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SYNOPSIS

This paper proposes a new way of tidal spectral
analysis based on the Cooley-Tukey algorithm, known
as the Fast Fourier Transform. The Fast TFourier
Transform analysis is used to compute both the harmonic
constants of the tide and the power spectrum.The latter
is obtained by means of a weighted sum. A new way is
also derived to obtain the formula giving the number
of the degrees of freedom,on which is based the confi-
dence interval corresponding to the noise spectrum.

1 - INTRODUCTION

0ld methods of tidal analysis were developed in order to
permit manual calculations with desk calculators. Such analyses
can now be considerably improved with the wuse of electronic
computers.

Computers have also facilitated the use of time series
analysis of mean sea level fluctuations as influenced by tidal
oscillations.

Horn's (1960) least square method and the very similar one
developed by Cartwright'and Catton (1963), based on discrete
Fourier analysis, are among the earliest methods of tidal analysis

entirely dependent upon electronic computers. Both of these
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programs. The former reprint is obsolete.
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methods included approximately the same number of constituents
used in Doodson's and other methods of analysis (61 constituents),
for which computer programs have been prepared. However Doodson
himself (1957) recognized that many more constituents would be
necessary to improve predictions, as is observed in his method
of computing corrections for predictions based on the «classical
list of constituents. The corrections were found through analysis
of the differences in time and height of recorded and predicted
curves. All these methods are lengthy (30 to 60 minutes computer
time) and not diagnostic.

A decade ago spectral analysis came into common usage as a
diagnostic tool but only quite recently found an application in
tidal analysis. Subsequently, it was confirmed that many more
shallow water constituents were mnecessary to represent tidal
curves accurately. This was Zetler and Cummings'(1967) conclusion
from a study on the port of Anchorage (Alaska), and Lennon and
Rossiter's conclusion from the port of London (Lennon,1969). Both
researches showed, independently, that some 50 additional shallow
water constituents were necessary to improve predictions.

Munk and Cartwright (1966) provided a completely different
approach to the problem considering the "response”" of a tidal
basin to the driving forces of the equilibrium tide. In addition,
shallow water terms are included to take into account the mnon-
linear response of the tidal basin to the principal constituents.
The number of such terms, required for an accurate prediction 1is
very much smaller than the ones necessary in the harmonic pre-
diction method. The method, a generalization of the o0ld Laplace
method (Franco, 1967), is a neat and thorough approach to tidal
prediction. Munk and Cartwright give no quantitative estimation
of the computational effort involved; but it is thought to be
considerable.

If the harmonic method is preferred, accurate predictions
are conditioned by the inclusion of shallow water constituents,
which differ from port to port. Unfortunately, work already done
shows that results are individual and cannot be extended or trans-
ferred from area to area. An example can be found in the com-
parison between the results from Zetler-Cummings (op.cit.) and
Lennon-Rossiter (Lennon, 1969) researches and the figures calcu-

lated by Rock (personal communication). However, the diagnosis of
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the shallow water effects may be considerably simplified if a
method is devised to permit the full use of the Fast Fourier
Transform (FFT) (Cooley and Tukey, 1965)., The procedure for
spectral analysis can be completely changed if means are available
to correct, according to the natural angular frequencies of the

tidal harmonics, the various Fourier coefficients obtained from

the FFT. To show this is one of the aims of this paper.

To give an idea of the advantages of the method, let us
examine a flow diagram of the operations involved (Fig. 1). One of
the main characteristics of the method is the possibility of using
the Fourier coefficients to obtain the power spectrum and the har-

monic constants. One can use the tidal wvalues of aj = R, cos rj;
and bj = Rj sin rj computed from the Fourier coefficients to

correct these coefficients for the tidal effect, and thus isolate
the noise contribution to the Fourier series. This is carried out
in the tidal frequency bands. The power spectrum obtained through
these corrected Fourier coefficients will then be the noise
spectrum plus the tidal oscillations not considered in the har-
monic analysis.

Although the use of the Cooley-Tukey algorithm (FFT), as a
means of simplifying calculations in spectral analysis, was sug-
gested by Zetler (1969), the authors are not aware of any publi-
cation on its use as applied to tides. Thus we believe that our
method is original.

In order to compare the proposed method with Lennon-Rossiter's
a flow diagram is presented for the latter (Fig. 2). The procedure
involves a Doodson harmonic analysis, a predictien of hourly heights
which is in itself a long task even for electronic computers, and
a very lengthy high resolution Fourier analysis for a whole number
of lunations. Besides the length of the initial calculation, an
additional drawback is that the whole procedure must be repeated

to obtain the final spectrum.

*
2 - FOURIER ANALYSIS

Classical Fourier analysis is one of the methods for de-

termining tidal harmonic constants. In addition to the above

* See list of mathematical symbols annexed.
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mentioned Catton-Cartwright method, the Miyasaki (1958) method is
well knhown. However, these studies were attached to a whole number
of lunations and their analysis cannot take advantage of the
Cooley-Tukey algorithm based on sampling at N = 2Y points. To show
how the harmonic analysis of a tidal curve can be undertaken via

the Cooley-Tukey algorithm is the aim of this section.

Suppose that the tidal height at instant ¢t is given by

(t) = R + .Z. R. cos .t - r.) + v(t
y o' 58y By (qJ J) (t)

where v(t) is a '"gaussian noise with zero mean". In complex

notation we have

Q . ;
- 1 i(qst = rs) -i(q:t - r:)
y(t) RD * 3 jél RJ; ] 17 + e ] ] ] + v(t)
= R + 2 g R e_irj eiqjt + R eirj e-iqjt]+ v(t)
o 2 j=1 j j
Now if we admit that rj and qj are negative for negative values of
j, and that rj = qj = 0 for j=0 it can be written

Q —; .
- 1 1 ir; _iq.t
y(t) = 3 R+ 3 .;;Q Rje J e" 3" + v(t)

Finally, if we put

1 -ir: 5
— R.e J = ¢ 0
5 Ry 5 i#
(2a)
R.= c. =0
i € /
it results
t) = . X c.eiqjt + v(t 2b
y(£) = I, e (t) (2b)

If we analyse this curve by using the Fourier technique, it is not
possible to adopt the exact angular frequencies qj' All the dis -

crete angular frequencies of the Fourier analysis are given by

q, = 2mn/NT (n =0,1,2,

| =

=: 1) (2c)

where T is the sampling interval (usually 1 hour). For the exact
number of cycles in the same time interval corresponding to the

angular frequencies qj’ we have

F. = N1q./2™ 2d
3 qJ/ (24)
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Now the complex Fourier coefficients for curve (2b) are

1 Nl i 1L 10 -
cn = -ﬁ— tz-o y(t) e n (n = 0,1,2, R N-l)

But if we call €, the complex Fourier coefficient obtained from

the analysis of wv(t), it follows that

N-1

By * % tio v(t) M T (2e)
Then we can write
1N-l .
®a ~ En . ﬁtio [y(t) - v(t)] e tdnt (2£)

However expression (2c¢) shows that, for T=1 hour

qu = 27n
hence
e—lqu o e-12ﬂn -1
Thus (2f) can be modified as follows:
c - £ = 1 g [ (t) - v(t)]e_iqnt - l[ (N) - V(N)]
n n N t20lY LY

But v(N) is usually small as compared to N, consequently v(N)/N
can be neglected. In addition we can replace y(t) - v(t) by its
value taken from (2b). Consequently, the last expression can be

changed into

1 _ - 1 -i(q_ - q.)t
e s o (N) €, N jJ;Q cj tEO e n j (2g)
Now
g. et _ Qlw(N+1) T ciw(N+1)/2 lw(N+1)/2 _ -iw(N+1)/2
t=0 N T oiw/2 Jiw/2 _ miw/2
but, since
eh e T g 2i sin x
and
@ = =(q = qs)
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it results

-i(qp - a3) _ . -iCay - qj)IN/2 51“[(Qn = )(N+1)/2]
0 sin[(a, - a;)/2]

e =
o

But

e-1(qn-qj)N/2 _ e—lqu/Z e1qjN/2
or, according to (2c¢), for 1=1 hour,
E-l(qn—qj)NIZ - o~iTn ElqjNIZ - (-1 e 1qij2

Thus

emilaa)e _  iqN/2 sinf(q -qa;) (N+1)/2]

0 s1n[(q =3,)77] -D"

n1 =

t

Hence expression (2g) can be changed into

n

(-1)

Q iq.N/2 sin[(qn—qj) (N+1)/2]
J'=2“:'Q i sin[(q _=-q.,)/2
[*9a2527 <]

2=

1 =
ch * 5 y(N) B ™

If only positive values of j are considered, according to (2a) we
have

i . & Q iq.N/2 sm[(q -q;) (N+1) /2]
Ch *' N y (M) Ea "W * jél‘cj 3 N 51n[(q -q. )/2]

sin[(qn+qj) (N+1) /2] } .

