EFEITO RESIDUAL DE ALGUNS ADUBOS NITROGENADOS NA CULTURA DO MILHO (Zea mays L.) AVALIADOS PELA PRODUÇÃO DE MATÉRIA SECA*

Manuel Palma Rosales** Francisco A. F. Mello*** Sylvio Arzolla*** Maria D. Thomasi***

RESUMO

Foi feito um ensaio em vasos, com 4 repetições, usando terra ácida e de baixa fertilidade para testar os valores fertilizantes de uréia (com e sem enxofre). nitrato de amônio e sulfato de amônio.

Fez-se, a princípio, correção do pH para 6,0 e aplicação de adubo fosfatado e potássio nas doses de 90 e 120 kg/ha de

Entregue para publicação em 20/07/87. Parte da Dis sertação de Mestrado do primeiro autor.

^{**} Aluno do Curso de Pós Graduação em Solos e Nutrição de Plantas, E.S.A.''Luiz de Queiroz'', USP.

^{***} Departamento de Solos, Geologia e Fertilizantes, E. S.A. "Luiz de Queiroz", USP.

 P_2O_5 e K_2O_5 , respectivamente. As doses de N foram de O_5 , 120 e 240 kg/ha.

A planta teste foi o milho.

No ano seguinte o ensaio foi repetido, mas sem calagem e sem adição dos fert<u>l</u> lizantes nitrogenados.

No ano subsequente repetiu-se o ensaio anterior faze do-se, porem, calagem em duas repetições de cada tratamento.

Após a colheita do milho estudaram-se os efeitos residuais dos adubos nitrogenados em competição tomando-se como parâmetros de avaliação a produção de massa de matéria seca de partes aéreas e de plantas inteiras e conteúdos de nitrogênio das mesmas

As principais conclusões gerais são:

- a. No que concerne à produção de matéria seca de partes aéreas e de plantas inteiras não houve efeito residual de N, exceto nos tratamentos correspondentes às partes aéreas de plantas que não receberam calagem.
- b. Não houve efeito residual das fontes nitrogenadas quando se tomou como parâ metro de avaliação o conteúdo de N das plantas.

INTRODUÇÃO

Frequentemente são efetuados ensalos para se verificar o efeito residual de fertilizantes fosfatados, tomando-se como parâmetro de avaliação geralmente as produções das culturas. Experimentos dessa natureza raramente são feitos com adubos potássicos e quase nunca com adubos nitrogenados.

Contudo, como parte do chamado Projeto Ureia, um Protocolo firmado entre Petrofertil/Nitrofertil-NE/Ultrafertil S.A. e Escola Superior de Agricultura "Luiz de Queiroz", foi realizado um ensaio de competição de fontes nitrogenadas usando o milho como planta teste (THOMAZI, 1983).

A seguir, utilizando-se as mesmas terras e vasos estudaram-se os efeitos residuais das mesmas fontes de nitrogênio (MELLO & ARZOLLA, 1983).

E, finalmente, ainda nas mesmas terras e vasos, foi instalado um terceiro ensaio para avaliar os efeitos residuais dos mesmos fertilizantes nitrogenados - (ureia com e sem enxofre, nitrato de amônio e sulfato de amônio) tomando-se como parametros de avaliação a produção de massa de partes aereas e de plantas inteiras de milho e conteúdos de N das mesmas.

REVISÃO DA LITERATURA

Trabalhos referentes à ação residual do nitrogênio nas plantas são poucos .

Em experimentos realizados em vasos SMIRNOV & SI'KOV (1970) constataram que o 15N utilizado pela aveia após o 1º a o de aplicação foi 1-2% do N originalmente

aplicado. A utilização no 2º ane foi 5º% menor. Uma rea plicação de N praticamente dobou a utilização do fertilizante nitrogenado previamente fixado em formas orgânicas. Em condições de campo as plantas utilizaram 40-5º% do N aplicado, aproximadamente 20% foi perdido e 30-40% permaneceu no solo na forma orgânica.

