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SYNOPSIS 

A technique is described for the rapid Fourier transform of large 
series of numbers. The technique takes advantage of the fact that most 
digital series are highly factorizable by the number 2, which permits 
the use of the F.F.T. algorithm. 

Using two magnetic tape units, or alternatively magnetic disk fa
cilities, very large series can be transformed efficiently with only 
modest computer facilities. 

For the transformation of odd-valued series the Thomas Prime
Factor and Gentleman and Sande algorithms are treated in detail . 

1 - GENERAL SURVEY ON FOURIER ANALYSIS 

The Fourier transform has long been known to scientists for its useful-

ness in representing a variety of periodic phenomena. 

the tran sf orm pair may be written: 

For continous signals 

(la) 

(lb ) 

for a frequency f and time t without finite limitations (i.e. -00 <t <00, et~.). 

In the particular example cited above the Fourier transform permits the 

representation of a function of time (g(t» by a function in the frequency 

domain (G(f» and vice-versa; hence the name of transformo It serves equally 

to transform other domains such as wave-number and horizontal space. 
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For earth scientists the obtention of continuous signals in machine-

processable form is usually prohibitively expensive and, for the majority of 

applications, unnecessary. Consequently the continuous signal is usually 

sampled at equal intervals of space or time, in which case a different form 

of the Fourier transform is used, that is applicable to the discrete values 

obtained by sampling. Called the Discrete Fourier Transform, or D.F.T., the 

transformpair may be written, for N-valued series: 

X(k) 

c (n) 

N-l 
(1/N) n~O ( ) -i2nkn/N 

c n e 

N-1 
k~O X(k)ei2nnk/N 

(k=0,1,2, ... N-l) 

(n=O,1,2, ... N-l) 

(1 C?) 

(1d) 

An examination of the indexing shows that the numb er of mathematical 

operations required to evaluate the D.F.T. of an N-v.alued series is propor

tional to N2 . Consequently, for very large series the time and expense to 

evaluate a D.F.T. become prohibitive. This, coupled with the fact that by 

itself the D.F.T. has litt1e significance in representing the signal of a 

random "noise", caused the method to be overshadowed by other analytical 

techn i ques with better 

analysis) . 

computational speeds (e. g. convolution and spectral 

The D.F.T. had alI the making of a mathematical dinosaur, when Cooley and 

Tukey (1965) showed that a remarkable increase in computational speed can be 

achieved if N is a high1y factorizab1e number. Thus if N=rm, the D.F.T. can 

be broken down into r separate D.F.T. 's of size r m- 2 etc.. Finally, one 

arrives at an m-step algorithm, each step of which requires N.r operations. 

It can be seen that the number of operations has been reduced 

stantially by a factor of r.m/N (viz: N2 versus N.r.m). 

Franco (1970) h as shown the process of the sub-division of the 

D.F.T. 's into smaller ones for the case where N=2 m. 

sub-

larger 

For binary digital computers the case where N=2 m has important advantage 

over ot he r factors of r, both for 

Accordingly the algorithms derived 

multiplication economy and 

for N=2 m both by Cooley 

in addressing. 

and Tukey, and 

Cooley and Sande, 

F. F.T. 

have acquired the name of the Fast Fourier Transform or 

The high computational speed of the F.F.T., has made it not only feasible 

but also economically attractive, in terms of computer costs, to calculate 

energy spectra and correlation functions via the F.F.T. 

for 

Franco and Rock (1971) have demonstrated the suitability of the F.F.T. 
13 the harmonic analysis of tides, where N=2 =8192 hourly observations of 

tida1 heights, or nearly a years data. By the use of matrices, tidal com-

ponents centred at frequencies other than exact harmonics of the fundamental 

frequency were successfully extracted. 

tidal and the residual energy spectrum. 

Further filtering produced both the 
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However the fact that the analysis is tied to a power of 2 is a serious 

drawback for many people. Few scientists are willing to neglect available data 

and frequently better conditioned matrices,and better rejection of interferirig 

comp\?nents may be obtained by an astute choice of N. Fortunately, if we are 

willing to sacrifice computational speed,a more generalized form of the F.F.T. 
may be derived. 