-iq.N L -
+ c_je qu /2 N sln[(qn+qj)l2] (2h)
Consequentlf, if we call
in|(q_-q. N+1) /2
(-1)" Sl:[ o 31)_( 73 I AL (2i)
sin[(a,-4;)/2] j
and
o1y sin[(qn+qj) (N+1)f2]= (23

N sin[(qn+qj)/2] Bas

and recall that rj<0 for j<0, then we have from (2a) and (2h) to
(23)
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1.0

-1 .—q.N/2
. Rj[e 1(rJ 9 /2)

+ ei(rj-qufz) an] (2k)

1 1
Cq T E[Y(N) co]- 6nnfj nj

Now it is well known that the pair of trigonometric Fourier coef-

ficients (an, bn)’ for the total oscillation, and (En, nn) for the

noise oscillation, are related to the complex Fourier coefficients,

respectively by

cl (an-lbn)/2 s c, = ag

and (21)

. (En B inm)f2 » €,=0

€

Thus we can develop the exponentials of (2k) and write
2 . Q
a + ﬁ[y(N) = ao] - En - 1(bn-nn) 'jél[Rj cos (rj-qjNIZ)(Anj+an)

-iR,. i .—q.N/2 A =B
; sin (rJ q; 1'e), € o ng)]

Now, equating the real and the imaginary parts and considering the
N/2 values of a and bn obtained from the Fourier analysis, the

following independent systems can be written:

{a + %[y(N) - ao]“ E 1= |]Anj * an||{aj} (2m)
and
{b -n 1= |]Anj—an||{bj} (2n)
where
aj = Rj cos (rj-qjNXZ)
and (20)
B .=

i Rj sin (rj-qjNIZ)

Since Q<N/2 the systems (2m) and (2n) are redundant and can

be solved by the least square method according to the conditions

X 52 = minimum
n
and
5 2 e s
nn = minimum
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respectively. But this can be simplified because constituents of
different species practically do not contaminate each other.Conse-
quently, the systems (2m) and (2n) may be split into sub-systems,
one pair for each species. The frequency band containing the
diurnal constituents, for example, is limited by 290 < n < 380
cycles per 8192 hours (2¥), and therefore, about 90 equations exist
for computing about 20 values of both aj and bj' These redundant

systems are of the form:

M{x} = {L}

The corresponding normal equations are

MIM{X} = MT{L} (2p)
where T indicates transposition of matrix M. These systems can be
solved by inverting the square matrix HTM which gives (HTM)-1 and

pre-multiplying both members of (2p) by (MTM)_I:

1

x} = 'y~ mTir}

If unknowns are to be determined directly in terms of L then the

matrix

By "I - e
must be found in order to give
{x} = M'{L} (2q)
It must be pointed out that the separation of unknowns aj

and bj into two independent systems results from adding the

correction % [y(N)—ao] to all values of a . Although no fixed

central time has been established before hand, it is interesting

to note that expressions (20) contain the phase correction qjN/2,
which is an adjustment of rj to the central time N/2.

In order to give a clear idea of the results to be expected
with an analysis of 8192 samples, the inverse of the normal

matrices (MTM)-l

is presented in Table 2-I, for the semidiurnal
constituents. The dominant diagonal indicates that good results
may be obtained.

Once known aj and bj’ the Fourier coefficients En and n_,

n

corresponding to the noise, can be found by taking from (2m) and
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(2n), respectively

(.} = 1Ay o Byyltasd = fags Flyan - a ) (21)

nj +

and

{nn} = ||A_ . - an!Hbj}

o {bn} (2s)

Appendices II and III, respectively, contain the computer

programs to solve systems (2q) and compute the residuals En and n,-

3 - SPECTRAL ANALYSIS

Let us take a normalized oscillation expressed by

Q .
t) = . P e
x(t) j=q ©;°© (3a)
where
c, = % R.e 7] for j#0
J J (3b)
c. =0 for j=0
J

Suppose that another normalized oscillation has harmonic terms

with the same angular frequencies but with different amplitudes

and phases. Such an oscillation can be expressed by

(t) = g ot gtlkE (3e)

y k==Q ® k ¢
where
1 =% &
1 - = {
e’y 7 R' e k for k#0
(34)
c'k =0 for k=0

For a time (t-0) where © is any time lag counted from ¢, formula

(3c) can be changed into

' eiQk(t'e)

Q
y(t-0) = k== Kk

c

Q
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The product of this expression by (3a) gives

x(t)y(t-0) = g g c.c'. e 1ak0 _i(qj*qp)t
j==Q k==Q -l =
or, if we call
cjc' e1le = %5k (3e)
and
qj + 9 ™ wjk (3f)
(t)y(t-0) ; ; iwgt
X b = L z
y j=2q k<Q ch e jk

The mean value of this product over -T/2<t<T/2, is

Q
K(B) = <x(t)y(t-0)> = .3 i
1=-Q k ar de
-3/2

Q Q Qi T/2 _ e
= T X .
i=*Q k=-Q %jk %
jk
Q Q sin w.kTIZ
" ife kdq Sjk w172
J ] ik
Now, since qj = -q_j we conclude from expression (3f) that wjk=0

for k=-j. Consequently, since (sin x)/x=1 for x=0, it follows that

. S Q Q sin w, T/2
= -
iQ -5 T je ko Cik T, 172 o
k="j k#-j ‘

But the function (sin x)/x decays very quickly when « increases.

Thus (sin w TIZ)/(w T/2) will be small for large values of

wjkTIZ. Hence, for the usual values of mjk the second term of the

above expression is negligible when T is large. Consequently, if

we take (3e) into account, we have as a good approximation of (3g)
-iq.0

Q
K(O) = . % Lot
2 1=-Q cJC = € J
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However,expressions (3b) and (3d) show that we can write:

,c'. 1 R.R', el i"T3) = y.  (j#0
eyl X By e i Y; o (340)
(3h)
1 - 1=
cjc 53 0 (j=0)
Thus
208 & o0 y. o"i;0 (3i)
1=-Q '3

From (3h) and (3i) we can derive the trigonometrical form of (3i):

Q
<D

K(O) = .I,

M=

L] | =
RjR 3 cos (qje+rj rj)

If a Fourier analysis exists for discrete values of x(t) and y(t)

with N hourly heights, then, a good estimate of K(O) can be

expressed by

N/2-1 1
R(O) = n§0 7 RnR'n cos (qn6+r'n-rn)
or, in complex form
N/2-1
R(e) = I y_ e'9a® (37)
=N/2+1
where
Yo = 7 RR'p e FaTe) @f o)
(3k)
Ya =0 (n=0)

If values of K(O) are known by averaging the products
x(t)y(t-0) for continuous values of O, the Fourier analysis of
K(O) will be the usual way of obtaining an estimate of ampli-

tudes & RjR'j and phases (r'j—rj); this will give for -m<O<m:

2
m
1 -1 C]
¢, =5 K(0) e *9sY 4o (31)
-m
where
q, = 2ms/2m = ms/m (3m)
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But according to (3j) a good approximation is given by

k.
s 2m
1
2m
or

" z
-N/2+1

n
]

N/2-1
T

-N/2+1

e'i(QS'Qn)Gd@

m
Yn
=

N/ZEI Y, e—%(qs-qn)e m
-N/2+1 “ilq 790 | -p

N/2-1
/ Y

sin[(qs-qn)m]
(a,-q Im

(3n)

n

However, the Fourier analysis of x(t) and y(t) give, respectively,

= L] = ' 1]
an Rn cos rn nd a " R 8 cos r a
bn i Rn - b'n = R'n sin r'
Thus,
c = (a =ib_)/2 = 1 R e‘irn
n n n 2 1
1 -ir'
] = 1] — L} = - " n
et (a " ib n)/2 > R , e
and, if we designate the complex conjugate of c'n by c'; R 1
follows that
1 i(r'.-r,)
LI Pt 1 n n
€2 n 4 RnR n €
or, according to (3k)
c c'*x = Yn
n
Thus
- ng-l i G sin [(QSFQn)m] (3.0)
ey = -N/2+41 B P (qs-qn)m

i c__= c*
Since s s

of n by changing (3.0)

we can avoid the summation through negative values

into

" N/2-1 ye Sin [(QS'Qn)m] . Ssin [(QS+Qn)m]
L " z c c'% + ec¥e :
s s n=0 n n (q=q )m n n (g +q )m
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Hence, the cross spectrum c"S is a weighted sum of the values of

L * ]
c_c d c*c
n n an n

,* the maximum weight corresponding to q,=q -

Since c. and c'n are the complex Fourier coefficients result-
ing from the analysis of N values of x(t) and y(t), respec-
tively, and with sampling interval equal to T the angular

frequency will be g o 2mn/Nt. Thus, according to (3m) we have:

qq + q; = 2m(sNTt/2m * n) /N1

or, if we call

sNT/2m = p

so that p is an integer, then

+ = +
9%, 2m(ptn) /NT

Consequently, if we replace this value of qsiqp in (30) and put

°"s= gxy(P), this will be the cross spectrum estimate centered at
p:
N/2-1 .
S._(p) = /§ o o % Sin [2n(p-n)m/NT]
ol n=0 | ® ® 2n(p-n)m/Nt

(3p)

+ e kol sin [2F(p+n)m{NT]
n n 2m(p+n)m/NT

Function (sinTx)/Tx decays very quickly when x>2. Thus the limits
of summation can be conveniently reduced according to the con-
dition

(p-n)2m/NT = *2
and

(p+n)2m/NT = 2

In the first case we derive

n" = p+NT/m

o, . (3q)
' = p=N1/m 1
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and in the second

n, = NT/m-p>0
P (3r)
thus 0
n" ' o sin lﬁ(p—n)Zm/NTl
agled = nin‘cnc n T(p-n)2m/NT
+né %ot Sin [ﬂ(p+n)2m{NTl (3s)
n=0c aF m(p+n)2m/NTt

The term in (p+n) of this formula can be neglected for values of
p greater than NT/m. Since the practical values of NT/m are not
usually high, then the second term must only be used for very low
frequencies. Consequently it is possible to discuss the behaviour

of only the (p-n) term. The graph of Fig. 3 represented by the

dashed line is the curve of equation:

- - SinLﬂ(p-n)ZmINTJ
Wpny = m(p=-n)2m/NT

for 2m/NT = 1.

\_//-4——-—Side Lobes e e

Fig.3 = Functions ¢(p-n) and ¥(p-n) for
continuous values of p-n.

The figure shows two undesirable side lobes. If we remember that
§xy(p) is only an estimate these side lobes can be eliminated by

multiplying the cross correlation function R(O) by the fading
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function (1 + cos mO/m). Thus according to (3j) we have

: _: iq,0
R(O)(1 + cos mO/m) = T _2]; (2+e11‘|'@fm G 11T@fm) Yne n

Now we replace the value of K(O) in (3 1) by the second member of
the above expression and integrate, in the same way we obtained

(3n). Then we use the same arguments with which we arrived at (3s)

and find

al |
gxy(p) = f ; Cpc'k¥(p-n) + § c *c' ¥(p+n) (3t)
n=n n=0
where
Y(ptn) = sin mipdn)n/Be — (3u)

[ﬁ(ptn)zm/NT] {1- [(pin)Zm/NT]z}

This function is represented in Fig. 1 by the solid line. It is

seen that this function is negligible for arguments greater than 2.