KOREN'KOV et alii (1976) observaram nos seus tra balhos que os fertilizantes nitrogenados possuem geralmente pequeno efeito residual devido ao fato que o N é quase todo utilizado pela primeira cultura. O ¹⁵N revelou que boa parte do N é fixado em formas orgânicas no solo. O baixo efeito residual pode ser explicado pela baixa disponibilidade às plantos do N imobilizado.

SMIRNOV (1969), TURCHIN (1964) e ANDREYEVA & SUHEGLOVA (1972) afirmaram que o efeito residual dos fertilizantes nitrogenados e insignificante mas segundo SMIRNOV et alii (1972) o grau de mineralização do N imobilizado e 5-6 vezes maior que o N da matéria orgânica.

SMIRNOV & SUKOV (1970) opinam que no primeiro ano do efeito residual, una boa parte do fertilizante nitrogenado fixado no solo provavelmente permanece na forma orgânica, a qual se decompõe facilmente, e só uma parte dela é formada por substâncias húmicas pouco hidrolizáveis em água. Parte do N imibilizado está presente nas regiões periféricas das moléculas de substâncias húmicas o que facilita a mineralização. Como as substâncias húmicas formam compostos cíclicos o N nas partes periféricas das moléculas formam ligações cíclicas e, sua estabilidade aumenta quando a mineralização diminue. Isto explica o baixo uso do N imobilizado no segundo ano e anos subsequentes.

MATERIAIS E MÉTODOS

A terra utilizada é proveniente de solo de tabuleiro de Maceió (Rio Largo), Alagoas, e a planta teste foi o milho (Zea mays L.) c.v. Piranão. Algumas caracte rísticas químicas do solo estão na Tabela 1.

Um trabalho foi conduzido durante 3 anos em casa de vegetação. Foram utilizados vasos com 3,0 kg de terra. No primeiro ano, as terras dos vasos foram submetidas aos tratamentos da Tabela 2, sendo os adubos bem misturados a elas e plantado milho. No 2º e 3º anos foi omitido o nitrogênio apenas e o enxofre.

0 fósforo foi utilizado como superfosfato triplo (45% de P_2O_5); nos tratamentos 9 e 10, potássio e enxofre foram utilizados como K_2SO_4 . Nos outros tratamentos, o potássio foi utilizado na forma de KCl. Nos tratamentos 11 e 12, o enxofre foi aplicado na forma de gesso.

Descrições mais detalhada dos dois primeiros ensaios são apresentadas por THOMAZI (1983) e MELLO & ARZULLA (1983).

Antes de fazer a terceira semeadura (02/01/83), foram determinados os valores de pH e de H das terras e feita a correção da acidez para pH 6.0 segundo o meto do de CATANI et alii (1954),(1974), em duas repetições de cada tratamento (A e B) usando-se CaCO₃. As duas outras repetições, C e D, não receberam calagem .

As terras tratadas e não tratadas com CaCO₃ p.a. foram adubadas com P e K e umidecidas a 70% da capacida de de campo, sendo a seguir colocadas 10 sementes de milho (Zea mays L.) cv. Piranão; isto foi feito no dia 02/01783. Dez dias apos a germinação foi feito desbaste deixando 5 plantas por vaso.

Tabela 1. Atgumas características químicas da T.F.S.A. proveniente so solo

pregado.		
CARACTERÍSTICAS	VALORES	INTERPRETAÇÃO
pH (relação terra-água 1:2,5) C%	4,90	ácido baixo
PO_4^{-5} soluvel em H_2SO_4 0,05 N, e mg/100 a de terra	0,02	ba i xo
K_trocavel, e.mg/100 g terra	0,03	baixo
Ca _{2,} trocavel, e.mg/100 g terra	0,16	baixo
Mg _{2,} trocavel, e.mg/100 g terra	0,32	baixo
Al ^{ot} trocavel, e.mg/100 g terra	0,76	alto
H ⁺ potencial, e.mg/100 g terra	3,28	medio
N total, %	0,05	baixo