2 - THE GENTLEMAN AND SANDE ALGORITHM 

Let us consider the simplified case where N has a factor p, and having 

obtained the D.F.T. 's of p separate series each of N/p numbarl, we now raquira 

the algorithm to combine p sets of N/p Fourier coefficientl. 

We may write the original ~.F.T. ai: 

N-l 
c(n) - k~O X(k)a- 2'ITnk/N 

or using the notation: 

W -2'1Ti/N 
N - e 

N-l nk 
c(n) - k~O X(k)WN 

Now let k take the form k-(bp+j) 

and l.t n take the form n-(a+m(N/p» 

(n-0,l,2, ••• N-l) 

(n -O , 1 , 2 , ••• N -1 ) 

{ j-O,l,2, ••• p-l 

b -O , 1 • 2 , ••• (N / p ) -1 

{ m-O ,1.2 , ••• p-1 

a-O,l ,2 , ••• (N /p) -1 

We may now rewrite (2a) in terms of two separate lummationl: 

p-l 
c(a+m(N/p» • . LO J. 

(N/p)-l . (bp+j) (a+m(N/p» 
b~O X(bp+J)WN 

(2a) 

(2b) 

(20) 

(2d) 

Note that if we write the original series X(k) as a two dimensional p~N/p) 

array,the rearrangement of the data in equation (2d) corr.spondl to a row-wise 

indexing instead of the column-wise indexing normally uI.d in digital computera. 

w( ':' ng equation (2d) through, we get: 

p-1 
c(a+m(N/p» - j~O 

p-1 

• j ~O 

but, according to (2b), 

and 

Thus rearranging 

(N /p)-1 
b~O X(bP+j)WN(bPa+j(a+m(N/p»+mbN) 

(N/p)-l / mbN 
b~O X(bP+j)W~pa.w~(a+m(N p»'WN 

wP -2'ITi/(N/p)W 
N - • (N /p) 

p;l wj(a+m(N/p» (N/p)-l b 
c(a+m(N/p» - j~O N b*O X(bP+j)WNip 
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Cross-referring between the above equation and equation (2a) it can be seen 

that the innermost summation is already in the form of an N/p valued D.F.T. 

Le t 
(N/p)-l 

Bj(a) = b~O X(bP+j)W~ip 

By reverting the indexing to the column-wise form, we create series, each 

of p Fourier coefficients, and 

p-l 
c(a+m(N/p) = .I: . B (J' )wj(a+m(N/p» 

J =0 a N 

The complex multiplier of equation (2 e ) is more easily written: 

since according to (2 b ) : 

wj (a+m(N/p» 
N 

w 
p 

from which it can be seen that the normal multiplier of the D.F.T. 

(2f) 

(viz: Wmj ) 
p 

is multiplied 

factor" by it:s 

by an additional corrective factor Waj 
N ' 

called the "twiddle 

ori gi nat ors Gentleman and Sande (1966), which serves to shift 

the complex coefficients cyclically so that N/p and p may b e identical or 

factorizable one by the another. When p=2 and N=2y successive repetitions of 

the algorithm make it formally similar to the F.F.T .. 

3 - THOMAS PRlME-FACTOR ALGORlTHM FOR TWO FACTORS 

lf N can be expressed b y 

N = pq (3a) 

where p and q are prime with respect to one another, we can use this property 

to eli mi nate the "twiddle factor" by means of a suitable sequence. 

As before we write: 

• 

and put: 

k (j p + mq ) Mo d N 

c(n) 
N-l 
k~O X(k)W~k 

I j =0 , 1 ,2 . .. q -1 

m =0 , 1 ,2 • •• p -1 

which defines the remainder of the interger division of (j p+mq) 

possible to prove that k takes alI the values in the interval 

O~k.:s:N-l 
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The input data can thus be arranged as p sequences of q ' numbers. For p-7 

and q=3 an examp1e of the two dimensional mapping of 21 numbers appears as in 

Tab1e 3-1. 

TABLE 3-1 - k = (7p+3q) Mod 21 

~ O 1 2 3 4 5 6 

O O 3 6 9 12 15 18 

1 7 10 13 16 19 1 4 

2 14 17 20 2 5 8 11 

SimiIar1y we wi11 suppose that output data sequence is represented in the 

form: 

n = (gl+hJ) Mod N { 
g =0 ,1 ,2 , . •. p-1 

h=0,1,2, .•• q-1 

where l and J are to be determined at our convenience. 