According to (3q) the "filter" Y(ptn) covers 2NT/m har-
monics. It will be shown later that this quantity has an important
statistical meaning.

The power spectrum density is obtained as a particular case
of the cross spectrum. In fact if we establish the correlation
for the same function, with a lag © we have from (3h) for R'j=R.

and r'.=r.

] 1]

ol

- 4 = l z = =
j A Rj cjcg [cJ

and expression (31i) takes the form

Q :
1 il s
A(Q) = <y(t)y(t-0)> = I =+ R? ¢"14j€
i==Q
or, in trigonometric form,
I
A(O) = 7 jéo Rj cos qu, (3v)
which is the autocorrelation function. Its Fourier analysis will
give an estimate of the power spectral density % RZ(p) centered

-Bolm Inst. oceanogr. S Paulo, 20:145-199,1971 161



in the harmonic of order p. Such an estimate can be derived im-

mediately from (3u) by making c, = c'n, which gives
- n" 4 n) ;
Syy(p) = nEn' ]CnI Y(p-m) + nio[cn[ Y(p+n) (3w)
where
le |2 = (a2 + b2)/4 (3%)

A computer program for finding Eyy(p) is given in Appendix IV,

In order to establish the filter's maximum width and still
avoid mixing different species of tides, the following method 1is

suggested. Let q, and q respectively, be the largest angular

s+1°
frequency of species 8 and the smallest angular frequency of
species s+1. Thus, if n and n_,, are the respective frequencies
in units of the fundamental frequency 1/NT, then we can write

- o
g = 360 nS!NT
o
qsy 360 n3+1/NT
consequently

= o -_
4 360 (ns+ ns)/NT

9s+1 1

and

n - n = (q - qs)NTISGOO

s+1 s s+1

From an extended table of tidal constituents as derived by Zetler-
Cummings or Lennon-Rossiter it can be concluded that 9e41 ~ 94 is

about 11° which gives for the maximum filter width

Ngyp B < 0,015NT (3y)

4 - THE NOISE SPECTRUM

It was shown in section 2 that €, is the Fourier complex

coefficient of the ncise analysis. Thus, according to (3w), the
noise power spectrum is given by

ny
p Z |le_|2¢(p-n) + Z |e_|%Y(p+n) (4a)
gvv(p) B n=n| n n=0 n
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where, according to (3w) and(21)

le |2 = (£ 2 + n *)/4 (4b)

Values of En and n_ can be found for the tidal frequency bands

through (2r) and (2s). Outside these bands it can be assumed that

coefficients a_ and bn given the FFT do not have tidal contri-

butions. Thus the values of IEn|2 to be introduced into (4a) are
those found through (2r) and (2s) for the tidal frequency bands

and |c given by the FFT, outside these bands. This procedure

|2
n

corresponds to the usual '"prewhitening" which consists in obtain-
ing the power spectrum of the residuals equal to the difference

between the actual and predicted tides.

Since the known tidal effect has been eliminated before the
energy density power spectrum has been determined, any spike of
such a spectrum may be understood as the effect of a tidal con-
stituent not included in the matrices.However, if no spike appears
in the spectrum we can admit that only gaussian noise is present.

In order to establish the "confidence interval" of §vv(p)

when v(t) is a gaussian noise, we begin by simplifying (4a). 1In
fact, the term in p+n only applies to very low frequencies and

thus expressions (4a) and (4b) give

n
48 (p) = z (E2 + n2) ¥ (p-n) (4c)

Now, since v(t) is gaussian and it is linked to En and N, through
a linear equation, then En and n, are also gaussian. Thus, it 1is
reasonable to assume that the mean values of E; and n; are

nearly equal to the same quantity, say, u;. Consequently, we have
from (4c) the following approximation:

n
_— ~ 2 -
45 () = ug T 2% (p-n)
n=n
or, i1f we call
nl"
2 I Y (p-n) = v (4d)
n=n'
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then

43 ~ 2 4
ggoB) & Wl (4e) I

But a better approximation will be reached if we return from M, to
- - - 2 2
the individual values of En and N . In this case we must have v/2

2
values of £n and v/2 values of n,, hence

p+v/2 5
48 (p) = z (§2 + n2)
vv a2 n n
which is a chi-squared distribution with v degrees of freedom. In
order to find v let us recall that the approximate area of the

curve Y(p-n) is given by
n
Area = % Y(p-n) An (4f)

where An=1. But a close approximation of the curve of Y(z)
between the limits shown in Fig.4
is

w(z) = L[(1~0%2%)* + (1-a%2%)7]

where

@ = m/NT (4g)
Fig.4 - Function ¥(2)

Hence, since we assume that ¥(z)=0 for [z|>NT/m, the area of the

curve 1is

/2
Area = % I(l'dzzz)3 + (l-azzz)zldz = 0239 ~ 1/
-1/2
or, according to (4d), (4f) and (4g)
V = 2NT/m (4h)

This is the result which is found in classical books by following
a much more complicated procedure.
Since v is known it is possible to determine the "confidence"

interval" of 4§vv(p)' This is an 1interval where the value of

4§Vv(p) will have 957 probability to be included. The extreme
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values of 4§vv(p) are found with the aid of the coefficients taken

from Table 4-I (Munk, Snodgrass & Tucker, 1959) which must be
multiplied by 4§vv(p) to give the extreme values. Thus it 1is

evident that the confidence limits of §vv(p) are 1/4 of those of
4§vv(p). Consequently, these limits are the products of §vv(p)

multiplied by the coefficients.

TABLE 4-I

Confidence limits

Vv Coef. v Coef. Vv Coef. V) Coef. v Coef.

1 0.2 -1000 4 0.36-8.3 8 0.46-3.8 20 0.59-2.1 150 0.81-1.27
2 0.21- 40 5 0.39-6.0 10 0.49-3.1 50 0.69-1.55 200 0.83-1.23
3 0.32- 14 6 0.42-4.8 15 0.55-2.4 100 0.78-1.35 300 0.86-1.18

Expression (4h) shows that if m is increased the wvalue of
V is reduced for a constant value of the parameter 2NT. Consequent-
ly, the accuracy of the analysis, from the statistical point of
view, is greater for large values of v. However, expression (30)
shows that the larger m is, the larger is the filter width and the
less is the resolution. Hence m must be fixed according to the

purpose of the analysis.

It was seen that formula (4g) gives only an approximate
value of V. But a more accurate value can be obtained from the
analysis itself. In fact, if we know 4§vv(p), expression (4e) can

be considered an actual equality where Vv is not known and is given

by
4s__(p)
v e (4)
uO
where
N/2-1 " 5
. (Eq + nnp)
2 _ n=0 n T i
o = N (43)

is the mean value of the noise energy.
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5 = CONCLUSION

It is interesting to quote the following statement made by
Franco (1970):"

"We are now in a position to foresee a new development of
this subject so far as tidal analysis is concerned. In actual fact,
it is not usual to take advantage of the Fourier analysis used to
obtain the power spectrum to compute tidal harmonic constants. How-
ever, we believe that either the Myazaki or the Cartwright-Catton
method may be used to "adjust" the Fourier analysis to the angular
frequency of the astronomical constituents in order to find these
constants. If so, we will be able to "fish" the needed harmonic
terms from among those given by the Fourier analysis. The only
objection is that the span is tied to a power of 2 and not to a
classical multiple of one lunation. We know, however, that some
least square analyses have been effected with no regard paid to
the conventional spans and that the results were shown to be
correct. Hence we hope to find an economical solution for avoiding
heavy supplementary computations in order to arrive at the harmonic
constants from the Fourier analysis itself, such as it is used to

obtain the power spectrum."

Thus the present work confirms the above statement. The
Cartwright-Catton method in fact has been extended by the addition
of a number of redundant equations which adjust the Fourier coef-
ficients to the known constituent terms. Consequently, the method
is formally similar to the least square method and table 2-I
shows how the inverse matrices to obtain R cos r and R sin r are
well conditioned.. Each matrix is inverted by species, the band
of Fourier frequencies slightly exceeding the known tidal
frequency band.

The central time used in the Cartwright-Catton method does
not permit the use of the FFT algorithm; but the difficulty can
be overcome by adding a small correction to the Fourier coefficient
of the cosine term.

The fact that tidal analysis is not necessarily tied to a
whole number of semi-lunations was demonstrated by Munk and
Hasselman (1964). They made it clear that a good separation of the

constituents with frequencies fl, f2 depends only on the length
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record T and the signal / noise ratio. They proved, that for the

usual noise level, resolution can be better than 1/T if

[fz-f1[>1/T/signallnoise

Godin (1970) studied very recently the effect of background
noise on the resolution of the tidal constituents. His conclusion
is that for constituents with very different frequencies such an
ef fect can be disregarded even for very short spans. "However the
noise does disturb drastically the resolution of close constitu-
ents and actually prohibits the attempt of resolving constituents
whose relative phase difference is less than a given minimum
value". In addition he says that in his personal experience of
tidal analysis, components with close frequencies can be resolved
if the phase shift is about 288°. Since his approach is through
the least square analysis we believe that the same results can be
reached with the procedure here described.

If Godin's criterion is adopted to select new constituents
we are able to search on the line spectrum of the Fourier analysis,
for the new constituents which can be considered in the analysis
of the residuals. 1In order to give an idea of the work involved
in such a selection, let us take the example of the semidiurnal
tide. Table 5-1I shows amplitudes ﬁRn = /EE_:_ﬁg of the residuals

corresponding to the angular frequencies q,- Resolution of the
Fourier analysis is about 0.04 degrees per hour, which corresponds
to 328° in 8192 hours. However, if Godin's criterion 1is adopted,
the difference between the hourly speeds of the old and new con-
stituents must be &qn>288/8192 = 0,035. The hourly speeds of the

new constituents are obtained, as usually, through the combinations

of the hourly speeds of the main constituents.

