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SYNOPSIS

This paper is a survey of the main spectral methods potentially
useful in Oceanography. These methods are applied to the analysis of
tides, seasonal variations and ocean geophysical oscillations. Further
topics on the Response Method, the Maximum Entropy method and Rotary
Components are briefly summarized. Examples of successful appli-
cations are presented.

1 = INTRODUCTION

This paper intends to be a survey of the main spectral methods potential-
ly useful in oceanography. Some practical problems are discussed but they do

not cover, of course, the range of all possible applications. Basically,
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there are three types of phenomena that appear in physical oceanography:
first, those which present known frequencies and phases and we are interested
in their amplitudes; secondly, those which possess known frequencies, and
the interest is to determine phase and amplitudes and finally there are
those phenomena for which frequencies, phases and amplitudes are unknown.
According to other classification the hidrodynamical ocean processes are as-
sumed to be of planetary scale (sections 3 and 5), medium scale and micro-
scale, eventhough there is not a precise separation between these scales.
Processes of medium and micro-scale are further discussed in Mesquita &

Morettin, 1976.

The plan of the paper is as follows: in section 2 we describe some gener—
al spectral methods; in section 3 we present the fundamentals of tide analy-
sis and results of a simple analysis of a tidal record are given. An appli-
cation concerning seasonal variation is given in section 4 and in section 5
some preliminary analysis of GATE (GARP ATLANTIC TROPICAL EXPERIMENT) data

is discussed.

2 - GENERAL SPECTRAL METHODS

Let X = {X(t,w):teT,weR} be a real-valued stochastic process, where for
each teT, X(t,w) is a random variable defined on the probability space
(2,A,P) . Usually we take T= Z= {0,*1,*2,...} or T= R, the set of real numbers.
For fixed w we have a reglization, trajectory or sample function of X. The
set of all these realizations is the ensemble. A problem which arises in
practical situations is the determination of the ensemble. Suppose, for ex-—
ample, that we are interested in measuring wave heights in a given area. If
an instrument is attached to a buoy and thrown in a point of this area, we
will have observations of a tf&e series, which is part of a realization of
the process. If the buoy is thrown in a different point we will observe an-
other realization of the process. It is therefore necessary to stipulate the

area in which we have some assurance that we are observing the same process.
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We will indicate by p(t) = E[ X(t,w) ]| the expected value of X and by

C(ti,t2) the auto-covariance function of X, defined by

u(t) = E[ X(t,w) ] =/xdF(x,t), (2.1)

C(t1,t2) = E{[ X(t1,0) - p(t1)] [ X(t2,w) - u(tz)]} (2.2)

respectively. Here, F(x,t) = P(X(t) < x) is the distribution function of the
random variable X(t,w). If t; = tz2 we have the variance of X(t,w). We will

omit the dependence on w and write simply X= {X(t), teZz}.

2.1 - STATIONARY PROCESSES

Let T= Z and suppose we have now a vector-valued stochastic process

ES! (tj_
Xz (t)
X(t) = |. , tezZ, (2.3)

with p real-valued components. We say that X(t) is weakly stationary or
second-order stationary if

D w0=ELX(0)]= u,,
(ii) cjk(t-l-'r,t) = 00v{xj (t+1), xk(t)} - Cjk(’r),

(iii) E[xj%(t) ] < =,
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fort,T € Zand j,k = 1,2,...,p. Without loss of generality we assume that
“j = 0, in such a way that the cross-covariance function Cjk('r) of Xj(t)
with Xk(t) can be written

Cip (D) = E[Xj(t-l-‘t)x.k(t)] . (2.4

fort,T € Zand j,k=1,...,p. If j= k we have the auto-covariance function of
x. ),
J( )

If we can assume that

oo
L | Cjk(T)l < o, j,k= l,...,p, (2.5)
‘rs -0

then we define the second-order spectrum of Xj (t) with X‘k(t) by

£ 0 = em™ 1 Cjk(T)ehiAt, (2.6)

T= =<

for =0 < A < +o, j,k=1,...,p. If j=Kk, fjj(k) is the (power) spectrum of
Xj (t) at frequency A and if j# k, fjk(l) is the cross-spectrumof Xj (t) with
Xk(t) at A. Expression (2.5) is a mixing condition in the sense that Xj(t+'r)
and X.k(t) become less dependent as |T|-. fjk(l) is bounded, uniformly con-

tinuous and of period 2m; moreover,
fjk(?\) = fij\S = fkj(—x). (2.7)
Since fjk()\) is complex it can be written

£ V) = 1fjk(x)|eiejk(1) = cjM+ig (V. (2.8)
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The real part of f.k(l), cjk(l), is called the co-spectrum and the im-

J
aginary part qjk(h) is called the quadrature spectrum (or quad-spectrum) .

B.k(k) is the phase spectrum and fjk (A\) is the amplitude spectrum.
J

A quantity of interest in the analysis of pairs of time series is the
eoherence, defined by

£f.. (A

I Jk( ) |
L5008, O]

(2.9)

P51 (M) 172

pjk(A) is the analogue of the correlation coefficient between two random
variables and measures (in the frequency domain) the extent of linear re-
lationshiﬁ between Xj(t) and Xk(t). It can be proved that 0 f_pjk(l) < 1.
Linear here should be understood in the sense that there is a linear filter

acting on Xj(t) and producing Xk(t) (see discussion below).

Let us consider the caseof a single series Xj(t) for a moment. A theorem
by Bochner states that there is a non-decreasing, bounded function Fj(l) such

that

I:eIAT

cjj(T) = dFj(A),TeZ. (2.10)

This function Fj(l) is the spectral distribution function of the series
Xj(t) and determines a spectral measure Fj(b), which can be written

_od c
Fj(A) = Fj(A) + Fj(ﬂ). (2.11)

F?(A) and F;(ﬂ) are, respectively, the discrete and the continuous part of
Fj(A) and they are such that '

d
Fj(ﬂ) = Akéﬂ ij(lk), (2-121

c = -
Fo(8) = fﬁfjj(l)dl, (2.13)
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pjj(lk) is the spectral function and fjj(l) is the spectral density function
or simply the spectrum, given by (2.6) if (2.4) holds (with j= k). It follows
that ij(T) can be written

_ e 1AL T T iAT
Cy5(™ = e Epi5 ) + [T, . (0ap, (2.14)

and we obtain a mixed spectrum, formed by spectral lines plus a continuous

part (Figure 1).