Tabela 2. Tratamentos utilizados no primeiro ano

Tratamentos	Adubos	$N-P_2O_5-K_2O(kg/ha)$
- 2 - 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	testemunha alsoluta testemunha sem N Urēia Urēia Nitrato de amônio Sulfato de amônio Sulfato de amônio Urēia + S (K ₂ SO ₄) Urēia + S (CaSO ₄) Urēia + S (CaSO ₄)	0-0-0 0-90-120 120-90-120 240-90-120 240-90-120 120-90-120 240-90-120 120-90-120 120-90-120 240-90-120

A dose de enxofre foi de 20,4 kg/ha.

Deve-se acentuar que a Irrigação foi feita de acordo com as necessidades de cada vaso.

A colheita foi efetuada no dia 05/03/83. As raízes foram lavadas em água corrente, em solução de HCl 0,2% e em água destilada; a seguir as partes aéreas foram separadas das raízes e ambas foram secas em estufa a 60-70°C. Depois foram pesadas e moidas para análise química. As determinações de N foram efetuadas pelo método semi-micro-Kjeldal.

Para a análise estatística primeiramente foram analisados os 12 tratamentos com as duas repetições que receberam calagem; separadamente, foram analisados os mesmos 12 tratamentos com a repetições que não receberam calagem. As comparações entre as médias dos tratamentos foram feitas pelo teste TUKEY a 5% de probabilidade.

RESULTADOS E DISCUSSÃO

Produção de matéria seca da parte aérea

Os resultados relativos à produção de matéria se da da parte dérea das plantas se encontram na Tabela 3.

A comparação entre as médias dos tratamentos que receberam calagem aparece na Tabela 4.

Pode-se observar que ao nivel de 5% de probabili dade, o tratamento nº 08 teve maior efeito. O tratamento nº 01 (testemunha absoluta) também diferiu significativamente dos outros tratamentos ao nivel de 5% de probabilidade, pois este apresentou a menor produção de matéria seca. Os demais tratamentos não foram diferen-

Tabela 3. Massa de matéria seca da parte aérea, g/vaso.

Tratamentos			Repe	Repetições		
	A	ക	×	ပ	Q	×
	3,340	3,710	3.530	- U 1		4,390
2		7,830		7,900		
~		7,740	_	9,020		
77		9,800	_	11,710		12,960
5		8,480	_	10,690		
9		9,760	_	9,640		
7		9,910	_	12,100		
∞		13,430	_	10,810		
σ	8,430	7,760	8,090	10,760	8,810	9,780
10		9,970		16,300		
Ξ		9,610		10,560		
12				12,500		
Ι×	8,630	8,900	8,760	10,120	9,710	9,910

Tabela 4. Comparação entre as médias dos tratamentos que receberam calagem (matéria seca da parte aérea).

Tratamento	Mēdia, g∕vaso	
08	14,035 a	
04	10,475 b	
07	9,525 b	
11	9,320 Ь	
10	9,235 b	
05	8,740 ь	
0 6	8,345 b	
12	8,235 ь	
09	8,095 ь	
03	8,020 Ь	
02	7,605 Ь	
01	3,525 c	
dms, Tukey a 5% ≠ 3,304	cv = 9,487	

tes entre si ao nivel de 5%.

SMINORV & SUKOV (1970) constataram-se que o N utilizado pela aveia pós o 1º ano de aplicação foi 1-2% do N originalmente aplicado; a utilização no 2º ano foi 50% menor. A mesma observação foi feita por KOREN'SOV et alli (1976) pois eles constataram nos seus trabalhos que os fertilizantes nitrogenados possuem geralmente pouco efeito residual, devido ao fato de que o N é quase todo utilizado pela 1º cultura. O baixo efeito residual pode ser explicado pela baixa disponibilidade as plantas do N imobilizado, opinaram eles.