By finding the residual amplitudes
AR = /E®4n®
n n

and the hourly speeds

q, = 360n/N
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n
QN
DELTA-R
n

QN
DELTA-R
n

QN
DELTA-R
n

QN
DELTA-R
n

QN
DELTA-R
n

QN
DELTA-R
n

QN
DELTA-R
n

QN
DELTA-R
n

QN
DELTA-R
n

QN
DELTA-R
n

QN
DELTA-R
n

QN
DELTA-R
n

QN
DELTA-R

for the values of n (cycles per period N),

621
27.2900391
0.4471E-01

628
27.5976562
0.2074E 00

635
27.9052734
0.3610E 00

642
28.2128906
0.2179E 00

649
28.5205078
0.4149E 00

656
28.8281250
0.5407E 00

663
29.1357422
0.2669E 01

670
29.4433594
0.3613E 00

677
29.7509766
0.2248E 00

684
30.0585937
0.7626E 00

691
30.3662109
0.5249E 00

698
30.6738281
0.3494E 00

705
30.9814453
0.1135E 00

622
27.3339844
0.2181E 00

629
27.6416016
0.2033E 00

636
27.9492187
0.5817E 00

643
28.2568359
0.3487E 00

650
28.5644531
0.9233E 00

657
28.8720703
0.6445E 00

664
29.1796875
0.1354E 01

671
29.4873047
0.1693E 01

678
29.7949219
0.3305E 00

685
30.1025391
0.1104E 00

692
30.4101562
0.2115E 00

699
30.7177734
0.2256E 00

706
31.0253906
0.4012E 00

623
27.3779297
0.1448E 00

630
27.6855469
0.2984E 00

637
27.9931641
0.2461E 00

644
28.3447266
0.4825E 00

651
28.6083984
0.1424E 00

658
28.9160156
0.1801E 01

665
29.2236328
0.5602E 00

672
29.5312500
0.3195E 00

679
29.8388672
0.3419E 00

686
30.1464844
0.1268E 01

693
30.4980469
0.3089E 00

700
30.7617188
0.2913E 00

707
31.0693359
0.2218E 00

TABLE 5-1

624
27.4218750
0.2505E 00

631
27.7294922
0.1559E 00

638
28.0371094
0.4086E 00

645
28.3447266
0.3743E 00

652
28,6523437
0.1972E-01

659
28.9599609
0.2683E 01

666
29.2675781
0.9082E-01

673
29.5751953
0.4396E 00

680
29.8828125
0.2017E 00

687
30.1904297
0.8020E 00

694
30.4980469
0.7356E-01

701
30.8056641
0.2913E 00

708
31.1132812
0.3515E 00

625
27.4658203
0.3616E 00
632
27.7734375
0.1662E 00
639
28,0810547
0.2312E 00
646
28.3886719
0.6989E-01
653
28.6962891
0.3373E 00
660
29.0039063
0.6070E 00
667
29.3115234
0.4256E 00
674
29.6191406
0.5707E 00
681
29.9267578
0.2761E 00
688
30.2343750
0.1733E 00
695
30.5419922
0.4150E 00
702
30.8496094
0.3248E 00
709
31.1572266
0.1278E 00
it 1is

626
27.5097656
0.1207E 00

633
27.8173828
0.1232E 00

640
28.1250000
0.1478E 00

647
28.4326172
0.4159E 00

654
28.7402344
0.3330E 00

661
29.0478516
0.1019E 01

668
29.3554687
0.3400E 00

675
29.6630859
0.2817E 00

682
29.9707031
0.2323E 00

689
30,2783203
0.1733E 00

696
30.5859375
0.6047E 00

703
30.8935547
0.4283E-01

627
27.5537109
0.3564E 00

634
27.8613281
0.1142E 00

641
28.2128906
0.2281E 00

648
28.4765625
0.1171E 00

655
28.7841797
0.3879E 00

662
29.0917969
0.2220E 01

669
29.3994141
0.3711E 00

676
29.7070312
0.1964E 00

683
30.0146484
0.6955E 00

690
30.3222656
0.5018E 00

697
30.6298828
0.1636E 00

704
30.9375000
0.1848E 00

possible to

organize tables for the frequency bands of the tidal oscillation,

e.g. table 5-1 where one can see the 9, values corresponding to

important values of ﬂRn. Thus, it is possible to search for new

shallow-water constituents having hourly speeds near the tabu-

lated values of q - Such a selection is based upon the same oper-

ations indicated by Doodson (1928).
delicate ,and difficulties
tuents

the same hourly speed with different combinations.
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one should select the combination, the amplitude constituents® of
which give the largest product. Since the nodal factors of the
compound constituents are given by the product of the individual
node factors, only a very long period analysis (18.67 years) will
show the appropriate combination.

Table 5-1 shows that residual amplitudes resulting from
cleaning the tidal spectrum from the 18 classical (Doodson) semi-
diurnal constituents are very small indeed. According to Zetler -
Cummings (1967) these residuals in the semidiurnal band do not
justify the extra work of searching for new constituentsf

The above mentioned choice of new constituents is sufficient
inside the frequency bands. However, only a more elaborate
spectral analysis will show all the frequency bands to which the
research must be extended. 1In addition, such an analysis will
show the statistical accuracy of the results.

Appendices II and III are the programs to compute the values

for aj and bj for any number of tidal constituents.

It remains to draw some most important conclusions about the
search for new constituents. Fig. 5 shows that some energy is due
to the fifth diurnal tide which is not represented by the classical
61 constituents. It is obvious that such a peak would persist in
the residual spectrum resulting from the removal of the 61
constituents. Fig. 6 shows that peak (solid line). In the figure
the interrupted line represents the power spectrum of the residuals
resulting from a 147 constituents tidal analysis. These consti -
tuents, extended up to the 12th diurnal species, except for the
Brd and Sth diurnal species, did not show any improvement on the
spectrum of the residuals. In fact the wuse of 29 semidiurnal
constituents, instead of the classical 18 constituents, increased
the residual energy of the power spectrum. The same can be repeat-
ed for the Ath diurnal species. Thus, it was decided to use the

classical constituents only for the LP, D, SD and 6th diurnal

species and new shallow water constituents to represent the 3rd,
4th and Sth diurnal species. The final result can be seen in Fig.
7.

* Existence of tidal cusps according to Munk, Zetler & Groves(1965)
were considered.
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“The total number of constituents corresponding to the final
result is 82.

One of the most important steps in the analysis, that of
generating new shallow water constituents to explain obseréed
peaks, is shown in the flow diagram as a manual process. A computer
program has been written to perform this function, but it is not
included herein for the sake of simplicity.

The implications of the method in the field of tidal analysis
are many and varied, but perhaps the most important is that an
increase in the number of points analysed (in this case 8192
hourly readings) in order to increase the resolution of the analy-
sis does not occasion a disproportionate increase in computer
processing time.

Although the entire analysis was carried out on an IBM/360/
44, a high powered computer is not essential, since the FFT and
the matrix operations can be carried out in a series of separate
stages. Thus with certain program modifications a 16K word memory
with suitable high-speed input/output facilities should be suf-

ficient.

RESUMO

Este trabalho propoe um novo caminho para a analise espectral
da mare baseada no. algoritmo de Cooley-Tukey. A analise através da
"Transformagao Rapida de Fourier" (Fast Fourier Transform - FFT) e
empregada tanto para calcular as constantes harmonicas da mare
quanto para a obtencao do espectro de energia. Este & calculado por
meio de uma soma ponderada. Tambem e dada uma nova dedugao da for -
mula que exprime o numero de géaus de liberdade em que se baseia o
intervalo de confianga correspondente ao espectro do ruido. .

0 trabalho foi redigido em ingles a fim de facilitar o inter-

cambio de informagoes.
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LIST OF SYMBOLS USED

cosine/sine component

cosine/sine matrices

auto-correlation function for time lag ©

vector denoting phase and amplitude of oscillation
spectral estimate at frequency s.Af (Af = fundamental
frequency) i

nearest Fourier frequency to j tidal constituent

o0 o
Pl
oW o
o

w

]
[ SN

subscript denoting tidal constituent
cross-correlation function for time lag O
maximum number of lags

subscript denoting Fourier number

number of values in Fourier series

index denoting Fourier number

angular frequency (speed number)

number of tidal constituents

phase lag reckoned from the time origin
amplitude of tidal constituent

index denoting discrete frequency of spectral estimate
cross-spectral estimate between series x and y

—
@
~—

"
]

time

gaussian noise as a function of time

time series

tidal heights as a function of time

index for values of discrete weighting function
damping coefficient for weighting function

raw Fourier spectral estimate

Yt

M <O NY X< I W OO0 D Z8 83 "o,
ottt
e N N

estimate vector denoting phase and amplitude of random
oscillation
time lag
» U weighting functions
r.m.s. amplitude of white noise

degrees of freedom

sampling interval

angular speed difference/sum
,N cosine/sine of residual noise

MEAC T 0O
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APPENDICES
SET OF PROGRAMS FOR TIDAL ANALYSIS
by the

"Instituto Oceanografico" Method

N.B. The programs are presented separately to provide greater
flexibility to the user. In practice, however, programs
in Appendices I, II, III, IV, are inter-linked and executed
sequentially by the computer.
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INPUT OF DATA

I - F.F.T. PROGRAM -
HEADER CARD FORMAT
GAMA = Power of two (Nw=2CGAMA, 12
MAIN DECK
Y(I) = Tidal heights every hour 24F3.0
II - MATRIX GENERATION --—
HEADER CARD
N = No. of values in series (N-ZGAMA) 14
NBLOC = No. of tidal species present I4

TIDAL CARDS
SPEED = Angular speed of constituent in
degrees per solar hour F10.7
SHALLOW WATER )
COMPOSITION FACTORS = ICOM (I), Positive
or negative integers indicating
the composition of the shallow
water constituent in terms of 30
fundamental constituents. (Sa, Ssa
excepted) 3012
PRINCIPAL CONSTITUENT NO. = Number denoting
one of thirty¥two principal comstitu-
ents (see list); if not then =0 12

CON Symbolic name of constituent A8

IIT - H & g CALCULATION -

TITLE CARD

YEAR CARD
YEAR = Year of the start of the series F5.0
N = No. of values in tidal series 15

NDAY = First day of "the series according to

the Julian calendar I5
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HEADER CARD

N = No. of values in tidal series 14
NBLOC = No. of species to be resolved I4
YN = Last value (nth) of tidal series F4.0

NTAPE = 1 if matrices are written on same tape
as Fourier series, else = 2 14
MTAPE = Symbolic tape unit for output of
residual Fourier series I4
IV - AUTO-SPECTRUM

HEADER CARD

N = No. of values in tidal series

NO = No. of series to be processed

MDIV = Arbitrary divider to increase the

resolution from a predetermine minimum
(>5)

L = When MDIV is not specified the resolution
can be controlled by specifying the half-
filter width L

KTAPE = If non—-zero then auto-spectra are

written on Magnetic Tape (2), else
print-out and punch-out of auto-

spectra are effected.