Fig. 1 - General form of the spectrum
of a time series, showing the
discrete part p()) and the
continuous part f(A).

A typical tidal spectrum will look like this, where the continuous part
is due to the background noise and the spectral 1lines are due to the de-
terministic part of the tidal process, 1in general assumed to be an almost

periodic function. See section 3 for a discussion on this subject.

2.2 - THE BISPECTRUM

Let C (t1,t2,t3) be the cumulant of order 3 of the p vector-valued

J1j23is
time series X= {X(t),tez}. Assume that X is 39 srdei stationary, that is,
the finite-dimensional distributions of X up to order 3 are invariant under

time translations. Then it follows that

(t+T1,t+T2,t) = C (T1,T2), (2.15)

Cia. .5 % ¥ 8%
J.¥]12]3 J1J2]3

and if E[xj(t)]= 0, j=1,...,p, then

C. . . (T1,T2) =El X. (£)X. (t+11)X. (t+T 2.16
5150 T1oT2 L Xy (0%, (e+1)X, ( 2) ] (2.16)
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where j1,j2,j3 = 1,...,p. If p is any permutation of the indices 1, 2 and 3,

then it is also true that

C. . . (t_,t ,t ) =2C, . . (t1,tz,t3). (2.17)
Jleszp3 P1° P2 Ps3 J1J2])3

For further details on cumulants, see Brillinger, 1975, Chapter 2,

If

|c

(T1,T2) | < =, (2.18)

z .
T1,T2" J1]J2]3

the bispectrum of X is defined by

=i(A1T1+A2T2) (2.19)

£ (A1,h2) = (2m (T1,T2)e

s = s 2. C. o
J1J2]3 T1,T2 J1]J2]3

for —» < A1,A2 < +*, and this is bounded, uniformly continuous and periodic

with period 2m with respect to A1 and Az. By (2.17) we have

£ (A A ) =

p1’ p2 fjljzja(kl’AZ)’ (2.20)

Jpljpsza
and if the components of X are real, then

(A1,22) = £. (-A1,-A2) . (2.21)

£ i &
Ji1]2]13 J1]2]3
Also, in the case of the bispectrum of a single series Xj(t), we have

s A XE) ® FrsulRaNo X} @ Box o hig=AaoK5) « 2.22
fJJJ( 15A2) JJJ( 1=A2,A2) JJJ( 1,=A1-A2) ( )

If Xi(t) # Xj(t) # Xk(t) we call fijk(kl,lz) the trivariate bispectrum
of Xi(t), Xj(t) and Xk(t); if Xi(t) = Xj(t) # Xk(t), fiik(AI,Az) is the

eross-bispectrum of Xi(t) and Xk(t); finally, if Xi(t) = Xj(t) = Xk(t)’
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fiii(ll,kz) is the auto-bispectrum of Xi(t). We can also write fj1j2j3 (A1,A2)

as f (A1,A2,A3), with the understanding that Aj+A2+As= 0, that is, the

j1i2is
3

bispectrum has support only on the manifoldiglli= 0 of the (A1,A2,A3)-space.

If (2.18) is not satisfied we can formulate a general theory for polyspectra

(Brillinger & Rosenblatt, 1967; Gasser, 1972).

The records of ocean waves, in a given position, may be considered as
realizations of Gaussian stationary processes. For these processes the spectrum
is adequate to analyse their probabilistic structure. It is known that for
Gaussian process the cumulant spectra of order greater than two vanish.
Therefore, the bispectrum (and polyspectra of higher order) can be useful to
detect deviations froma Gaussian process. The complexity of ocean waves, for
example, makes necessary to consider moments greater than 2 and, in consequence,
higher-order spectra. On theother hand, there have beenrelatively few appli-
cations of polyspectra, mainly due to difficulties of interpretations, time
and computer work programming. Brillinger, 1965 says: ''Experience with real
random variables indicates that higher order moments are not efficient esti-
mates of scientifically relevant parameters; consequently as the specifications
of stochastic processes become tighter, polyspectra are likely to prove less

pertinent in a similar manner."

Applications have been restricted to auto-bispectrum. Hasselmann et al.,
1965, have analysed the bispectrum of wave records at a single station.
Brillinger & Rosenblatt, 1967a, have considered 2nd and 3rd order spectra of

the sunspot numbers series.

2.3 - HOMOGENEOUS PROCESSES ON A SPHERE

Let X= {X(P,t):PeS2,teZ} be a real-valued stochastic process defined on
the unit sphere S of R®. We assume that X is continuous in quadratic mean
(q.m.), with finite moments of all orders and (weakly) stationary with re-

spect to t and homogeneous with respect to P, that is

(i) E{X(P,t)} = constant, (2.23)
(ii) Cov{x(p,t+s), X(Q,s)} = R(6,t), (2.24)
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where 6 is the angular distance between P and Q. We assume that the mean

(2.23) is zero. It then follows that

e n
X(P,t) =n£0 ji—n znj(t)Ynj(P), (2.25)
with
an(t) = ISZX(P,E)Ynj(P)dP, (2.26)

where dP is the measure on S2 and {Ynj’ -n < j < n} are the spherical har-
monics of order nz'O. In (2.25) the series 1is assumed to be convergent in
g.m. and the integral in (2.26) is a stochastic integral in the q.m. sense.
See Yaglow, 1961, for a full treatment of the above expressions. See also
Roy, 1976.

The process an(t) is such that

™ 1At

E{an(t+s)2mk(s)} = anmsjk I_ﬂe dF_(%), (2.27)

and the covariance function R(6,t) is given by

. T .
R(B,t) = (4m) " E (2n41)P_(cos 6) {nelltan(x), (2.28)

where Pn(.) are the Legendre polynomials of degree n and {Fn(l)} is a
sequence of real, bounded, non-decreasing functions. Fn(A) is the spectral

distribution function of X.

