345	35,196	30,344	15,183
9(117,712),	12(130,307)	75,147841	35,124	30,281	12,595
9(117,712),	13(127,077)	73,138535	34,651	29,873	9,365
9(117,712),	14(129,097)	69,226989	33,711	29,064	11,385
9(117,712),	15(130,135)	72,796745	34,570	29,804	12,423

continua ...

Tabela 13 - Continuação

Contrastes e respectivas médias (t/ha.)	v (th - th)	DMS 17	DMS 5% t/ha	Diferença entre mé- dias (t/ha.)
10(131,513) , 11(132,895)	72,617937	34,527	29,767	1,382
10(131,513) , 12(130,307)	69,684693	33,823	29,160	1,206
10(131,513) , 13(127,077)	75,964052	35,314	30,445	4,436
10(131,513) , 14(129,097)	72,932826	34,602	29,831	2,416
10(131,513) , 15(130,135)	69,931605	33,883	29,211	1,378
11(132,895) , 12(130,307)	73,509172	34,739	29,950	2,588
11(132,895) , 13(127,077)	66,970345	33,157	28,586	5,818
11(132,895) , 14(129,097)	76,125196	35,351	30,477	3,798
11(132,895) , 15(130,135)	76,339707	35,401	3 0,520	2,760
12(130,307) , 13(127,077)	76,5835 3 0	35,457	30,569	3,230
12(130,307) , 14(129,097)	72,781344	34,566	29,800	1,210
12(130,307) , 15(130,135)	66,636051	33,075	28,515	0,172
13(127,077) , 14(129,097)	76,683041	35,481	30,589	2,020
13(127,077) , 15(130,135)	76,805 65 5	35,509	30,613	3,058
14(129,097) , 15(130,135)	75,381506	35,178	30,328	1,038

^{** -} Significativo ao nível de 1%

DMS 17 = Diferença Mínima Significativa ao nível de 17 de probabilidade
DMS 57 = Diferença Mínima Significativa ao nível de 57 de probabilidade

^{* =} Significativo ao nível de 5%

 $[\]hat{V}$ ($\hat{t}_h - \hat{t}_h$) = Variancia do contraste, calculada através da matriz de dispersão (D = s² M⁻¹ C M⁻¹), onde $s^2 = QM$ Int. (T x E).

e. Entre os demais tratamentos não foram constatadas diferenças significativas.

CONCLUSÕES

Através da análise de variância se conclui que, embora haja interação significativa tratamentos x experimentos, isto é, embora o comportamento relativo dos tratamentos varie significativamente de uma localidade para a outra, há efeitos gerais das variedades que se sobrepõem a essas variações, de sorte que se podem indicar algumas "variedades" co mo de maior produção para toda a região, não apenas de interesse local.

As "variedades" que mais se destacaram de uma maneira geral relativamente à produtividade, foram:

```
"Variedade" \underline{a} com média de 140,401 t/ha; "Variedade" \underline{\overline{C}} com média de 138,300 t/ha; "Variedade" \underline{\overline{B}} com média de 133,100 t/ha.
```

As "variedades" que apresentaram menor produtividade de uma maneira geral, foram:

```
"Variedade" <u>d</u> com média de 106,294 t/ha; "Variedade" <u>c</u> com média de 108,442 t/ha.
```

Ao realizar as comparações das médias observa--se que os tratamentos se repartem em seis classes de associação, com diferenças mínimas significativas para o teste Tukey (Δ) entre dois deles dadas a seguir:

- 1. Entre dois tratamentos comuns: Δ 1% = 15,955 t/ha; Δ 5% = 13,755 t/ha.
- 2. Entre um tratamento comum e um regular: Δ 5% de 23,047 a 23,216 t/ha; Δ 1% de 26,733 a 26,930 t/ha.

- 3. Entre dois tratamentos regulares com λ = 3: Δ 5% de 28,515 a 28,659 t/ha; Δ 1% de 33,075 a 33,243 t/ha.
- 4. Entre dois tratamentos regulares com λ = 2: Δ 5% de 29,064 a 29,950 t/ha; Δ 1% de 33,711 a 34,739 t/ha.
- 5. Entre dois tratamentos regulares com λ = 1: Δ 5% de 29,160 a 29,994 t/ha; Δ 1% de 33,823 a 34,791 t/ha.
- 6. Entre dois tratamentos regulares com λ = 0: Δ 5% de 30,281 a 30,628 t/ha; Δ 1% de 35,124 a 35,526 t/ha.