(3e) 

Before rep1acing 

convenient to derive 

of the operator Mod. 

k d . Wnk b an n l.n N' Y expressions (30) and (3e) it is 

a general expression 

lf L is any integer 

for w~, according to the definition 

so that 

L = KM + S 

where K is the quotient of the integer division of L by M, and S is the 

remainder of that division, we have according to (2b) : 

Consequently 

and from (3c) and (3e) 

-i21T(KM+S)/M 
e 

-i21TK -i21TS/M 
= e e = 

wnk W(nk) Mod N 
N N 

wL Mod M 
M 

wnk = W [(jp+mq) Mod N (gl+hJ Mod N] Mod N 
N N 

or, according to Appendix l, formula (d): 

w(jp+mq) (gI+hJ) 
N 

= W(jgpl+jhpJ+mgqI+mhqJ) 
N 

Bolrn Inst. oceanogr. S Paulo, 20 (2): 79-104, 1971 

(3 f) 

83 



But, from (2b) and (3a) we have: 

wP -i2TIp/pq w 
N .. e • q 

and 

-i2TIq/pq w 
- e - p 

thus . 

(3g) 

Since we can choose I and J at our convenience, these factors may be chosen to 

satisfy the following relationships: 

wI .. wI Mod q _ wO 
q q q 

WJ '" wJ Mod q .. w 
q q q 

wI '" wI Mod p 
'" w 

p p P 

wJ wJ Mod p wO 
p p P 

which means th at I and J mus t be given by 

j I Mod q .. ° j ~ Mod q '" 1 

I Mod p 1 Mod p .. O 

th us , according to (3h) , expression (3g) reduces to: 

Consequent1y, by using (3c), (3b), (3 e ) and (3j) we can change 

c I (gI+hJ) Mod N J 

or 

c r (gI+hJ) Mo d NI 

q-1 
.LO 
J '" 

p-1 
m~O X r (j p+mq) Mod N] w~ hw;g 

q -1 p-1 
L wjh L Xr(J·p+mq) Mod N] wm

p
g 

j =0 q m"'O L 

(3h) 

(3i) 

(3j) 

(3b) into: 

This expression can be sp1it into two, by using a more suitab1e matrix 

notation: 

/Iwmg ll {x. (m)} 
P J 

and 
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Since we have q values of j and p values of g, there will be q groups of 

values of ct. (g), each one with p values.This is the resu1t of the first step. 
J 

Now since we have p values of g and q values of h the result of the second 

step will be p groups of values of c (h) each one with q values. In other g 
words we have q ana1yses with a p x p matrix and p analyses with a q x q 

matrix. 

Table 3-11 gives the output mapping for p=7 and q=3. 

TABLE 3-II - n = (15q+7h) Mod 21 

~ O 1 2 3 4 5 6 

O O 15 9 3 18 12 6 

1 7 1 16 10 4 19 13 

2 14 8 2 17 11 5 20 

Another possibility exists to choose I and J so that 

j I Mod q 

I Mod p .. p-l 

O Mod q .. q-1 

Mod p • O 

In this case it i s easy to prove that the conjugates of c(n) are found, i.e., 

c(N-n), for n=0,1,2, ... N-l. In other words the va1ues of n for p=7 and q=3 

would be tabulated by subtracting the va1ues of Tab1e 3-1 (except zero) from 

21. 

4 - THOMAS PRIME-FACTOR ALGORITHM FOR THREE FACTORS 

If it is possible to split pinto two mutually prime factors r and s, so 

that 

p rs (4a) 

we have 

N = rsq (4b) 

and a new step can be added to the ana1ysis. In fact we can make: 

m (ar+bs) Mod p 
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and 

n = (g1+hJ+ l L) Mod N 1 
g=0,1,2, ..• r-1 

h =0 , 1 ,2 , • • • s-l 

l =0,1,2, ..• q-1 

where I, J and L may be chosen at our convenience. 