Applications of stochastic processes on a sphere have been done by Jones,
1963 and Cohen & Jones, 1969. They have applied the methodology of this

section to the problem of meteorological forecasts.

2.4 - FILTERING, SAMPLING AND ALIASING

In many situations it is necessary to filter the original series before
proceeding to the analysis. For instance, the spectrum of a tidal record has

usually significant power in a band of frequencies, hence we can use a band-
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pass filter in order to isolate the most important tidal components.
By a filter we mean a mechanism 7 which transforms a time series X(t) in

another time series Y(t) and we indicate this by Y(t) = 5 [X(t)].
7 is a linear filter if:
(1) Floaxi(t) + caXo(t)] =0, F [Xi(t)] +a, F[X2(t)], for 01,02 constant;
(ii) if Y(t) =7F[X(t)], then Y(t+1) = F[X(t+1)].

Property (i) gives the linearity of ?’and (ii) gives the so-called time-

invariance of 7. Of special importance are the filters

v(t) =§ h(t-DX(D), (2.29)

for stationary processes X(t) and
T(p) = (Zﬂ)_lf;ﬁf;h(e)x(q)sen 04649, (2.30)

for homogeneous (time-independent) processes on a sphere, 6 and ¢ being the
latitude and longitude of Q. The filters (2.29) and (2.30) are completely

determined by their respective transfer functions

H(A) = Th(t)e AT, (2.31)
T
and
H(A) = [(PA(cos6)h(6)senddd (2.32)
where Pl(') is the Legendre polynomial. In case (2.29), if fKXO") and f“(l)

are the spectra of X(t) and Y(t), respectively, then the simple relation
£ry(D) = B |2, £..(A) holds.

Suppose now we have a continuous, stationary series {X(t), —w<t<+x} and

we sample it at jAt, jeZ, At>0. We obtain the series

xﬁt(j) = X(jAt), jeZ. (2.33)
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Through this sampling procedure some harmonics of the spectral decompo-
sition of X(t) cannot be distinguished. This is the aliasing phenomenum and
if we denote by f(1) and fzﬁ\t(l) the spectrum of X(t) and Xﬁt(j)’ respective-
ly, then it can be shown that

eV = z f(x+£‘ﬂ),§<xg£. (2.34)

m

For any A in the interval[%,—gg %}T-, k= 21, £2,...

are called the alZases of A. The frequency Eﬁf (in radians per unit of time)

], the frequencies \ +

is called the Nyquist frequency. If frequency is given in cycles per unit of
time, the Nyqulst frequency is 1/2At. If At is small in such a way that £(A)= 0

for |A| > —a—t- then f, (A) and f(X) will be essentlally the same. On the other
hand, if there is no interest in f£()) for |A| > &t’ then we canavoid aliasing
through the applications of a low-pass filter, which attenuates or eliminates
the energy at high frequencies. For details on the effect of aliasing in the

case of stochastic processes on a sphere see Hannan, 1966.

The problem of aliasing also appears in connection with bispectrum. If

we have two continuous series X(t) and Y(t), for example, and Algx) %,

éy) -—-E are the respective Nyquist frequencies, then the cross-bispectra of
the continuous series and of the sample series will be essentially the same
. = (x) s 2 :

if the fYXX(M,Az) = 0 for |A1] > lN and |7\2| J\N . Under regularity

conditions, it can be shown that

£89 (01,0 h0) = BE O+ B0, 0, Tz g 0 20 (2.35)

YXX A
3
forlk A = 0 (mod 27m), the sum extended over all ja such that
=13
i= 2'nj
21("2 ¥ ) w0 e s Dy b,
a.—

For practical aspects of computations of the bi-spectra see Brillinger &
Rosenblatt, 1967a and Gasser, 1972. To give an idea, for one series X(t),
the bi-spectrum fm(h,lz) is computed in the triangular area of vertices

(0,0,0), (m,0,-m) and (m,T,-T), in the case A1+Az+2A3 =0
2 2
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2.5 - ESTIMATION PROCEDURES

In this section we restrict our attention to the problem of estimating
‘spectra and bispectra. There are basically two approaches for estimating
spectral parameters. The first uses estimates which are obtained through a
smoothing of the sample covariance function. The second uses estimates which

are weighted averages of periodogram ordinates.
Suppose we have observations §(t) , t=1,..., N of the p vector-valued
process (2.3). Define the vector (pxl) of finite Fourier transforms

1/2 lt

da™y = 2my I, X(De (2.36)

for =-» < XA < 2, {sually this is computed for frequencies }\ = —zNﬂ, for
-E%:] <v< [% J Let E[}_E(t)] =0 and £ (A\) be the matrix of spectra
f k(}\) > Jok=1,...,p. Under regularity conditions (Brillinger, 1975) the random
variable Q(N) (1) has an asymptotic distribution which is amultivariate com-
plex normal distribution NC(O £(A)), if M 0,m. If A= 0 or A= 7, the asymp-
totic distribution is a NP(O f(l))

Let djN)()\) be the j—-th component of d(m (A\) and define the cross-

periodogram of the series xj(t) with the series xk(t) by

(N) ) = d‘“’(x) dkm(,\). (2.37)

If j= k we have the periodogram of Xj(t) given by

2 N &.
(N)(A) = |d(N)(A)|2 (ZTTN) lltzlxj(t)e i\t |2- (2.38)

It can be proved that Ié?) (A) is an asymptotically unbiased estimator of
(1), but it is not consistent, since its variance is (asymptotically)
equal to f2 (), for A# 0,m and 2f2 (A), for A= 0 or A=m. Moreover, I§N) A
has an asymptot:.c distribution proportlonal to a chi-square variable with 2

degrees of freedom, if A# 0,7 and proportional to a chi-square variable with
1 degree of freedom if A= 0 or A=m.
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Let cjk(T) be an estimate of the cross—covariance function Cjk(T) defined

by
N'l NET X.(t+1)X, (v) = 0,1 N-1
t=1 J Xk ] 3 yaeny
tjk(t) = ij(-T), T= =1,-2,...,-N+1 (2.39)

0, |t|] >N.