Os resultados obtidos no presente trabalho concor dam com os citados acima, pois, exceto o tratamento 08

(240 kg N/ha como sulfato de amônio), os demais, que receberam nitrogênio, não diferiram do 02, que recebeu apenas PK.

Os resultados referentes aos tratamentos que não receberam calagem estão na Tabela 5.

Tabela 5. Comparação entre médias dos tratamentos que não receberam calagem (matéria seca da parte aérea)

Tratamento	Média, g/vaso
04	12,960 a
07	12,520 ab
12	11,675 abc
11	10,675 abc
08	10,840 abc
10	10.530 abcd
05	10,485 abcd
09	9,785 abcd
06	9,150 bcd
03	8,425 cd
02	7,255 de
01	4,390 e

Pelo teste Tukey pode ser visto que o tratamento 04, no qual foi fornecido ureia no 1? ano, na dose de 240 kg/ha, foi o que deu a maior produção de matéria se ca, mas so diferiu estatisticamente dos tratamentos 06, 03, 02 e 01.

Pode-se dizer que houve efeito residual dos adubos nitrogenados, porém os tratamentos 03 e 06 diferiram muito pouco das testemunhas. Pode-se observar, também, que as doses maiores de uréia se refletiram em maior produção de matéria seca que as doses menores; mas isso não foi observado com o sulfato de amônio e nitrato de amônio, pois nestes ca sos as doses menores produziram maior quantidade de matéria seca na parte aérea.

O tratamento que deu a menor produção foi o 01, seguido dos tratamentos 02 e 03. Nos demais tratamentos foram obtidas produções intermediárias, que não diferiram entre si.

Pode-se observar, de um modo geral, que tanto na série que recebeu calagem como na que não recebeu os tratamentos que menos produziram foram os de números 01 e 02, isto é, o que não recebeu nenhuma adubação e o que só recebeu PK. Dito de um modo bem generalizado, nos tratamentos com calagem praticamente não houve efeito residual dos tratamentos. Tal efeito, porém, foi observado nos tratamentos que não receberam o corretivo.

Produção de matéria seca das plantas inteiras

Os resultados relativos à produção de matéria se ca das plantas inteiras se encontram na Tabela 6.

A comparação entre as médias dos tratamentos que receberam calagem aparece na Tabela 7.

Na comparação feita pelo teste Tukey a 5%, pode ser visto que há diferenças significativas entre médias de tratamentos, sendo que o tratmento que deu a maior produção foi o tratamento 08 e o que deu a menor produção foi o 01. Nos demais tratamentos foram obtidas produções intermediárias, que não diferiram entre si.

Muitos pesquisadores têm feito experimentos visando avaliar os efeitos no solo e na produção causada pela acidez residual de fertilizantes nitrogenados. Num

Tabela 6. Massa de matéria seca das plantas inteiras, g/vaso.

	O3		Repetições	coes		
	A	8	i×	၁	D	×
	7,240	14,010	10,620	18,910	11,370	15,140
2	25,780	19,030	22,400	12,010	19,500	15,750
~	19,800	21,540	20,670	20,120	13,830	16,970
- :T	22,550	22,000	22,270	24,810	23,710	24,260
7	27,900	30,280	29,090	20,790	19,780	20,280
S	22,930	19,460	21,190	18,240	18,240	15,660
7	19,140	19,110	19,120	24,200	19,940	22,070
ന	37,340	24,630	30,980	19,810	16,670	18,240
σ.	31,030	15,760	23,390	37,760	15,610	26,680
0	19,080	25,370	22,580	19,100	16,960	18,030
_	26,730	22,210	24,470	19,160	15,900	17,530
~	21,180	16,890	19,030	19,700	18,650	19,170

Tabela 7. Comparação entre as médias dos tratamentos que receberam calagem (matéria seca da planta inteira).