We have from (3 c ) and .(4 c ): 

k = (jp+mq) Mo d N = {jp + [Car+bs) Mod p]q} Mo d N 

(4d) 

After some Mod operator a1gebra (see Appendix I) this e xpression may be 

changed into: 

k = [j(rs) + a(rq) + b(sq)] Mod N (4 e ) 

this expression gives the input mapping. For r=3, s=5 and q=4 we have the 

resu1t s hown in Tab1e 4-1. 

j = O 

~ O 1 

O O 20 

1 12 32 

2 24 44 

3 36 56 

4 48 8 

g 

~ O 1 

O O 45 

1 36 21 

2 12 57 

3 48 3 3 

4 24 9 

TABLE 4-1 - k = (15j + 12a + 20b) Mod 60 
1nput mapping for 3 factors = r=3, q=4, s=5 

j = 1 j = 2 

2 O 1 2 O 1 2 

40 15 35 55 30 50 10 

52 27 47 7 42 2 22 

4 39 59 19 54 14 34 

16 51 11 31 6 26 46 

28 3 23 43 18 38 58 

O 

45 

57 

9 

21 

33 

TABLE 4-II - n = (40g + 36h + 451) Mod 60 
Output mapping for 3 factors = r=3, q=4, s=5 

= O g = 1 

2 3 O 1 2 3 O 1 

30 15 40 25 10 55 20 5 

6 51 16 1 46 31 56 41 

42 27 52 37 22 7 32 17 

18 3 28 13 58 43 8 53 

54 39 4 49 34 19 44 29 
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j = 3 

. 
1 2 

5 25 

17 37 

29 49 . 

41 1 

53 13 

g = 2 

2 3 

50 35 

26 11 

2 47 

38 23 

14 59 
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Now from (4d) and (4e) we can obtain: 

But we have from (2b) a'nd (4b): 

thus 

-i27Trs/rsq W • e = 
q 

e-i27Trq/rsq=w 
s 

e-i27Tsq/rsq=w 
r 

Since we can choose I,J and L so that 

Mod q 

Mod s 

Mod r 

~ I = 
1 

I Mod qs o I J Mod q .. O~ 
J Mod r 

J Mod s 

i t f o 11 ow 5 t h a t 

I L Mod s 

L Mod r 

L Mod q 

o l = L Mod rs 
= O J 

1 

thus from (3 b) , (4d), (4e) and (4h) we obtain: 

o 

( 4f) 

_ J Mod qr .. O 

(4g) 

(4h) 

cl (gl+hJ+lL) Mod NI q-1 s-l r-I 
.í: O í: b~-O X{[- j (rs) + a(rq) + b(sq)] Mod N}WjZWahwbg 
J = a=O q s r 

or, by using a more suitab1e notation, 
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By using matrix notation this expression can be split into the following 

formulae: 

II Wb g 1/ {X. (b)} = {ex. ( g) } 
r J a J a 

II wah /I {ex. (a)} 
s J g 

{y. (h)} 
J g 

(4i) 

If one of the factors is a power of 2, then the respective summation can be 

treated by the F.F.T .. 

It may be noted that X. (b) represents the values of X(k) arranged accord
Ja 

ing to expression (4e) as input data; whereas c gh (l) are the va1ues of c(n) 

4-1 appearing in the output according to the order given by (4d). (See Tables 

and 4-11 for a three dimensional mapping of input and 6utput). 

5 - APPLICATION TO TIDAL SPAN 

The main objection to the method of tida1 analysis via F.F.T. is that the 

number of samples must be a power of 2. In fact Cartwright (personal communi

cation) says that the inter-tida1 bands are contaminated by tidal side bands 

which make it difficult to obtain the noise leveI without comp1icated cor

rections. Thus it may be useful to estab1ish tidal spans which can be treated 

by the method here described. This can be done by choosing the number of days 

so that the constituents M2' S2' K1 and 01 accomp1ish approxim.te1y a whole 

number of cyc1es. Since we are not ob1iged to work with a who1e number of days 

we have used half a day every time a better approximation cou1d be made. 