LIST OF 32 PRINCIPAL CONSTITUENTS -

Sa, Ssa, Mm, Mf, 2Q, gl’ Ql, pl, 01, Hl, Xl, Trl, Pl, Sl,
Kla w]_s ¢1’ 813 ‘-Tls 001: 2N2n qu NZ’ V29 Mzs lzs L2! Tz: st RZ’
Ky, Ms.
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APPENDIX I

FAST FOURIER TRANSFORM
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COMPLEX YA(B8192),WBK,YF2,AUX
INTEGER*2BETA(2048) ,GAMA,COEF1,C0O:=F2
REAL*8Y(8192)

DIMENSION S(2049)
EQUIVALENCE (Y(1),YA(1l))
READ(5,1000) GAMA

REWIND 4

N=2%%GAMA

XN=N

FACT=6.28318/XN

FCT=XN/360.

ND8=N/8

ND4=ND8ENDS

ND42=ND4&2

ND41=ND4&1

ND2=ND4END4

ND22=ND2&2

ND82=ND8&2

C GENERATING THESINE SERIES

100

ANG=FACT*ND8
S(ND8&1)=SIN(ANG)
S(1)=0.
S(ND41)=1.

DO 100 I=ND82,ND4
JJI=ND42-]
ANG=ANGEFACT
S({I)=SIN(ANG)
S(JJ)=COS(ANG)

C FORMING THE BIT—-REVERSED COEFFICIENTS

200

105

106

IE=GAMA-2

NL=1

BETA(1)=0

DO 200 M=1,I1E

LL=NL

NL=NLENL

DO 200 JJ=1,LL
BETA(JJ)=BETA(JJ)*2
BETA(JJELL)=BETA(JJ)E2
READ(5,1200)(Y(I)I=1,4N)
YSUM=0.

DO 105 I=1,N
YSUM=Y(I)EYSUM
YSUM=YSUM/N

DO 106 I=14N
YX=Y(I)-YSUM
YA(I)=CMPLX{YX,0.)
YN=Y(N)

MM2 =N

KK=1

C THE HARD CORE

DO 520 L=1,GAMA
MM=MM2 /2
MMM=MM- 1

1B8=1

C SELECTING THE COMPLEX MULTIPLIERS

180

J=1
K=1
KEND=KK

Bolm Inst. oceanogr.
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220 MJ=BETA(K)&J
IF(MJ.GT.ND41)GOTO 403
NC=ND42-MJ
WBK=CMPLX({S{NC)sS(MJ))
GOTO 410

403 NS=ND22-MJ
NC=ND42-NS
WBK=CMPLX(-S(NC),S(NS))

410 ITEND=IBE&EMMM
DO 500 COEF1=IB,IEND
COEF2=COEF1&MM
YF2=YA(COEF2)*HWBK
YA(COEF2)=YA(COEF1)-YF2

500 YA(COEF1)=YA(COEF1l)&YF2

C OECIMATION IN TIME FOR THE FAST FOWRIER TRANSFORM

c THE DATA IS NATURALLY ORDERED ON ENTRY AND BIT REVERSED ON EXIT
IB=1IB&MM2
K=KE&1
IF(K.LE.ND4) GOTO 515
K=1
J=2
KEND=KEND-ND4

515 IF(K.LE.KEND)}GOTO 220
. KK=KKE&KK
52U MM2=MM

C BIT-REVERSING THE SERIES IN TWO PARTS
KK=ND4
DO 600 K=1,ND4
MM=BETA(K)
MM=MMEMME L
MK=MME2
KK=KKE&1
IF(MK.LE.KK)GOTO 590
AUX=YA(KK)
YA(KK)=YA(MK)
YA{MK)=AUX

590 IF(MM.LE.K)GOTO 600
AUX=YA(K)

YA(K)=YA(MM)
YA(MM)=AUX

600 CONTINUE
RI=1./ND2
ND21=ND2&1
DO 610 K=1,ND21

610 YA(K)=YA(K)*RI
YA(1)=YA(1)*0.5

C NOTE THAT ONLY THE THE N/2 COEFFIENIS DESIRED ARE FULLY BIT-REVERSED
WRITE(4)(YA(I),I=1,ND21)
REWIND 4
1000 FORMATI(IZ2)
120U FORMAT(24F3.0)
CALL EXIT
END
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APPENDIX II

MATRIX GENERATION
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EXTERNAL MFSD
DOUBLE PRECISION CONST(35),CONS(2%)
DIMENSION SPED(35),EPS(35),ARA(50 0),ARB(5000),RINV(900) ,RONE(35),
IRFIM(500G) sNSPEC(13)4,NFOUR(35) ,NMAT(13)
DIMENSION ISP(24),JDUM(24)
REWIND 2 .
READ(2)
READ(5,500)NyNBLOC,¥N
500 FORMAT(214,F4.0)
C N IS THE NUMBER OF VALUES PER SERIES, NBLOC THE NUMBER OF TIDAL
C SPECIESs YN THE LAST VALUE OF THE S:zRIES
XN=N
RN=1./XN
XN1=XNE1
KSwW=1
FCT=XN/360.
FACT=6.28318/XN
FCT2=FACT*0.5
KOUNT=0
2 J=0
KOUNT =
JSW = 0
NEND=0
JJ=0
5 IF(NEND.EQ.24) GOTO 7
NBEG=NENDE1
NEND=NENDE&6
JJ=JJE1
READ(5,5001) (ISP(J), JDUM(J),CONS(J) J=NBEG,NEND)
5001 FORMAT(I10,%2,A8,212,A8,212,A8,212,A8,212,A8,212,A8)
THE USE OF EXTRA VARIABLES IS AN ARTIFICE TO WRITE FOUR WHOLE CARDS
ON MAGNETIC TAPE
THE PROGRAM USER SHOULD ASCERTAIN THAT HIS COMPUTER CAN HANDLE AN
INTEGER NUMBER OF 10 DIGITS. IF NOT THEN MAKE MAKE THE FORMAT 216,A8
AND COMBINE (ISP,JDUM) TO OBTAIN ANGULAR SPEED
SPED(JJ)=ISP(NBEG)*1.0E-07
CONST(JJ)=CONS(NEND)
IF(SPED(JJ).NE.O.) GOTO 5
JSW=1
NCON=JJ-1
7 WRITE(2,5001)(ISP(J),JDUM{J),CONS(J)sJ=1,24)
NEND=0
IF(JSW.EQ.0) GOTO 5
NCON1=NCON -1
NSPEC (KOUNT)=NCON
DO 100 J=1,NCON
SPEED=SPED(J)*FCT
IFOUR=(SPEED&D.5)
NFOUR(J)=IFOUR
EPSI=SPEED-IFOUR
SPED(J)=SPEED
100 EPS(J)=EPSI
KK=0
NST=NFOUR(1)-2
IF(NST.LT.O0)NST=0
NFIN=NFOUR (NCON) &2
IF(KOUNT.EQ.13) NFIN=N/2
NOFDOR =NFIN-NSTE&1
NM=NCON*NOFOR
NMAT (KOUNT) =NM
DO 200 M=1,NCON

KOUNT & 1

OoO0OoOO00
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SPEED=SPEDI(M)
SIGN=1
IF(MOD(NST,2).EQ.0) SIGN=-1
DO 150 TFOUR=NST,NFIN
SIGN=-SIGN
KK=KK&1
ARG=(-SPEEDE&IFOUR ) *FCT2
ANG=( SPEEDEIFOUR ) *FCT2
PART=SIN(ANG*XNL)*RN/SIN(ANG)
SENQ=XN1*RN
IF(ARG.NE<0O.)SENQ=SIN{ARG*XNL1)*RN/ SIN(ARG]
ARA(KK)={SENQEPART)*SIGN
150 ARB(KK)=(SENQ-PART)*SIGN
200 CONTINUE
c BLOCK TO FORM THE ORIGINAL MATRIX
CALL MATSYM{ARA,RINV,NCON,NOFOR)
DELTA=0.0001
c NORMALISING THE MATRIX TO SYMETRIC =ORM VIA A SUBROUTINE

485 CALL SINV(RINV,NCON,DELTA,IER)

C INVERTING THE MATRIX VIA A SUBROUTL NE
IFIIER)699,205,202

202 WRITE(6,6202)

6202 FORMATI(//20X,"INSTABILITY AT STAG: NO. ",I4,' OF INVERSION')

205 WRITE(6,659)

659 FORMAT (/7///710X, "INVERTED MATRIX!')

IE=0
DO 355 K=1,NCON
IB=1E&1
IE=IEEK
355 WRITE(6,646) (RINV(KK),KK=IB,IE)
646 FORMAT(/13(1X,FB8.5))
IFIKSW.EQ.2) GOTO 465
CALL SYMTPR(RINV,;ARA,RONE,NCON,NO-0OR,RFIM)
c MULTIPLYING THE INVERSE BY THE TRANSPOSE MATRIX
KSW=2
GOTO 470