Let WM(T) be a sequence of weights such that:
(1) 0 < w (1) < w(0) =13
(ii) wy(-0)=w, (1), for all T, (2.40)
(iii) w (1) =0, for |T] > M.
The function WM(T) is called a lag window and its Fourier transform

WD) = (2m) “ijwm(-c) e~ IAT (2.41)

is called a spectral window and has the properties:

(1) W (D) = WM(A);

(2.42)
(i) [_Tw,00dA = 1.

There are many windows used in practice, such as the Bartlett, Tukey,

Parzen windows, etc. See Jenkins & Watts, 1968 for details.

If we collect the Cjk(T) in the pxp matrix C(k), we define the smoothed

covariance estimate of £(A) by

gy =0 _Ee M mem (2.43)



166 Bolm Inst. oceanogr., S Paulo, 27(2), 1978

It can be seen, from the convolution properties of the Fourier transform
and using a Riemann approximating sum for an integral (Koopmans, 1974, p.
267), that fl(}\) can be written in the asymptotically (in distribution sense)

equivalent form

(3]

= 2 ko). 10y, (2.44)
=[]
where }\U E Z%\’_ and K()A) is a symmetric, periodic, real-valued weight function

for which EK(?\\J)= 1. Here I(N) (A) = [Iﬁ? (A) ] is the matrix of cross-
periodograms (2.36) .Estimators givenby (2.43) are called smoothed periodogram
estimators. The estimators (2.42) and (2.43) are asymptotically unbiased and,
under regularity conditions on M, N and K(}), they have, asymptotically, a
distribution which is a constant multiple of a chi-square variable with r
degrees of freedom. The parameter r is called the equivalent degrees of
freedom of the estimator and depends on K()), since K(}) = %T-EWM()\) . If we

use (2.42), then r= N/[_Wi(A)dA and if we use (2.43), r= 2/3K*(A).

As estimates of the coherence pjk()‘) and of the phase Bjk(k) we take
NN

p:. () =
jk = (2.45)
(25085, 712
and l_
_i] 9 (0
0, N = tg ! Lt 8 (2.46)
- e

x:here Ejk()t) = Re fjk(l), E[jk(}\) = Im fjk(k) and fjk(l) is given by (2.42) or
2.43).

Approximate confidence intervals for the spectrum, coherence and phase
can be obtained using the asymptotic distributions of the spectral estimates.
It is convenient to consider a confidence interval for the log-spectral

density, since this interval will have a constant width for all frequencies.
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It is given by
r
log  + log £()) < log £()) < log = + log (), (2.47)
where a and b are obtained from the tables of a x%(x) by

P(x*(xr) < a) = 17'7 P(x2(x) < b) = 1%

Y be;ng the confidence coefficient. The constant width of the interval is
log 3 See Koopmans, 1974, for the expressions for the confidence intervals

for the coherence and phase.

Turning to the bispectrum, define the third-order periodogram by

N) = =5y AN) (N) (N
Ijljzja(kla;\Z,)\B) - (2“) N 'djl (ll)djz (Az)dja)(la), (2-48)
where A1 + A2 + A3 = 0. As an estimate of the bispectrum fj1jzj (A1,A2,A3)
3

we take the weighted periodogram

N o
?_g ; 3 (A1,22,23) =H_mfNM(i’|1—u.1,Az—uz,ka—ua)IEN} f (o1,02,03) 6 (0 +ap+as) dardasdas, (2.49)
1358 17273

where WN(.) is a continuous weighting function and § (.) is the Dirac function.
For computations, (2.48) can be written in a form similar to (2.43). For
details, see Brillinger & Rosenblatt, 1967. The estimate (2.48) is asymp-
totically unbiased off minor submanifolds and asymptotically normally dis-—

tributed as N =+ «,

A further aspect that deserves attention in the estimation of spectra
and bi-spectra 1is the problem of complex—-demodulation. Let X(t) be a real-

valued series and consider

X (1) = L[x(t)eﬂotj_ (2.50)

Xo(t) is called the complex-demodulate series centered at frequency Ao. Here

L is a low-pass filter which can be chosen in a variety of forms. If AA is
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the bandwidth of L, then an estimate of the spectrum of X(t) in XO + AX is
d
given by T . f§2|xo(t)|2dt, where T is the lenght of a record of X(t) from
1
t= t; up to t= tp. As an estimate of the (trivariate) bi-spectrum of X;(t),

X,(t) and X3(t) we take

N
=1
f123(A1,X2,X3) =N 'L x1,l1(t) Xz,lz(t) Xa

5 2.51
T L, (® (2.51)

where A1 + Az + A3 = 0, N is the number of available values of the complex
demodulates and Xi,hi(t) is the complex demodulate of Xi(t) at frequency
Ai’ i =1,2,3. An advantage of this procedure is that we can obtain the esti-
mated cross-spectrum at the same time:

N

Tia(A1,h2) = N-l 21 Xl l1(t)xz,l2(t)’ (2:52)

t

A1 + X2 = 0. For details, see Godfrey, 1965 and Tukey, 1961.

3. THEORETICAL AND REAL TIDES

Newton introduced the concept of the equilibrium tide (the tide that would
have been produced if the rigid and spherical earth were covered entirely by
the oceans) and this has been used as the basis for later developments in

tidal theory by Laplace, Darwin, Doodson (1921) and Cartwright & Edden, 1973.

In real tides, as measured by tide gauges at a fixed point on earth, the
equilibrium is never attained and the record tidal wave is a superposition
of effects such as the revolution of the "fixed point" through the deformed
water surface (by the tidal tractive forces of the moon and the sun) from
the spherical shape, the modification of the deformed water surface de-
termined astronomically by the moon and sun positioning relative to the
earth, shallow water effects, radiation effects, atmospheric influences and

others.

Earth has an angular velocity which is far greater than the rate of

modification of the deformed water level. This time rate is directly related
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to the orbits of the moon and the sun (frame of reference put on earth) and

in the Equilibrium Theory of Tides it is described by the tide generating

potential (Munk & Cartwright, 1966) V(P,t)= V(6,¢,t) given by

& n
V(6,9,t) = L, T ¥(8,4).Co(t), (3.1)

n=2 m=

which can further be written in the form

V00,0 = a gt oky nly 2n+1(§i)“ Y (6,0)Y (6,6, )% +
e B dr wmm o
+a¥n§2 e 2n+1(—) Tl8s $IY n(Bgs0g)*.