TABLE 5-1 - Tidal series 

8pan 8pan Factors Number of c~cles per series 
in day s in hours M2 8 2 Kl 01 

15.0 360 5x9x8 28.984 30 15.041 13.943 
29.0 696 29x3x8 56.036 58 29.079 26.957 
58.0 1392 29x3x16 112.072 116 58.159 53.913 
87. O 2088 29x9x8 168.108 174 87.238 80.870 

104.5 2508 33x19x4 201.923 208 104.786 97.136 
133.5 3204 29x27x4 257.959 267 133.866 124.093 
162.5 3900 39x5x4 313.994 335 162.945 151.050 
177 .5 4260 71x15x4 342.979 355 177.986 164.993 
192.5 4620 35x33x4 371.963 385 193.027 178.936 
220.5 5292 49x27x4 460.066 441 221.103 204.963 
235.5 5652 157x3x4 455.050 471 236.145 218.906 
279.5 6708 43x39x4 540.070 559 280.265 259.805 
297. O 7128 31x11x8 537.885 594 297.813 276.072 
325.0 7800 39x25x8 627.929 650 325.890 302.099 
355.0 8520 71x15x8 685.957 710 355.972 329.985 
369.0 8856 41x27x8 713.009 718 370.010 342.999 
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Table 5-1 shows the figures in days and hours. The hours have been factor

ized and the result is shown in the third column. Note that the last factor is 

always a power of 2 which means that one of the steps can be worked out by the 

Cooley-Tukey algorithm. 

6 - NOTES ON COMPUTATION 

In both the Thomas prime-factor and the Gentleman and Sande algorithm. the 

smallest blocks of D.F.T. 's are formed using a very efficient algorithm due to 

Watt (1959). The algorithm is a recurrence formula that requires only one sine 

and cosine to evaluate a pair of Fourier coefficients. 

Briefly for an argument 8 = 2nn/N (n=0.1.2 .... N-l).where N 

of the series. the recurrence formula is 

i s the extent 

(6a) 

Y(k) being a real-valued series sampled at equidistant intervals 

(k =0 • 1 • 2 , ••• N - 1) • 

Putting XN=O and XN+I=O, the formula is iterated N times and the n th har

monic Fourier coefficients found from 

b n (Xl sin 8)2/N 

A fuller treatment of the method may be found in Cartwright and Catton 

(1963) . 

The chief advantage of the Thomas prime-factor algorithm is the com-

putational speed gained by avoiding the use of the "twiddle-factor" of the 

Gentleman and Sande algorithm. It suffers in being restricted to only mutually 

prime factors. being messy and bulky to program, and the need for extra memory 

space to sort the output. 

There exist at least two distinctive ways of programming the "twiddle 

factor" into the Gentleman and Sande algorithm. In equation (2t) for each of 

the N/p 

f act or 

series 

Wja 
N. 

J 

is 

B (j) = (a=0,1,2, ... (N/p-l) 
a 

the argnment 

equivalent to a phase-shifting of the 

a of the " tw iddle 

complex multiplier 

wjm = wjmN / p which necessitates a recalculation of the multiplier wNj(a+m(N/p» 
p N 

for each series. However the method is extremely compact to program 

pendix 11) and, by sacrificing some of the speed of the calculation. 

(see Ap-

can be 

programmed so that the Fourier coefficients are calculated "in-place", or in 

other words only one array is needed to store the data at any phase 

computation. 

On the other hand. to avoid continuous recalculation of the 

of the 

" tw iddle 

factor", i f se ve r aIs e t s of data will use the algorithm on the same computer 

pass, the complex array wja can be calculated at the start of the program, 

stored, and multiplied directly with the coefficients B (j). 
a 
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r. 

B~h (O) 

Bgh (4) 

B9h (2) 

Bgh (6) 

B 9 h (1) 

B~ h (5 ) 

Bgh (7 ) 

FIG. 1 - Signal flow - diagram for the F.F.T. treatrnent of q=2 ~ blocks 
ofD.F.T. 5 size r x 8. 

The Watt sub-algorithm has been used- as the basic building block of both 

the Gentleman and Sande and the Thomas prime-factor algorithm. But the F.F.T., 

by a series of linear combinations, avoids the use of the sub-algorithm, and 

can substitute the Watt algorithm with greater computational efficiency. More

over, most series have a factor that is a power of 2 (especially time-series 

due to the natural divisions of days, hours, minutes and seconds), which 

suggests that a general purpose algorithm should take advantage of the F.F.T • • 

The use of the Thomas prime-factor algorithm in connection with the F.F.T. 

is indicated; since with one factor even and the others -of necessity-odd, 

there is a good possibility of finding at least three mutually prime factors. 