Verifica-se, pois, que essas diferenças minimas significativas são bem menores no caso dos tratamentos comuns, mas não são muito discrepantes nos demais casos.

SUMMARY

JOINT ANALYSIS OF EXPERIMENTS IN AUGMENTED COMPLETE RANDOMIZED BLOCKS.

This paper has is view the joint analysis of augmented trials in randomized blocks. Each experiment had t = c + z, in r blocks where we have c common treatments, that is, treatments present in each blocks, and z regular treatments, which appear in only one of the r blocks. Each block has $k = c + p_j$ plots, where p_j (j = 1, ..., r) is the number of regular treatments in it.

The analysis was carried out, taking the whole set of trials as one experiment with incomplete blocks, assuming that the trials had similar variances.

In the example presented, treatments belonged to six classes of association, with least significant difference (by Tukey's method) between two of them (Δ) given below:

- 1. Two common treatments:
 - $\Delta 1$ **%** = 15.955 t/ha;
 - Δ 5% = 13.755 t/ha.
- 2. A common treatment and a regular one:
 - Δ 5% from 23.047 to 23.216 t/ha;
 - Δ 1% from 26.733 to 26.930 t/ha.
- 3. Two regular treatments, with $\lambda = 3$: Δ 5% from 28.515 to 28.659 t/ha;
 - Δ 1% from 33.075 to 33.243 t/ha.
- 4. Two regular treatments, with $\lambda = 2$: Δ 5% from 29.064 to 29.950 t/ha;
 - Δ 1% from 33.711 to 34.739 t/ha.
- 5. Two regular treatments, with $\lambda = 1$: Δ 5% from 29.160 to 29.994 t/ha;
 - Δ 1% from 33.823 to 34.791 t/ha.
- 6. Two regular treatments, with $\lambda = 0$: Δ 5% from 30.281 to 30.628 t/ha; Δ 1% from 35.124 to 35.526 t/ha.

We realize, therefore, that these leat significant differences are rather smaller in the case of two common treatments, but are not too different in the other cases.

LITERATURA CITADA

- AFONJA, A., 1968. Analysis of a group of balanced block experiments having error variance and some treatments in common. Biometrics 24: 389-411.
- CORSTEN, L.C.A., 1962. Balanced block designs with two different number of replicates. Biometrics 18: 499-519.
- FEDERER, W.T., 1956. Augmented (or Hoonuiaku) designs. Hawaiian Planter's Record 55: 191-208.
- FEDERER, W.T., 1961a. Augmented designs with one way elimination of heterogeneity. Biometrics 17:447-473.

- FEDERER, W.T., 1961b. Augmented designs with two three and higher was elimination of heterogeneity (abstract). Biometrics 17: 166.
- FEDERER, W.T.; RAGHAVARAO, D., 1975. On augmented designs. Biometrics 31: 29-35.
- FEDERER, W.T.; NAIR, R.C.; RAGHAVARAO, D., 1975. Some augmented row column designs. Biometrics 31: 361-373.
- MARTINEZ, G.A., 1972. Diseños y análisis de experimentos con cana-de-azucar. Colegio de Post-Graduados, Escuela Nacional de Agricultura, Chapingo, México.
- PAVATE, M.V., 1961. Combined analysis of balanced incomplet block designs with some common treatments. Biometrics 17: 111-119.
- PIMENTEL GOMES, F.; GUIMARÃES, R.F., 1958. Joint analysis of experiments in complete randomized blocks with some common treatments. Biometrics 14: 521-526.
- PIMENTEL GOMES, F., 1967. The solution of normal equations of experimental design models. Ciência e Cultura 19: 567-573.
- PIMENTEL GOMES, F., 1968. The solution of normal equations of experiments in incomplete blocks. Apost. mimeografada, ESALQ/USP.
- PIMENTEL GOMES, F., 1970. An extension of the method of joint analysis of experiments in complete randomised blocks. Biometrics 26: 332-336.
- PIMENTEL GOMES, F., 1973. Curso de Estatística Experimental, 5a. edição, Livraria Nobel, São Paulo.