In equation (3.2), 6 and ¢ are the colatitude and longitude of the point

P on the earth's surface; t is the time, a is the radius of the earth and ME

is its mass; GL and ¢ are the colatitude and longitude of the moon, R_L its

distance from the centre of the earth and ML its mass. Similar terms with
m .

the subscript S refer to the sun. The terms Yn are the spherical harmonics,

defined by

2041, 1/2 | (n-|m|)! 2 || fvu
Y (e,¢) ) (33 E 3 p ™ (cost) e (3.3)

Pﬁ being the associated Legendre functions

Pﬂ(x) _ (1-x

—(x2-1)". (3.4)

Values of (BL,¢L) and (G ,¢ ) give the positioning of the moon and the
sun relative to the earth unlquely Terms for n= 0 and n= 1 in (3.1) are

neglected as they do not contribute to the tide generating potential at P.
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Periodical parameters of the orbits of the moon and the sun used for the

time description of (BL,¢L? and (BS,¢S) are:

T= the lunar time

s= the mean longitude of the moon

h= the mean longitude of the sun

p= the longitude of the lunar perigee
N'= the negative of the longitude of the ascending node
p'= the longitude of the perihelion.

Here, p' completes one revolution in 20,900 years, N' in 18.61 years, p
in 8.85 years, h in one year, s in one lunar month. If we write (3.1) as
vV(pP,t) = V(GL,¢L,t) + V(GS,¢S,t), then the resulting expansion of the two
terms in the right hand-side of this equality in terms of the variables (3.5)

are given as a sum of cosines and sines of
iT + js + kh + 1p + mN' + np',

where the weights {i, j, k, 1, m, n}are the Doodson's numbers and they varie
from -6 to +6 individually (Godin, 1972). A combination of integers

{i, j, k, 1, m, n} characterizes a constituent with frequency

A =it + js + kh + 1p + mN' + np' (3.6)

of the tidal spectrumand in the Harmonic Method of tidal analysis the search

for its phase and amplitude is the prior objective.

As already mentioned, modifications of the shape of the disturbed sea
level, due to the action of the generating tidal potential described by (3.1)
are much slower than the rate with which the observing point P= (0,¢) is

displaced, so P "moves" through the disturbed sea level.

The tidal record of a time lenght of one day contains (for the great
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majority of ports) the recording of a predominant semi-diurnal tide which is
representative of a day sample of the "shape" of the tide generating po-
tential. TIts spectrum would have a predominant line (M, group of constitu-
ents) at A= 21 + O0s + Oh + Op + ON'+ Op' =0.08 cycles/hour, plus other minor
contributors. A set of dayly samples covering the period of one lunar month
(s is associated with this period of approximately 28 days) would have in
each day record a predominant semidiurnal variation, but with modulated
amplitudes from one day to another, due to the variations of the "shape" of
the water level (shape of the tide potential at P= (0,¢) ), as the moon has
completed during this period one orbit lenght and the earth about 1/12 of
its path around the sun. Increasing the number of samples other features of
the tide generating potential are added to the semi-diurnal wave carrier and

they can be analysed by Fourier methods.

Usually it is assumed that the spectrumof V(t) is a line spectrum. Munk &
Cartwright, 1966, noticed however that the spectrum of tidal records consists
of peaks energing from a continuous spectrum. The continuous part is due to

background noise, particularly in low frequencies.

Hence, a reasonable model is the following. We assume that a tidal record
is a superposition of a strong deterministic process plus a weak random
process. Specifically, let € (t) astationary, ergodic process, withmean zero
and covariance function CEE(T). Let x(t) be a non-random, real function of t,

for which the Wiener covariance function

Ca(®) = Lim A [T x (O)x(tsn)dt (3.7)

exists and it is finite for every T. Assume also that

Lim [_7 x(t+7)€(t)de = 0 (3.8)
tro *

where the limits are in q.m. semse. If Z(t) is the tidal height, then write

Z(t) = x(t) + e(v) (3.9)
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- < t < +0, It follows that
CZZ(T)= Cxx(T) + CEE(T) (3.10)
and Z(t) will have a spectral distribution function (in Wiener's sense)
F,(0)= F (8) +F_(0). (3.11)

Usually, x(t) is assumed to be an almost periodie function of the form

I -
¢ 635, (3.12)

ty= . C.
x(t) §2-nC3

and €(t) is assumed Gaussian, 1in such a way that the spectrum of e(t) is
continuous and the spectrum of x(t) is discrete.

In the notation of section 2.1,
Pyz M= p (0, £,,(N=£__(N), (3.13)

that is, the spectrum of Z(t) has the form of Figure 1.

The theoretical and real line spectra for the port of Cananeia (Lat.
25°2's, long. 48°W) are shown in Figure 2. Comparison of them shows that real

tides are ordinarily different in amplitude (and also in phase).

1.6 ) Fig. 2a - Normalized theoretical 1ine spectrum
0.8 : for Cananeia (25°01'S,47°55'y) .
0.6
0.4 =
1
0.2 o, 52
Me I
n 10 2n . .Jll 40 50 L1] 'H;
) N 1600
i H2
12R0
Fig. 2> - Line spectrum for Cananeia, 29 %60

days of hourly observations (1=
29 April, 1975) . The cj's are such
that ¢c; = )\'.T, where T is the 10| Me %

period of oéservationsand Aj are .L“JI [ "

given by (3.6) > 0 10 2u. 0 a0 60 70

f40 53
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For the theoretical spectrum we followed Godin, 1972. The real line

spectrum is a single use of (2.35) on a 29 days record lemght. Sampling
intervals of the tidal records wereso to give a 0.5 cy/hour Nyquist frequency

.but for Figure 2 only 75 Fourier components were taken. In Figure 3 we have

10000

1000

100

[
o

o
-

Energy Density cl:/cpd

(=]
.