Tratamento	Média, g/vaso
08	30,980 a
05	29,090 ab
11	24,470 ab
09	23,390 ab
02	22,400 ab
04	22,27 0 ab
10	22,220 ab
06	21,190 ab
03	20,670 ab
07	19,120 ab
12	19,030 ab
01	10,620 ь
, Tukey a 5% = 19,63	cv = 22,32 %

trabalho feito durante 4 anos por GARLAND & JONES (1964) foi encontrado que o nitrato de amônio produziu pouco ou nenhum efeito nas primeiras três polegadas de profundidade e o sulfato de amônio foi aquele que mais acidificou o solo; nas 3-6 polegadas inferiores, só o sulfato de amônio causou uma leve acidificação. Aplicando calcário, o pH aumentou ligeiramente nas primeiras três polegadas de profundidade, mas os efeitos foram insignificantes nas três polegadas seguintes, especialmente nas que receberam sulfato de amônio.

Comparando as médias dos tratamentos que receberam calagem, é difícil fazer uma avaliação real do que possa ter acontecido com a aplicação de calcário num so lo com fertilidade natural bastante baixa, sendo que se gundo as pesquisas feitas por SMINORV & SUKOV (1970). e

KOREN'KOV <u>et alii</u> (1976) os fertilizantes nitrogenados possuem geralmente pouco efeito residual, e o seu efeito apos 2 anos de aplicação já é muito pequeno.

Pode-se observar, também, que não houve efeito de doses. Isso é, provavelmente, devido, também, ao baixo efeito residial dos fertilizantes nitrogenados.

A comparação entre as médias dos tratamentos que receberam calagem aparece na Tabela 8.

Tabela 8. Comparação entre as médias dos tratamentos que não receberam calagem (matéria seca da planta inteira).

Tratamento	Média, g/vaso
09	26,680 a
04	24,260 a
07	22,070 a
05	20,280 a
12	19,170 a
08	18,240 a
10	18,030 a
11	17,530 a
03	16,970 a
06	16,950 a
02	15,750 a
01	15,140 a
dms, Tukey a 5% = 21,4	00 cv = 27,970 %

Na comparação de médias feita pelo teste Tukey a 5%, vê-se que não existem diferenças significativas entre as produções médias dos diferentes tratamentos.

Observando as produções médias dos tratamentos e

comparando-as com aquelas onde foi feita a correção de acidez, pode-se notar que nos últimos houve uma maior produção de massa de matéria seca. De uma maneira geral pode-se dizer que os tratamentos com a dose maior causa ram menor produção de matéria seca em relação a dose menor, com exceção da ureia e ureia + S (CaSO₄), onde foi verificado o contrário; isto, provavelmente, é devi do a uma maior redução do pH das terras, pois estes adu bos são fisiologicamente ácidos (NEVES et alii, 1960; MELLO & ANDRADE, 1973; MELLO et alii, 1980).

Os fertilizantes que os pesquisadores consideram como causadores de uma maior acidez residual foram aque les que em maiores doses produziram menor massa de materia seca. Desta maneira pode ser visto que os fertilizan tes que provocam maior acidez residual tiveram uma menor produção de matéria seca.

Fazendo uma comparação de médias pode-se observar que, numericamente, a produção média dos tratamentos que receberam calcário foi superior à produção média dos tratamentos que não reberam cálcário. Assim, houve, na realidade, um efeito do pH pois, provavelmente, quan do se fez a correção de acidez houve melhores condições de absorção de nutrientes em geral por parte das plantas.

Observando a tabela de comparação de médias podese constatar que, para produção de matéria seca, não houve efeito de tratamentos.

Considerando-se os resultados obtidos de um modo geral e levando-se em conta os tratamentos que receberam calagem e os que não a receberam se observa que não houve efeito residual dos adubos nitrogenados no que se refere à produção de matéria seca de plantas inteiras.

Nitrogênio total na parte aérea

Os resultados relativos ao conteúdo de nitrogênio total das partes aéreas das plantas se encontra na Tabela 9.