465 CALL SYMTPR{RINV,;ARB;RONEsNCON;NO- ORsRFIM)
KSW=1

470 WRITE(6,665)

665 FORMATI(///° FINAL NORMALISED MATRIX')
WRITE(6,630) (CONST(KK) ;KK=1,NCON)
WRITE(6,4631) (NFOURIKK) yKK=1,NCON)
WRITE(6,632) (EPS(KK) yKK=14NCON)
WRITE(2)(RFIM(K) ,K=14NM)

IF(KSW.EQ.2)GOTD 638

WRITE(2) (ARB(K)sK=1,NM)
IF(KOUNT.NE.NBLOC)GOTO 2
WRITE(6,690) (NSPEC(K) sK=1,KOUNT)

690 FORMAT(36X,"NUMBER OF CONSTITUENTS PER SPECIES"/' LONG 'y

1*DIURNAL SEMI- TER- QUARTO- QUINTO- SEXTO- SETIMO- '
2'01ITAVO- NONO- DECIMO- DEZ-PRIM DEC-SEG'/12(3X,13,3X)) -
ENDFILE 2

REWIND 2

CALL EXIT

638 WRITE(64641)
WRITE(2) (ARA(K)K=1,NM)

641 FORMAT(®1',10X,*NORMAL MATRIX SIN: COEFFICIENTS')
WRITE(64630) (CONSTI(KK) yKK=1,NCON)
WRITE(6,631) (NFOUR{KK) KK=1,NCON)
WRITE(6,632) (EPS{KK) ;KK=1,NCON)
CALL MATSYM(ARB,RINV,NCONyNOFOR)

Bolm Inst. oceanogr. S Paulo, 20:145-199,1971

185



OO0 0

aoOoo

slsle]

630
631
632
699
6099

GOTO 485

FORMAT(10(2X,A8))

FORMAT(10(2XyI454X))

FORMAT(10(2X,F8.5))

WRITE(646099)

FORMAT(//40X, *MATRIX INVERSION UNSUCESSFUL')
END

SUBROUTINE MATSYM(A,R,NsM)

DIMENSION A(1),R(1)

SUBROUTINE TO MULTIPLY A GENERAL MATRIX BY THE TRANSPOSE OF ITSELF
RETURNING THE RESULT AS AN UPPER TRIANGULAR SYMMETRICAL MATRIX

EZ20>

50

60

186

NEND = 0

IR = 0

DO 60 LJ = 14N

NBEG = NEND & 1

NEND = NEND & M

JJ =0

DO 55 LK = 1,LJ

IR = IR & 1

YSUM = 0.

DO 50 LM = NBEG,NEND

JJd = JJd &1

YSUM = A(LM)*A(JJ)IEYSUM
R{IR)} = YSUM

CONTINUE

RETURN

END

SUBROUTINE SINV(AyN,EPS,IER)

DIMENSION A(1)
DOUBLE PRECISION DIN,WORK

FACTORIZE GIVEN MATRIX BY MEAN> OF SUBROUTINE MFSD
A = TRANSPOSEI(T) * T

CALL MFSDIA,NsEPS,IER)

IF(IER) 941,1

INVERT UPPER TRIANGULAR MATRIX T
PREPARE INVERSION-LOOP
IPIV=N*(N+1)/2
IND=IPIV

INITIALIZE INVERSION-LOOP
DO & I’l'N
DIN=1.DO/DBLE(A(IPIV))
A(IPIV)=DIN
MIN=N
KEND=I-1
LANF=N-KEND
IF{KEND) 5,542
J=IND

INITIALIZE ROW-LOOP
DO 4 K=1,KEND
WORK=0.D0
MIN=MIN-1

Bolm Inst. oceanogr. S Paulo,

IS THE INPUT MATRIX STORED AS A TALL THIN MATRIX IN ONE DIMENSION
IS THE UPPER TRIANGULAR SYMMETRICA. OUTPUT MATRIX
IS THE NUMBER OF COLUMMS OF A (LES5S THAN M)

IS THE NUMBER OF ROWS OF A

SINV
SENV
SINV
SINV
SENV
SInv
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV

480
490
500
510
520
530
240
550

570
580
590
600
610
620
630
640
650
660
5T0
680
690
700
710
720
730
740
750
760
770
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(sl

o000

0o

LHOR=IPIV
LVER=J

SATRT INNER LOOP
DO 3 L=LANF,MIN
LVER=LVER+1
LHOR=LHOR+L
WORK=WORK+DBLE(A(LVER)*A(LHOR))
END OF INNER LOOP

AlJ)=-WORK*DIN
J=J=MIN
END OF ROW-LOOP

IPIV=IPIV-MIN
IND=IND-1
END OF INVERSE-LOOP

CALCULATE INVERSE(A) BY MEANS JF INVERSE(T)

INVERSE{A) = INVERSE(T)} * TRANSPOSE{INVERSE(T))

INITIALIZE MULTIPLICATION-LOOP
DD 8 I=1,4N
IPIV=IPIV+I
J=IPIV

INITIALIZE ROW-LOOP
DO 8 K=I,N
WORK=0.D0
LHOR=J

START INNER LOOP
DO 7 L=KyN
LVER=LHOR+K-I
WORK=WORK+DBLE (A(LHOR)*A(LVER))
LHOR=LHOR+L
END OF INNER LOOP

A{J)=WORK
J=J+K
END OF ROW- AND MULTIPLICATION-LOOP

RETURN
END
SUBROUTINE MFSD(A,N,EPS,IER)

DIMENSION A(1l)
DOUBLE PRECISION DPIV,DSUM

TEST ON WRONG INPUT PARAMETER N
IF(N-1) 12,1,1
IER=0

INITIALIZE DIAGONAL-LOOP
KPIV=0
DO 11 K=14N
KPIV=KPIV+K
IND=KPIV
LEND=K~-1

CALCULATE TOLERANCE
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SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINS
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV
SINV

780
790
80v
Blu
820
830
840
850
860
870
880
890
90

910
920
930
940
950
960
970
980
990

SINV1000
SINVIOLU
SINV10Z20
STNV1030
SINV1040
SINV1050
“INV1060
SINV1IUTO
SINV1080
SINV1IU90
SINVI1O0U
SINV1110
SINV1120
SINV1130
SINV1140
SINV1I1S50
SINV1160
SINV1L1T0
SINV1180
>INV1190

MFSD
MFSD
MFSOD
MFSD
#FSD
MFSD
MFSD
MFSU
“FSD
MFSD
“FSOD
“FSD
MFSD
FSD
MFS
“FSD
FSD

540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
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aoO0o0

o000 oOoO0On00

TOL=ABS(EPS*A(KPIV)) ¥FSN T10

“FSU 720

START FACTORIZATION-LOOP OVER <-TH ROW MESD 730

DO 11 I=K4N 1 MFSD 740

DSUM=0.D0 MFSD 750

IF(LEND) 2,442 MES 760

MFSU 770

START INNER LOOP MFSD 780

2 DO 3 L=1,LEND MFSD 790

LANF=KPIV-L MFSD 800

LIND=IND-L MFSU 810

3 DSUM=DSUM+DBLE (A(LANF)*A(LIND)) MFSD 820

END OF INNER LOOP “FSL 830

MFSD B840

TRANSFORM ELEMENT A(IND) MFSD 850

4 DSUM=DBLE(A(IND))-DSUM MFS!i 860

IF(I-K) 10,5,10 MFSOD 870

MFSL 880

TEST FOR NEGATIVE PIVOT ELEMENI AND FOR LOSS OF SIGNIFICANCE  MFSD 890

5 IF{SNGL(DSUM)-TOL) 646,49 “FSO 900

& IF(DSUM) 12,12,7 MFSD 910

7 IF(IER) 8,8,9 MFSD 920

8 IER=K-1 MFSD 930

MFSD 940

COMPUTE PIVOT ELEMENT MFSD 950

9 DPIV=DSQRT(DSUM) MFSD 960

A(KPIV)=DPIV MFSU 970

DPIV=1.D0/DPIV MFSD 980

GO TO 11 MFSD 990

MFSDL0GOU

CALCULATE TERMS IN ROW MFSD1010

10 A{IND)=DSUM*DPIV MFSD1020

11 IND=IND+I MFSD1030

MFSD1040

END OF DIAGONAL-LOOP MFSD1050

RETURN MFS 1060

12 1ER=-1 MFSDLOT70

RETURN MFSD1080
END

SUBROUTINE SYMTPR(A;Cy;ByNyM;R])
MULTIPLICATION OF A SYMMETRIC UPPER TRIANGULAR MATRIX BY THE TRANSPOSE
OF A GENERAL MATRIX
A IS THE UPPER TRIANGULAR MATRIX WITH N ROWS
B IS A WORK VECTOR OF SIZE N
C IS THE INPUT MATRIX OF SIZE M BY ¥ AND CANNOT OCCCUPY THE SAME
POSITION AS THE OUTPUT MATRIX R
R IS THE OUTPUT MATRIX OF SIZE N BY M AND CANNOT OCCUPY THE SAME
POSITION AS THE INPUT MATRIX
N IS THE NUMBERS OF ROWS
M IS THE NUMBER OF COLUMNS
DIMENSION A{(1),B(1),C(1),R(1)

JST =0
IR = 0
DO 50 L = 1N
JJ = JST
JSTEP = 1
MM = 0
10 JJ = JJ & JSTEP
MM = MM & 1

B(MM) = A(JJ)
IF(MM=L)10,15,15
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APPENDIX III

CALCULATION OF TIDAL COMPONENTES aj AND b{, HARMONIC
CONSTANTS H&g AND CORRECTION OF FOURIER COEFFICIENTS

FOR TIDAL EFFECTS TO OBTAIN RESIDUALS En AND N,

Bolm Inst. oceanogr. S Paulo, 20:145-199,1971 189



DOUBLE PRECISION CONS(35),CON(4)
c ANALYSIS AND CALCULATION OF THE RESIDUAL FOURIER ENERGY
c EXTRACTION OF THE H AND G VALUES FOR THE TIDE FROM A GIVEN FOURIER
DIMENSION SPED(35),VIU(35),FN(35), ICOM(33,4),IS5P(4)
DIMENSION A(35),B1(35)4X(4097),Y(4,97),VECT(4000),AMAR{200),
1 BMAR(200),VV(13),IQ(10)
DIMENSION V(32),F(12),U(12),SPEEDI32),VMU(32),IFU(32),BCDS(3),
1 BSEN(3),FF(35), 2(128),AU(32),AF(32),AM(12),AAM(4&)