An examination of equation (4i) shows that if q_2 m the D.F.T. consists of 

8 X q separate calculations of an r-size D. F. T., r x q calculations 

on an s-size D. F. T., and r x s calculations of a size F. F. T. 

Leaving the F. F. T. stage until the last summation, allows combi-

nation via the F. F. T. to be effected in q _ 2m blocks of size r x 8. Note 

that this is identically equal to r x 8 blocks of q-size of F.F.T., but in the 

computer the former has computational advantages of speed and memory space . 

Figure 1 shows the treatment of the qm2m blocks by the F.F.T. algorithm, as a 
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signal flow diagram (C o ch r an e t a Z., 1967). Since the F.F.T. only requires 

two blocks of data in the memory core at one time, the blocks of data for each 

stage of the 

tape. 

calculation can be stored either on magnetic disk or magnetic 

The reader is referred to Cochran et alo (1967) and Franco (1970) for a 
fuI ler discussion of the F.F.T. algorithm. 

For re as ons of convenience in the manipulation of magnetic tape, a par-
ticular form of the F. F. T. was selected, where the data enters in "b i t- re-
versed"* order and the Fourier coe ffi cients exit in natural order. A very 
si mp 1 e technique for calculating bit-reversed numbers is presented in Tab le 
6-1 (E. Bergamini, 1968, p e rs on a 1 communication) . 

TABLE 6-1 - Generation of bit-reversed series 

O 1 2 3 4 5 6 7 8 9 10 il 12 13 14 15 

2 1 4- O 1 4-
4-

2 2 4- O 2 1 3 4-
4-

2 3 4- O 4 2 6 1 5 3 7 4-
4-

2" 4- O 8 4 12 2 10 6 14 1 9 55 13 3 11 7 15 

NOTE: Each suceSS1ve line is generated by doubling the sequence of the line 
above. The odd sequence to the right of the dotted separator is formed 
by adding one to the even sequence to the left of the separator. 

1nstead of arranging the blocks of data on magnetic tape in complete bit-

reversed order, the odd numbers are interposed with the even numbers of 

sequence (viz: for a normal bit-reversed sequence 0,4,2,6,1,5,3,7, the order 

becomes 0,1,4,5,2,3,6,7). 1nitially, every other block (i.e. even numbered) 

is read from the first tape to form pairs for combination. The resulting pair 

of b10cks after combination are written in sequence onto a second tape. On 

completion of the first ha1f of the pass, the tape being read is rewound and 

the process continued reading and combining those data blocks 

skipped on the 

then rewound, 

first ha1f of the pass (i. e. odd numb ers) . Both 

their rô1es reversed and the process repeated for 

p as s . For r=2 m the process has m such iterative stages. 

7 - CONCLUSION 

that were 

tapes are 

the second 

A very 1arge data series that is highly factorizable by 2 can thus be 

Fourier transformed very efficiently using very little computer memory core. 

* By a bit-reversed number, one understands a number that when represented 
in binary notation has its binary bits arranged in reverse sequence to that 
of its natural equivalent. 
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Prob1ems arise 1rom the . bit-reversing of the data at the input and sorting 

the out-put, both of which need additiona1 memory core. Notwithstanding, 

these prob1ems ;an be over~ome either by the use of separate subprograms, or 

the extensive use of magnetic disk. The optimum solution depends on the com

puter configuration. 

A~though it appears feasib1e to program a1so the Gent1eman and Sande 

a1gorithm in conjunction with the F.F.T., there are no distinct advantages 

in doing so and on1y in exceptiona1 

be justifiab1e. 

circunstances might programming effort 

RESUMO 

Apresenta-se neste trabalho uma técnica de transformação rápida de Fourier 

aplicada a uma longa série de valores numéricos. A t;cnica tira partido do 

fato de que a grande maioria das séries digitalizadas é, em geral, suscetível 

de fatoração onde aparece frequentemente o fator 2, o que permite o emprego do 

a1gorítmo da transformação rápida de Fourier (F.F.T.). 

Com o emprego de duas fitas magnéticas ou discos, pode ser efetuada efi-

cientemente a transformação de longas séries 

ri a. 

em computadores de modesta memõ-

O a1gorítmo de fatores primos de Thomas e o de Gent1eman e 

respectiva~ente, tratados em detalhe, na transformação 

impar de valores. 
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APPENDIX I 

It is necessary to derive some general expression involving the operator 

" Mo d" in order to simplify expression (4f) . 