A comparação entre as médias dos tratamentos que receberam calagem aparece na Tabela 10.

Observando a tabela anterior pode-se notar que mesmo existindo diferenças numéricas entre médias de tratamentos, não existem diferenças estatísticas ao nível de 5% de probabilidade, o que significa que os tratamentos não afetaram, estatisticamente, as quantidades de nitrogênio acumuladas nas partes aéreas das plantas.

Contudo, deve-se notar que essa observação pode estar prejudicada pelo coeficiente de variação um pouco elevado.

Considerando-se os tratamentos que não receberam calagem os resultados de comparação de médias estão na Tabela 11.

Comparando-se as médias dos tratamentos da Tabela II, constata-se que somente o tratamento 08 superou a testemunha. Entende-se, pois, de uma maneira genérica, considerando-se as duas sérias de tratamentos, com calagem e sem calagem, que não houve efeito dos mesmos no que se refere ao conteúdo de nitrogênio nas partes aéreas das plantas.

Um fato interessante que chama a tenção é a observância de maiores quantidades de N na parte aérea das plantas dos tratamentos nos quais não foi feita correção de acidez, sendo estas quantidades acompanhadas de um maior peso de matéria seca, sendo ambos valores superio res àqueles dos tratamentos que tiveram correção de acidez. Os autores desconhecem a aplicação desse fenômeno.

Nitrogênio total na planta inteira de milho.

Tabela 9. N total na parte aérea das plantas, mg/vaso.

1 15,030 2 20,660 3 24,070 4 27,870 5 34,200	B i0,390 21,920	12,710 21,290		Q	>
1 15,030 2 20,660 3 24,070 4 27,870 5 34,200	10,390				×
2 20,660 3 24,070 4 27,870 5 34,200	21,920			_	
3 24,070 4 27,870 5 34,200				16,520	17,740
5 34,200	23,990			_	
5 34,200	24,500			_	
7,100	23,740	_		_	
004.17	27,330			_	
7 54,840	29,730	_		_	
8 32,210	41,630	_		_	
9 19,390	24,830			_	
10 22,109	41,870	_			
11 19,870	27,870	_		_	
12 32,680	18,250		33,750	_	

Tabela 10. Comparação entre as médias dos tratamentos que receberam calagem (N total na parte aér rea)

Tratamento	Média, g/vaso
07	42,285 a
08	36,921 a
10	31,985 a
05	28,970 a
04	26,187 a
12	25,463 a
06	24,405 a
03	24,032 a
11.	23,8 8 a
09	22,110 a
02	21,294 a
01	12,709 a
dms, Tukey a $5\% = 32,347$	cv = 30,502 %

Tabela II. Comparação entre médias dos tratamentos que são receberam calagem (N total na parte aérea)

Tratamento	Média, mg/vaso
08	61,235 a
10	39,145 ab
09	37,230 ab
07	36,600 ab
04	33,341 b
12	30,980 ab
11	30,800 Ь
05	29,870 ь
06	27,980 ь
03	23,435 b
02	17,740 b
01	15,460 ь
dms, Tukey a $5\% = 30,376$	cv. 23,900 %

Os resultados relativos ao conteúdo de N total na planta inteira se encontram na Tabela 12.

A comparação entre médias dos tratamentos que receberam e que não receberam calagem aparece nas Tabelas $13 \ e \ 14$.