DATA Z/4%0.95%270.92%90.3192.2270. 41804904168, ,4%90.,5%0.,2%180.
19282490.3258.90.9180.,
22*0..1..2. t‘#. t-li'- '-3. '-3-'-2. '_la 1-1- |6*0-'2*1¢!2- '-‘loi-‘f- !‘-3-!
3-3c9=2e9=les=1lep4*0.,3-3.,

41.-2. .2*0-'1-'3. ’1..3..2*1- |3-'-2. l-lo 'o..l. !2. !3.]‘1.]2*1..2-,‘- ]
52.l“¢l2-|°olzo'—lo.0-'l- .Z- laot

62‘0-1‘1-[0.]2. |0. ll- l_lo 02*00 l"‘l.t 6*0. [l. "‘1.10. '21!0- '1-"’1- '0.'
71.!"1.'5*0.,

DATA AU/9%0.3-23.74310.809=Bo869~12.943-36.689-2.14,-1T7.T4,

1] 0.92.683=1.3490.6851.34,4.02,0.4).68,
2 0.9-0.3840.199-0.0794-0.199-0573) e 9-0.04/

DATA AF/1.0000,1.042941.008941.0050,1.012941.102741.0004,1.0241,
1-0.130090.4135,0.187120.1150,0.1676,0.65049-0.0373,0.2863,
2 0.0013,-0.0040,-0.0147,-0.0088,-).0170,0.0317,0.0002,0.0083,
3 2%0.,0.0014,0.0006,0.0016,-0.001%40.,-0.0015/

DATA AM/277.025,280.190,334.385,259.157,129.38481,-0.23872,
1 40.662494-19.32818,13.17640,0.98565,0.11140,-0.05295/

DATA TFU/ 2%1923395%4,11¢693%135,2%),2%6,796%8,10,3%1,9,12/

DATA SPEED/0.0410686,0.0821373,0.5443747,1.0980331,12.8542862,
112.9271398,13.3986609,13.4715145,13.9430356,14.4920521,14.5695476,
214.9178647514.9589314,15.0000000415.0410686,15.0821353,15.1232059,
315.5125897515.5854433,16.1391017,27.8953548,27.9682084,28.4397295,
428.5125831,28.9841042,29.4556253,29.5284789,29.9589333,30.0000000,
530.0410667,30.0821373,43.4761563/

READ(5,570)

570 FORMAT(72H
1 )
READ(5,502)YEARsN,NDAY
502 FORMAT(F5.0,215)
WRITE(6,630) YEAR,N
630 FORMAT(20X,'NODE FACTORS AND EPOCA ANGLES FOR ',F6.0,' CENTRED',
1* ON A "4I4,"' HR. INTERVAL'//)

XD2=N/2.

JN=N/48

XN=JN

RESTO=XD2-XN*24,

XN=XNENDAY-1.

L=(YEAR-1901.) /4.

XL=L

B{l)=YEAR-1900.

Bl{2)=XNEXL

DO 10 I=1,4

KK=1

XSUM=AM{KK}

DD 9 J=1,2

KK=KK&4

9 XSUM=B(J)*AM(KK) EXSUM
10 AAM(I)=REDUZ(XSUM)

WRITE(6,600) (AAMII),I=1,4)

600 FORMATI(® S=",F9.5," H="4F9.54" P=" ,F9.5," N=",F9.5///)

AN=AAM( &)

DO 20 I=1,32

KK=1I
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XSUM=Z (KK}
DO 19 J=1,3
KK=KK&32
19 XSUM=AAMI(J)*Z(KK) EXSUM
20 VII)=XSUM
c CALCULATION DF THE V ANGLES
Cc CALCULATION DOF THE BASIC ANGLES
PIF=6.28318/360.
ANOD=AN*PIF
ANG=ANOD
DD 25 I=1,3
BCOS{I)=COS(ANG)
BSEN{ I)=SIN(ANG)
25 ANG=ANGEANOD
c CALCULATION OF THE NODE FACTORS F AND THE LUNAR ANGLES U
F(1)=1.000
uil)=0.
DO 30 J=2,49
KK=J-1
YSUM=0.
XSUM=AF(KK)
DO 29 I=1,3
KK=KKE&8
XSUM= AF(KK)*BCOS(I) & XSUM
29 YSUM=AU(KK)*BSENII) & YSUM
F{J)=XSUM
30 U(J)=YSUM
P=AAM(3)%PIF
PP=PLP
PN=P-ANOD
PPNN=PNE&EPN
PPN=PP-ANOD
FCOSUL=1.-COS(PP)*0.2505-COSIPPN)#0.1102-COS({PPNN)*0.0156 -BCOS(1)
1 *0.0370
FSENUL=(-SIN{PP)*0,2505)-SIN(PPN)¥0.1102-SIN({PPNN)*0.0156-BSEN(1)*
10.0370
FCOSUM=COS(P)*2. EGCOS(PN)*0.4
FSENUM=SIN{PN)*0.2 &SINI(P)
F(10)=SQRT(FCOSUL*FCOSUL &FSENUL*=SENUL)
U(10)=ATAN(FSENUL /FCOSUL)
F(11)=SQRT(FCOSUM*FCOSUM EFSENUM*=SENUM)
U(LL)=ATAN(FSENUM/FCOSUM)
F(12)=F(8)%*x1.5
ull2)=ul8)*1.5
c SEPARATE CALCULATIONS OF F AND U FOR L2,M1,M3 RESPECTIVELY
DO 40 J=1,32
KK=IFU(J)
Cc DUMMY SUBSTITUTIONS
VMU(J)=REDUZ{SPEED(J)*RESTO &V(J) &U(KK))
40 FF(J)=F(KK)
M=0
FACT=180./3.14159
1 READ(5;500)N,NBLOCYNysNTAPE s NPUN,4TAPE
500 FORMAT(214¢F4.0,314)
N IS THE EXTENT OF ORIGINAL SERIES
NBLOC IS THE NUMBER OF SPECIES FOR PROCESSING
YN IS THE LAST VALUE OF ORIGINAL SERIES
NTAPE = 1 IF THE MATRICES ARE WRITTEN ON SAME TAPE AS FOURIER SERIES,
ELSE NTAPE = 2
NPUN = O IF SUPRESSION OF PUNCHING H & G FOR TIDAL CONSTITUENTS IS
REQUIRED, ELSE ANY NON-ZERO VALUE

oD O0
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C MTAPE IS THE SYMBOLIC TAPE UNIT FOR THE OUTPUT OF THE RESIDUAL SERIES
C IF MTAPE =0 THEN NO OUTPUT IS MADE
XN=N
ND2=N/2
ND21=ND2&1
FCT=XN/360.
REWIND 1
REWIND NTAPE
IF(MTAPE.NE.O)REWIND MTAPE
c NOTE IT IS POSSIBLE FOR MTAPE TO BE EITHER TAPE 1 OR 2
READ(L)(X(I),Y(I),I=1,ND21)
FCT=XN/360.
SPINC=360./XN
CORR=(YN=-X(1))/ND2
X(1)=0.
KOUNT=0
2 J=0
KOUNT=KOUNTE1
WRITE(6,6001)
6001 FORMAT(///10X,'SPEED READ®',10X,'S>EED CALCD',10X,*NODE FACTOR?,9X,
L*EPOCH ANGLE"® 39X, "CONSTITUENT"*///)
C BLOCK TO READ NAMES,SPEEDS AND COMP)SITION FACTORS FROM TAPE
5 READI(NTAPE,2100) (ISP(JK),(ICOM(I4JK)3I=3,33),CON(JK),JK=1,4)
210¢ FORMATI(I10,3112,A8)
DO 8 JK=1.4
J=J &1
IFLISP(JK).EQ.O ) GOTO 120
SPED(J)=ISP(JK)*1.E-07
CONS(J)=CON(JK)
IF(ICOMI33,JK).EQ.0) GOTO 6
JS=ICOM(33,JK)
FN(J)=FF(JS)
VZU(J) = VMU(JS)
VELOC = SPEED(JS)
GOTO 8
6 ANG=0.
FNO = l.
VELOC = 0.
DO 7 KS=3,32
IC=ICOMIKS,JK)
IF{IC.EQ.Q0) GOTOD 7
ANG = VMU(KS)*IC & ANG
FNO = FF(KS)**IABS(IC)*FNO
VELOC = SPEED(KS)*IC & VELOC
7 CONTINUE
FN (J) = FNO
VZIU (J) = REDUZ (ANG)
8 WRITE(6,6002)SPED(J),VELOCsFN(J),vZU(J),CONS(J)
6002 FORMATII0XsFllaTp9XyF1lla739XyF10.5,10X,F10.2,10X,A8)
GOTOD 5 "
120 NCON = J = 1
NST=SPED(1)*FCT-0.5
IF{KOUNT.EQ.1)NST=1
NFIM=SPED(NCON)*FCT&3.5

c KOUNT INDEXES THE SPECIES NUMBER
IF(KOUNT.EQ.13)NFIM=ND21

C TO INDEX THE MATRIX DIRECTLY THE -OURIER SPEED NUMBER IS

C INCREASED BY ONE — - - THE SPAN 0O THE MATRIX IS

c INCREASED BY REDUCING NST BY 2 AN) AUGMENTING

c NFIM BY 2

NOFOR =NFIM-NSTE1l

192 Bolm Inst. oceanogr. S Paulo, 20:145-199,1971



o000

36

38
10

55

58

60
Tu

85

88

6300

NMAT=NOFOR*NCON

DD 36 K=NST,NFIM

X(K)=X(K)E&CORR

CORRECTION OF THE COSINE TERM
READ(NTAPE) (VECT(K)sK=1,NMAT)

THE INVERSE COSINE MATRIX IS READ AND THE COSINE CONSTITUENT OF
THE TIDE CALCULATED

IM=0

DO 50 L=1,NCON

RSUM=0.