(=]
-

Fig. 3 - Estimated spectrum for Cananeia, with one year of hourly observations.

the spectrum of Z(t) given by (3.9), obtained from a record lenght of one
year, using a smoothed procedure and a FFT algorithm (Franco & Rock, 1971),

with 8,192 digitized points.

The higher order peaks obtained are mnot directly due to the tidal po-
tential but to the distortions of the tidal wave as it looses energy at the
shelf areas. Open ocean records are freer of these effects. The higher order
frequencies (3rd, ﬁth, etec, diurnal frequencies) are the results of the
important tidal constituents M;,K;,M2,Sz, etc (Doodson, 1957) and they can

be expressed as sums and differences of these.

The record lenght is fundamental for separating the tidal constituents
predicted by (3.1) from the semidiurnal wave carrier. Two constituents are
considered resolved if

A1 = A (3.14)
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where N is the number of digitized values of the record and At is the sampling

interval.

Some of the longest records (approximately 200 years) are reported in
Cartwright, 1971, but even these are insufficient to analyse for p'. Tidal
analysis of short records (7 days) for some constituents is given in Franco,

1964.

The aliasing phenomenum is not often seen in tidal analysis as At= 1 hour
(standart sampling interval normally adapted for records already instru-
mentally filtered for waves, swells and other higher frequencies effects) is
sufficiently small for most of the records. However when shallow water com-~
ponents are small but necessary for prediction purposes (as seen in Figure 3,
a great portion of the tidal energy is at frequencies higher than those of
the group of semi-diurnals) aliasing can be used to one's advantage as in

Horn, 1960.

Estimates of the spectra for every port may be different for many reasons,
but in all cases they are based upon the same frequencies ) determined by
(3.6) . The phases of the constituents may all be related, for every port, to
one particular instant of time (and meridian) from when the time of s,h,p,N’
and p' are related (Meus, 1962). With both phases and frequencies determin-
istically given by astronomy, the estimates of the (real) tidal spectrum are
mainly concerned with the amplitudes of the tidal constituents and the de-

termination of real phases as they are also of practical importance.

The determination for the spectral bands are influenced by the unavoida-
ble presence of mnoise and its contribution to the spectra often interferes

in the separation of the spectral lines (Munk & Hasselmann, 1964).

Tidal records are also the registrar of other non.tidal effects, such as
atmospheric pressure and solar radiation. Analysis of tides giving a broad
look to the matter is found in Munk & Cartwright, 1966. 1In this approach,

records are assumed to be given by

Z(t) = [ZW(T)V(t—T)dT- + | {ww(-r,T')v(t—'r)v(t—T')deT' + o8 (3:15)
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where w(t), w(T,7'), ... are the impulse functions of the locality. This new
approach motivated recent analises by Cartwright & Tayler, 1971 and Cartwright &
Edden, 1973, leading to more accurate values of the theoretical tidal con-

stituents. Formula (3.15) can be written as

z(t)= % Itl"'It-
j=1

A snns L )V{E—ty) s V{t=t:)dty ..us s
3 WJ( 1s J) (E-£x) ( J) ty dtJ s (3.16)

where Wj(t1 Ve .,tj) , j=1,2,... are assumed to be symmetric in its arguments.
The Fourier transform of wj(t1,...,tj) is

-i(A1ty + ... + A.L.
i(A1t; 5 J)

[es] ee]
W.(A15.005A.) = ;v wiltrssamsts)e dty; ... dt.
_]( 1 .]) f—m I._m b j J’

(3.17)

called the j-th transfer function or admittances. The problem that arises is
the estimation of these functions. We refer to the expansion (3.16) as a
Volterra functional expansion (cf. Brillinger, 1970; 1975, and Gasser, 1972).
Usually-a few terms of (3.16) will be sufficient. Munk & Cartwright, 1966,
consider the linear term for tidal analysis of Honolulu and the linear and
quadratic terms for the port of Newlyn. Consider, therefore,

N

Z(t) =j£1ft1...ftj wj(t1,...,tj)v(t-t1)...V(t-tj)dtl...dtj (3.18)

or the discrete analogue, with the integrals replaced by sums.

Updefceftainregularityconditions(nlv(t)andassumingthat wj(t1,...tj) £
L1CBJ,IBJ,UJ), it follows that the Volterra expansion (3.16) exists with
proba‘t-)ility one and Wj(h,...,kj) € 1:1. Here, Bji_s the Borel field on R
and pJ is the Lebesgue measure in R) . Moreover, if V(t) has the spectral

representation

V(o) = [ ePtau, (3.19)
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then the spectral representation of Z(t) is given by

N .
iAt
- coe [ WOy e 2 )dUAL) «e.dUCA.) . (3.20)
Z(t) Jﬁlfxe Il1+..ﬁ2=k s pLiTeS 5

For practical purposes the weights wj are assumed to be different from
zero only for integral values of t, in such a way that (3.18) can be written

as a sume.

The cumulant spectrum of order k of Z(t) can be computed (see Theorem
2.10.1 of Brillinger, 1975) and in particular the cross-bispectrum between

Z(t) and V(t), which is used for estimating Wp(Ai,A2).

We note that V(t) does not have to be the tidal potential; other input
functions are used, such as pressure, solar radiation, etc. For details, see

Godin, 1972 and Munk & Cartwright, 1966.

For the identification of the admittances W. we further assume that the

drived inputs are Gaussian. This is useful because (Gasser, 1972):

(i) structures beyond the spectrum are introduced;

(ii) Gauss inputs are sufficient for time-invariant system identifi-

cation;

(iii) Gaussian processes can be easily generated by computers.

It follows that Wi(Ai1) and W2(A1,A2) can be estimated by

fzv(l1)
MO =g oo (3.21)
and
Eyz (M122) (3.22)

R2(A1,)2) =

2 .00 £,
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respectively, where fzv(Al) is the estimated cross-spectrum between Z(t) and
V(t) and fvvz(ll,kz) is the estimated cross-bispectrum between Z(t) and V(t);
fvv(kl) is the estimated (auto)-spectrum of V(t). For the estimation of Wj
in general see Brillinger, 1970 and Gasser, 1972.