Tabela 13. Comparação entre médias dos tratamentos que receberam calagem (N total na planta inteira)

Tratamentos	Médias, mg/vaso
06	84,305 a
80	82,020 a
03	68,430 a
05	67,305 a
10	64,735 a
07	64,685 a
11	64,050 a
04	57,510 a
12	53,910 a
02	49,050 a
09	43,710 a
01	26,055 a
dms, Tukey a 5% = 63,8	20 cv= 26,560 %

Tabela 12. Quantidades totais de N nas plantas, mg/vaso

Tratamentos	2		ά	Repetições		
	A	æ	×	U	Q	×
	23,220	28,890	26,050	49,590		39,080
2	53,780	44,320	49,050	50,560		42,440
~	49,370	87,490	68,430	57,460	30,010	43,730
7	47,820	67,200	57,510	74,560		63,570
ч	67,270	67,340	67,300	56,190		51,550
9	101,480	67,130	84,300	120,050		82,030
7	78,840	50,530	64,680	88,320		73,750
∞	82,110	81,930	82,020	115,260		91,630
თ	39,390	48,030	43,710	159,670		105,480
10	49,100	80,370	64,730	50,870		58,940
=	54,870	73,230	64,050	59,320		48,100
12	71,180	36,650	53,910	56,050		52,280

Tabela 14. Comparação entre médias dos tratamentos que não receberam calagem (N total na planta inteira).

Tratamentos	Mēdias, mg/vaso
09	105,480 a
08	91,635 a
06	82,030 a
07	73,750 a
04	63,570 a
10	58,945 a
12	52,280 a
05	51,550 a
11	48,100 a
03	43,730 a
02	42,440 a
01	39,080 a
ms, Tukey a 5% = 84,310	cv = 33,832 %

Foram observadas variações muito grandes nos con teúdos de N total entre tratamentos. Pode-se ver que a dms, em ambos os casos, foi bastante elevada e dessa ma neira, não houve diferenças estatísticas entre médias de tratamentos em ambos os casos, com calagem e sem calagem.

Resultado semelhante foi constatado quando se es tudou o acúmulo de nitrogênio nas partes aéreas das plantas.

Cabe aqui a observação já feita de que as plantas que não receberam calagem acumularam mais nitrogênio que as que receberam esse tratamento. A explicação do fenômeno é desconhecida pelos autores.

Tabela 12. Quantidades totais de N nas plantas, mg/vaso

Tratamentos	50		œ	Repetições		
	A	മ	×	ن ا	Q	l×
_	23,220	28,890	26.050	49.590	28,570	39,080
2	53,780	44,320	49,050	50,560	34,320	42,440
~	49,370	87,490	68,430	57,460	30,010	43,730
7	47,820	67,200	57,510	74,560	52,580	63,570
Ŋ	67,270	67,340	67,300	56,190	46,910	51,550
9	101,480	67,130	84,300	120,050	44,010	82,030
7	78,840	50,530	64,680	88,320	59,180	73,750
œ	82,110	81,930	82,020	115,260	68,010	91,630
σ	39,390	48,030	43,710	159,670	51,290	105,480
0 -	49,100	80,370	64,730	50,870	67,020	58,940
=	54,870	73,230	64,050	59,320	36,880	48,100
12	71,180	36,650	53,910	56,050	48,510	52,280

Tabela 14. Comparação entre médias dos tratamentos que não receberam calagem (N total na planta inteira).

Tratamentos	Médias, mg/vaso
. 09	105,480 a
` 08	91,635 a
06	82,030 a
07	73,750 a
04	63,570 a
10	58,945 a
12	52,280 a
05	51,550 a
11	48,100 a
03	43,730 a
02	42,440 a
01	39,080 a
dms, Tukey a 5% = 84,310	cv = 33,832 %

Foram observadas variações muito grandes nos con teúdos de N total entre tratamentos. Pode-se ver que a dms, em ambos os casos, foi bastante elevada e dessa ma neira, não houve diferenças estatísticas entre médias de tratamentos em ambos os casos, com calagem e sem calagem.

Resultado semelhante foi constatado quando se es tudou o acúmulo de nitrogênio nas partes aéreas das plantas.

Cabe aqui a observação jã feita de que as plantas que não receberam calagem acumularam mais nitrogênio que as que receberam esse tratamento. A explicação do fenômeno é desconhecida pelos autores.