DO 38 K=NST,NFIM

IM=IM&1

RSUM=VECT(IM)*X(K)&RSUM

A(L)=RSUM

READ(NTAPE)({VECT(K),K=1,NMAT)

THE NORMAL COSINE MATRIX IS READ AND THE COSINE
COMPONENT OF THE TIDAL FOURIER SERIES CALCULATED.
KK=0

DO 58 K=NST,NFIM

XSUM=0.

KK=KKE&1

IM=KK

DO 55 L=1,NCON

XSUM=VECT(IM)*A(L)&EXSUM

IM=IM&NOFOR )

AMAR[KK)=XSUM

X(K)=X(K)-XSUM

THE PROCESS IS REPEATED FOR THE SINES
READ(NTAPE)(VECT(K),K=1,NMAT)

IM=0

DO 70 L=14NCON

DO 60 K=NSTsNFIM

IM=IME&1

RSUM=VECT(IM)*Y(K)E&RSUM

B(L)=RSUM

KK=0

READ(NTAPE)}(VECT(K) s K=14NMAT)

DO B85 K=NST,NFIM

KK=KKE1

IM=KK

DO 80 L=1,NCON

XSUM=VECT(IM)*B(L)&XSUM

IM=IMENOFOR

BMAR (KK )=XSUM

Y(K)=Y[K)-XSUM

NF1=NOFORE1

BMAR (NF1)=NFIMEO.5

AMAR(NF1)=NST&O.5

NF2=NF1&1

DO 88 MA=NF2,200

AMAR(MA)=0.

THE TIDAL FOURIER COEFFICIENTS AR: NOW
CONTAINED IN-TWO BLOCKS OF 200(MAXIMUM) NUMBERS
AMAR & BMAR FOR FUTURE USE IF DESIRED
THE LAST TWO NUMBERS CONTAIN THE = XTENT
OF THE ARRAY FOR FUTURE MANIPULATI ON
WRITE(6,6300) .
FORMAT(5X, "COSINE",6X, "SINE® ;4X, "AMPLITUDE"4X,"PHASE" 3X,"CONSTI"
1 "TUENT "3 3X, "NUMBER"/)
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DO 180 L=1,NCON
HT=SQRT(A(L)*A(L)EB(L)*B(L))
FNIL)=HT/FNI(L)
IFOUR= SPED(L)*FCTE&0.5
c CALCULATION OF PHASE ANGLE
FI=0.
IFIA(L)=-0.)90,92,91
90 FI=180.
91 THETA=ATAN(B(L)/A(L))*FACTEFI
IF(THETA.LT.0.)THETA=THETAL360.
GO TO 179
92 THETA = 90.
IF(B(L)«LT.0.)THETA=2T70.
179 VZUIL) = REDUZ(VZUIL) & THETA)
700 FORMAT(F11.7,10X,F9.3,4X,F6.2,32X, A8)
180 WRITE(65640)A(L)+B(L)sHT,THETA,CONSI(L) IFOUR
640 FORMAT(4(4XsFTa2)94X3ABy5X,14)
WRITE(6,6010)
6010 FORMATI(//40Xs*VALUES OF H & G'/)
DUM = 0.
WRITE(6:6002) (SPED(L)sDUM,FN(L)sVZUIL) yCONS(L)oL=1,NCON)
IF(NPUN.NE.O)PUNCH 700, (SPED(L)FNIL),VZUIL),CONSI{L),L=1,NCON)
WRITE(64655)
655 FORMATI(//720X,*SPEED NUMBERS AND RESIDUAL FOURIER ENERGY IN °*,
L*THE TIDAL BAND'//10X,'THE FIRSIT ROW OF EACH BLOCK CONTAINS THE®
24 'SPEED NUMBER IN DEGREES AND THE SECOND THE RESIDUAL FOURIER',
3" AMPLITUDES'/)

VARIA=0.
IFOUR=NST-1
SPEDE=SPINC*IFOUR
JK=0

DO 190 K=NST,NFIM
JK=JK&1

SPED(JK)=SPEDE
IQ(JK)=IFOUR
RESEN=X(K)*X(K)EY(K)*Y(K)
SPED(JKE 10)=SQRT(RESEN)
SPEDE=SPEDE + SPINC
IFOUR=IFOURE1
c THE SECOND PART OF SPED NOW CONTAINS RESIDUAL FOURIER AMPLITUDE
IF{JK.NE.10)GOTO 190
WRITE(6,659)(1Q(J)yJ=1,10),(SPED(J)+J=1,10),(SPED(J),J=11,20)
659 FORMAT(/10(4Xs1444X)/10(1XsF11.7)/10(1X,EL1L.5))
JK=0
190 VARIA=VARIA&RESEN
JK1=JKE&1
JK10=JK&10
DO 195 J=JK1l,10
IQ(J)=0.
195 SPED(J)=0.
WRITE(6,659)(IQ(J)sJ=1,10),(SPED(J)4J=1,10),(SPED(J),J=11,JK10)
c STATEMENT TO WRITE END OF BLOCK
VARIA = SQRT(VARIA/NOFOR)
WRITE(6,645) VARIA
VVIKOUNT) = VARIA
645 FORMAT(! RESIDUAL ENERGY IN TIDAL BAND =',El2.4)
IF(NBLOC.NE.KOUNT)GOTO 2
XSX = 0.
DO 205 J = 1,ND21
205 XSX =X{(J)*X(J)EY(J)*Y(J)EXSX
XSX = SQRT(XSX/ND21)
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WRITE(656005)XSXy (VV(KL) sKL=1,NBLIC)
6005 FORMAT(//40X,"TOTAL NOISE LEVEL =',E12.4//20X,"NOISE LEVEL IN',

1*INDIVIDUAL TIDAL BANDS'/5(10X3E12.4))
IF(MTAPE.NE.O)WRITE(MTAPE) (X(L),Y(L),L=1,ND21)
CALL EXIT
END
FUNCTION REDUZ(ARG)
ANG=ARG

1 IF(ANG.GE.0.)GOTO 2
ANG=ANGE&360.
GOTO 1

2 IF(ANG.LT.360.)GOTO 3
ANG=ANG-360
GOTO 2

3 REDUZ=ANG
RETURN
END
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APPENDIX IV

POWER SPECTRAL ANALYSIS
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sle e lelalelal

501

N IS THE NO.
NO= THE NO.
MDIV IS AN ARBITRARY DIVIDER

COMPLEX Cl4097),CZ

DIMENSION Z(4097),PEPSI(30),Y(30),X(30),V(30)

COMMON RXsRY
EQUIVALENCE (CZ,RX),(C

(1),2(1))

READ (54501)NsNO,MDIV,LKTAPE

FORMAT(514)

PREDETERMINED MINUMUM,

SPECIFIED BY L

IF MDIV=0

OF VALUES IN THE ORIGINAL SERIES (N=2%%M)
OF AUTO-SPECTRA TO BE FOIMED
TO INCRZASE THE RESOLUTIN FROM A

THEN THE HALF WIDTH OF THE FILTER IS

KTAPE .NE.O IS A PARAMETER THAT SPECZIFIES AUTO-SPECTRA OUTPUT IS TO

BE ON MAGNETIC TAPE,OTHERWIS

12

13

30

31

198

NI=N/2&1
IF(L.EQ.0)L=0.015278%*N
IF(MDIV.NE.O.)L=L/MDIV
SCAL=2./(LELl)
PEPSI(1)=SCAL*0.5
XADD=0.

REWIND 1
IF(KTAPE.NE.O)REWIND2
DO 10 IM=2,L
XADD=XADDE2.

U=XADD/L
IF{U.NE.1.)GOTO9
PEPSI(IM)=SCAL*0.5
GOTO 10

PEPSI(IM)=SIN(U¥3.141593)*SCAL*0.31831/((~-U*UEL.)*U)

CONTINUE
KOUNT=0

WRITE(6,610)(PEPSI(I),I=1,L)

KOUNT=KOUNT&1
FORMAT(10X,10(1XsF10.7
WRITE(6,611)KOUNT

FORMAT(///10X, "AUTO-SPECTRUM NUMB:ZR

READI 1)
VSUM=0.
INITIALISATION AND LOW
DO 12 J=1,L

cZ=C(J)

ZZ=RX*RXERY*RY

YlJ)=21
VSUM=PEPSI(J)*ZZ&VSUM
X(J)=0.

V(J)=VSUM

X(1)=Y(1)

M=0

L1=L&1

JSW=1

DO 30 J=L1l,yNI

CZ=C(J)

ZI=RX*¥RXERY*RY

M=ME1

IF(M-L)13,13,14%
VAD=VSUM=V(M)

GOTO 14

CONTINUE

22=0.

JSW=2

M=ME1

IFIM.GT.NI)GOTO 45

(CIII.I=I|N1
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14

15

45

620

131
1801

6u
61

Bolm Inst.

VA=VAD

Xu=Y(2)

DO 15 IM=1,L

XY=X(IM)

X(IM)=XU

XU=XY
VA=(Y(IM)EXY)®PEPSI(IM)EVA
Y({IM)=Y([IME&L)

Y(L)=2Z

Z(M)=VA

GOTO(30431)9JSHW
IF(KTAPE.NE.O)GOTO 60
WRITE(6,620)(Z(1)4I,I=1,4NI)
FORMAT(8(1XsE9.3;514))

JE=0

KCARD=0

DO 131 I=1,NI,8

JB=JEE&1

JE=JEES

KCARD=KCARDE1

PUNCH 1800,(Z(1)sI=JBsJE) s KOUNTK: ARD
FORMAT(8E9.3,1X,12,1X,14)
GOTO 61
WRITE(2)(Z{I)sI=1,NI)
IFIKOUNT.NE.NO)GOTO 5

CALL EXIT

END
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