A measure of correlation between Z(t) and V(t) is given by the estimated

coherence
o ™l
[t,,0 £,0]

-

p(A)

172 (3.23)

After expanding V(t) in Greenwich coordinates and substituting in (3.16)

we obtain the practical scheme of the Response Method, given by

Z(t)= £ E Yok cn(t-kﬁr) + ki‘ ni‘ WontkK" Cn(t—kﬁT).cd (t-k'"AT) + ...
(3.24)

Besides the estimation procedure suggested above for the Wj, we can
estimate the wnk’ etc by least squares and then estimate the wj by Fourier
transforming. In (3.24) the constants c, are determined by the position of
the moon or of the sun. The fitting of (3.24) to the actual observations is

evaluated through the prediction variance, which for the linear term is given

by

var [ z(t) - KEn v e (t=kAT) ]. (3.25)

For details see Munk & Cartwright, 1966.

4. SEASONAL VARIATIONS

As the tides, seasonal variations of the oceans are also astronomically
determined. The annually varying heating effect due to the fact that the
ecliptic and the equatorial plan are at an angle of 23°, causes the ocean
currents to become weak or strong and to change their position relative to
the bottom or the continental boarders, changing in consequence other oceanic

properties.
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For seasonal studies long time series are normally required but as in
tidal studies the information is basically analysed for a known frequency
(corresponding to the period of one year) and its theoretical spectrum would
consist of a single line. Obviously real spectrum is contaminated by other

features not directly seasonal but often consequences of it.

Figure 4 shows the 12 monthly mean values of temperature taken at (24°s,
042°W) for O m and 55 m of depth in coastal waters.

26 1
24 Om 7~

22 4 "2 P, Fig. 4 - Seasonal variationof temperature
s : G e at Santos (24°S,46°19'W).
18

16
14 ) 55m

.......

months

Four years of data were taken for analysis and each year was considered as
one realization of the seasonal process. Deviations uj where also calculated
from Table I. The 12 mean values of each month, used to calculate the ampli-

tudes Aj according to (2.37), show the main features of Figure 4, namely a

seasonal thermal inversion between 0 m and 55 m depths annual variation.

The other effect (Table I) is that the bottom waters have a greater annual
amplitude Aj of variation than the ones at surface. Amplitude is a minimum at
15 m with a greater deviation Yj’ indicating the mean annual positioning of
the thermocline and that it is a separating line between surface and bottom

processes.

Close to the continental boarders the tidal currents are characterized

by a great deal of vertical homogeneity of temperature. Annual variation of
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those homogeneous values of temperature are in some respect the response to
the variation of the climatic winter-summer thermal values and homogeneity

is determined by generally strong tidal currents.

DEPTH MEAN AMPLITUDE DEVIATION PHASE DEVIATION
(m) T(°C) A.(%C) Y. (0C) $.(%) a.(9)
J J J J
0 23.33 2.17 0.19 27 12
7 22.49 177 0.11 59 34
15 21.38 1.76 0.60 120 97
25 19.25 2.88 0.31 164 73
40 17 .55 2.87 0.43 162 36
55 17.74 3.03 = 151 -
(N)
-] .
A= [1May g2 ey o =g [0 A9 | sa
] ] J ] ) ]
Re d* 77 (XA.)
J
TABLE | - Seasonal variation of temperature at Santos (24°S,46°19'W)
The, equation of motion may be written for such currents as
d _ 2 = = (9 _ O _
(3¢ ~ V-V (uw) = = (5= az)(p gz) , (4.1)

where (u,w) are the components of current in x and z directions, p is the
pressure, p the water denmsity, g the gravity and U the turbulent eddy coef-
ficient. Differentiating the first member of (4.1) with respect to z and the
second with respect to x and subtracting we obtain

d _ 2y O0U _ Ow, _
(EE V.V )(EE % 0 (4.2)

The shear stress and the heat flow connected with flows of the boundary

type can be related by

du = - 3= P 47, (4.3)

where q is the amount of heat, © the shear stress, cp the specific heat of

water, aq the turbulent diffusivity of heat and T is temperature (Eckert &
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Drake, 1959) . Similar expression can be written for dw and dT. It follows
from (4.2) and (4.3), after neglecting the advective terms, the contribution

in the x direction that:
k (%%-- uzva) =0, (4 .4)

where K is the constant appearing in (4.3) for the z direction. One solution

of (4.4) is the diffusion equation, which when solved for T= T.cos(At) can

be expressed in terms of Fourier components in the form

T(z,t) = T, + 28 A.e % Lcos(A;t - 02), (4.5)
j=1 1
1/2 : 2w :
where o = (kj/ZUz) and v the vertical component of V. For Aj —-Tf,Alls

the amplitude of the annual component and the first-order term of (4.5) is

an exponentially damped wave with increasing depht z, and a corresponding

retarding of the phase angle.

Table II shows the results of applying the first term of (4.5) to 12-

monthly averaged values of temperature resulting from a four-years of data

collection at the shelf area of Cananeia (Lat. 25°2'S, Long. 048°W) .

Values of v, (cm?/sec)

DEPTH STATION 1 STATION 2 STATION 3
(m) Ampl. Phase Ampl . Phase | Ampl. Phase
0-7 10.5 13.4 6.5 21.5 24 .4 =
7-15 2.4 10.6 1.2 11.6 1.3 10.9

15-25 - - = - 1.1 7y

MEAN 6.4 12.0 3.8 16.5 8.9 9.3

1
Stations 1, 2 and 3 were located 5 miles apart in the
shelf area near the town of Cananeéia (25°01'S;47055'W) .

TABLE |1 - Values of v, (em?/sec)
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Values of v, were determined from the damping of A; (amplitude) and the
retarding of the annual seasonal cycle (Mesquita & Morettin, 1976), are simi-

lar to those of Crawford (1977) determined for the equatorial waters.

5. EQUATORIAL OSCILLATIONS

Meanders of the equatorial waters have recently been reported by Duing
et al., 1975. They have 2,600 km wave lenght and propagate to the west with
a phase speed of 1.9 m/sec. Periodic variationof the field of mass has also

been found to follow the patterns of a seasonal variation (Katzetal., 1977).