CONCLUSÕES

Dos resultados obtidos pode-se concluir que no que respeita à graduação de matéria seca de partes aéreas e de plantas inteiras não houve efeito residual de N, exceto nos tratamentos correspondentes às partes aéreas de plantas que não receberam calagem.

SUMMARY

RESIDUAL EFFECT OF SOME NITROGENOUS FERTILIZERS IN CORN PLANT (Zea mays L.) EVALUATED BY DRY MATTER PRODUCTION

An experiment was carried out in pots with four repetitions using an acid soil with poor fertility in order to test the residual values of urea (with and without sulphur), ammonium witate and ammonium sulphate.

In the begiming the pH were corrected up to 6,0 and applications of phosphate and potassium fertilizers in quantities of 90 and 120 kg/ha of P_2O_5 and K_2O were respectively done. The quantities of N were 0, 120 and 240 kg/ha.

The test plant was corn ($\underline{\text{Zea mays}}$ L.). In the following year this test was repetead, without pH correction and without adding nitrogenous fertilizers.

In the subsequent year the same experiment was repeated making, however, pH corrections in two repetitions of each treatment.

After havesting the residual effects of the employed fertilizers were studied using the dry matter productions as avaluation parameters.

It was concluded that in what concerning the dry matter production of the whole plant and the root-free plant no residual effect of nitrogen was found, except in the corresponding treatments of root-free plants where the pH was not corrected.

LITERATURA CITADA

- ANDREYEVA, YE. A. and SCHEGLOVA, G.M., 1972. Utilization of nitrogen fertilizer by plants (according to the experiments with the isotope N¹⁵). Pochvovedeniye, U.S.S.R., 12.
- CATANI, R.A., S.R. GALLO & M. GARGANTINI., 1954. Disponibilidade de nitrogênio em diversos fertilizantes nitrogenados. Bragantia 13: 95-103.
- GARLAND, D.R. & JONES, G.S., 1964. Effect of mitrogenous fertilizers on soil pH. J. agric. vict. Victoria 62: 410-422.
- KOREN'KOV, D.A.; LAVRODA, I.A.; FILIMONOV, D.A. & RUDELEV, YE. V., 1976. Transformation of previosly immobilized nitrogen after repeated fertilizer application. Soviet Soil Science. 5: 572-575.
- MELLO, F.A.F., & R.G. ANDRADE., 1973. A influência de alguns adubos nitrogenados sobre o pH do solo. Rev. Agric. Piracicaba, 48: 68-78.
- MELLO, F.A.F., S. ARZOLLA; J.C. KIHEL; M.O.C. BRASIL SO BRINHO; A. COBRA NETTO & R. I. SILVEIRA., 1980. Efet to da uréia e do sulfato de amônio sobre a acidez de um solo. XIV Reunião Brasileira de fertilidade do so lo, Cuiabã.
- MELLO, F.A.F., & S. ARZOLLA., 1983. Efeito residual de

- adubos nitrogenados. <u>Rev. Agric</u>. Piracicaba, <u>58</u>:17-24.
- NEVES, O.S., G.P. VIEGAS & E.S. FREIRE. 1960. Efeito do uso continuo de certos adubos azotados sobre o pH do solo. Bragantia, 19: cxxv-cxxxii, Nota nº 25.
- SMIRNOV, P.M. 1969. Residual effect of nitrogen fertilizers. DOKL. TSKHA. USSR, nº 154.
- SMINORV, P.M. and A.A. SUKOV. 1970. Availability to plants and transformation in soil of residual immobilized fertilizer nitrogen. Agro. Khimiya, USSR. no. 12: 3-15.
- THOMAZI, M.D., 1983. Competição de adubos nitrogenados na cultura do milho (Zea mays L.) cv. <u>Piranão</u>. Disser tação apresentada à Fscola Superior de Agric. "Luiz da Queiroz", USP, Piracicaba.
- TURCHIN, F.V. 1964. Transformation of nitrogen fertilizers in soil and their uptake by plants. Agro Khimyia. nº 3.