Temperature and salinity values of these waters were extensively obtained
during GATE (GARP Atlantic Tropical Experiment) from July to September, 1974,
which showed to be important for the detectionof the basic oscillations of

the equatorial waters.

Oscillations are believed to be due to atmospheric forcing (Philander,

1976) and they may occur in the meridional or latitudinal sense.

Determination of the main modes of vibration of the water masses are the
basic aim of spectral analysis in this case, as no complete theoretical hints

are yet available.

Thermal variability for the entire observational period of GATE (June-
September 1974) is shown in Figure 5, for the geographical points (00°, 035°W),
(02°N, 038°W) and (02°N,035°W) (Mesquita et al., 1977a).

Four layers of distinct thermal variability can be observed: layer 1
(0-30 m) associated with currents flowing approximately East to West; layer
a (80-150 m), associated with currents from West to East; Srd layer (150~
300 m) and 4™ layer (500-1,000 m).
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Series of the 4th layer were analysed using estimators of type (2.42),

the small number of observational points being a limiting factor to the a-
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nalysis, but reasonable estimates of the periodicities were obtained as shown
in Figure 6. A special program was used and the numbers of 1lags for co-
variance estimates are indicated 1in each spectrum. See discussion on the

maximum entropy method concerning the availability of few observations.

8.0 _

~ :

1 .

o "

'-: 0

N ;

g 12| Fig. 6 - Temperature spectra at

1,000m, during the phase
I'l of GATE. 12,16 and 18
are the numbers of lags
for covariance estimates.

cpd
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Table III shows the most predominant periods in the series of Figure 5,
analysed with (2.35), from what we can see the great range of variability
that the equatorial waters undergo. Causes of these variations although be-

lieved to be due to atmospheric forcing are still to be proved.

TABLE |1l - Periods of the thermal fluctuations of the
equatorial area shown in figure 5

‘ DEPTH PHASE T PHASE IT PHASE TIT Most probable
l (m) Periods (days) Periods (days) Periods (days) | period ranges (days)
] 0 4.2 2.3 4.5 2.3 4.2 4.2-4.5;2.
60 7 3.52.3 7 4.2 2.6 . 5.6 7:4.2-5.63;2.3-2.6
100 7 4.2 7 3.5 2.8 7;3.5-4.2;2.8
150 7 2.6 7 3.0 5.6 73 5.63;2.6-3.0
200 10.5 4.2 7 3.5 4.2 1 7-10.5;3.5-4.2
500 10.5 4.2 7 3.0 5.6 2.8 7-10.5;4.2-5.6;2.8-3.0
1.000 10.5 5,2 10 2.8 4.2 10-10.5;4.2-5.2;2.8

The low frequencies of the spectra were not taken into account, ajthoughbyvisual inspection
they appear to be existent. Periods in each line are distributed in a decreasing order of
magnitude and separated to show approximately the different behaviour of the layers 1,2,3
and 4 above refered.

The basic difficulty of oceanic sampling in time series is the short
lenght of the series produced relative to the time scales of the processes
involved. A method for series with few sampling points is summarized in next

section. Other methods for vectorial series are also mentioned.

6. MAXIMUM ENTROPY (ME) METHOD

This method is based on the use of an auto-regressive filter applied to
the original data. It is known that most of time series encountered can be
fitted by an auto-regressive model and the problem that remains is the de-
termination of the order of this model. After that, the spectrum can be
easily computed through the Yule-Walker equations relating the coefficients
of the filter and the auto-covariances of the process. See Gersh, 1970 and
Parzen, 1972 for details. To determine the order p of the process we can
plot the innovation variance against p and see when it stabilizes or use

the FPE scheme due to Akaike, 1969a. The FPE (final prediction error) is
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defined to be the expected variance of the prediction error when anauto-
regressive model fitted to the present series of X(t) is applied to another
independent realization of X(t) to make a one step prediction. See also
Akaike, 1969 and 1970.

It seems that this method is appropriate when we have short records and
it has the ability to resolve spectral peaks better than the other methods.
Barber & Taylor, 1977, compare the ME method with the least-squares method
and the smoothing periodogram procedure. For other references on the appli-
cations of this method to oceanography see Ulrych & Bishop, 1975 and Chen &
Stegen, 1974,

7. ROTARY COMPONENTS

The rotary components method has been applied mainly for analysing current
vector time series. The horizontal velocity vector u(t) canbe decomposed into
a zonal component uj(t) and a meridional component u,(t). These are assumed
to be continuous, stationary stochastic processes with mean zero. It is known
that the coherence is invariant under the application of a linear filter to
each series, but it is not invariant under coordinate rotation. In order to
accomplish this, we decompose the velocity vector, for each frequency, into

two counter-rotating circular motions, each with its own amplitude and phase.

See Mooers, 1975.

If funuoo and fuzuz(A) are the auto-spectra of wui(t) and ua(t), re-

spectively, then it can be shown that the anticlockwise spectrum is given by

1
£_(D) = g-{fulul(}\) C 4 Euzuz(k) = 2qulu2(?\)}, (5.1)
and the clockwise spectrum is given by

1
f+(}\) = _8"{f (A + fuzuzm) + Z%IUZ(J\)}, (5.2)

uju;
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quluz(l) being the quad-spectrum between u;(t) and uz(t). The total spectrum

of kinetic energy is given by
£ =£.() + £0). (5.3)

The amplitudes of these rotary spectra are independent of the orientation
of the coordinate system where the process is described. For applications
see Gonela, 1972. The case of rotary bi-spectra is considered by Yao et al.,

1975, to analyse the non-Gaussian nature of a vector random process.

Figure 7 shows the rotary spectra of currents at 25°S045°W. Currents at
the area show periodicities of 3-6 days, diurnals and semidiurnals and flow

with a pronounced anti-hourly sense (Mesquita et al., 1977b).

Fig. 7 - The rotary spectra of currents - 40m.

[cm.l'slz.{u’uJ_’

= rotal spectra

————=——= = anti-hourly spectra

........... = hourly spectra

] 1.5 3,0
t (c/d)
The full, dashed, and puinted lines are respectively related to the total,
anti-hourly, and huwrly sjoctra.
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