From the definition itself of A Mo d N, it fol1ows that 

««A Mo d N) Mo d N) Mo d N ••• ») = A Mod N (a) 

Now, if a and B are the remainders of the division of integers A and B, 

res~ect i vel y , b y N , we can write: 

A IN + a a A Mod N 
(b) 

B JN + i3 i3 B Mod N 

th us 

AB = INJN + a JN + i3 IN + a8 

b ut, if K 15 th e quotient of the integer division of 0.8 by N then 

aB = KN + Y Y ( a8 ) Mod N 

and 

AB (INJ + aJ + SI + K) N + Y 

th us 

(AB) Mo d N y (aS) Hod N (c) 

or, according to ( b ) 

(AB) Mod N t (A Mod N) (B !tod N) 1 Mod N (d) 

From (b) 

A + B = (I + J) N + ( a + 8) 

but, if M and a are the quotient and the remainder, respectively of the 

division of a + 8 by N, it follows that 

a + 8 MN + ó ---+ Ó .. (a + B) Mo d N 
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thus 

A + B • (I + J + M) N + 6 6 • (A + B) Mod N 

cons eq uen t 1y 

(A + B) Mod N • (a + a) Mod N (e) 

or, according to (b) 

(A + B) Mod N • (A Mod N + B Mod N) Mod N (f) 

Finally, if 

P<N 
(g) 

P Mod N .. P 

Expressions (a), (4), (f) and (g) are alI we need to effect alI the 

deve1opments. 
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A P P E N D I X 11 

FLOW DIAGRAMS and COMPUTER PROGRAMS 
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f.b..Q.W DIAGRAM-I 

THOMAS PRIME FACTOR ALGORITHM 

CALCULArE 
SORTING 
FACTORS 

GENERATE 
SORTING 

SEQUENCE 
RxS 

NUHBERS 

GENERATE 

(R + 1) /2 

S I NESI 

COSINES 

CENERATE 
(5+ 1) /2 

5 INES 

• 
COSINES 

FOR THREE FACTORS UTILlSING 

THE F. F. T. 
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... 

OBTAIN "5" 
FOURIER 

CO E FFS. VIA 
WATT ' s 
PROCESS 

OBTAIN "R " 
FOURIER 

COEFFS. FROH 
REAL 
PAftT 

OBTAIN "R" 

COEFFS. FROH 

IHAGINARY 

PART 

" S " 

WATT ' S 

PROCESS IN 

TWO PARTS 
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CALCULA TE 
COMPLEX 

MUL TIPLIERS 
FOR F.F . T. 

REALLOCATE 

TAP~ LABELS. 

REWIND TAPES 

A 

SELECT 

COMPLEX 

HULTIPLIEa 

COMBINE 

THE TWQ 

BL OCKS 
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FLOW DIAGRAM-I 
(CONTINUED) 

H. STACE 

PROCESS 

Q • 2M 

79-104, 1971 

END NO 
DF DAr A 

SOU OUTP UT 
IN PAIaS 

or BLOCKS 

WRITE 

FOURIER 

COEFFS 
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FLOW DIAGRAM 2 

GENTLEMAN B ~ANDE ALGORITHM 

NO 

GENER ATE 

Q SINE • 

COS I NE 

TA BLE 

SE,LECT . 

VALUES 

ROW-\HS E 

CA L CULATE 
FOURIER 

COEFFS BY 
WATT ' S 

PROCESS 

SUBSTI T UTE 

FOR COMPLEX 

CONJUGATE 

CALCULATE D 

D. F. T . • S 

CALC o 
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ADVA'NCE 

CO L UMN ARGU-

HENT OF TWIDDLE 

FACTOR 

ADVANCE 
IWW ARGUMENT 

OF 
TWIDDLE FACTOR 

COM B INE 

RESU L T T O 

FORM PAIR 

AP P LY WATT ' S 
PR,OCESS SEPARA -

TE LY TO EACH 
FOU RI ER/COEFF. 

COEFFS CA L C o 

SER I ES OF 

D . F.T. ' S 

CALCo 

YES 

WRITE 

FOURIER 

NO 

NO 
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IMPlICIT COMPlEX(V,W' 
INTEGER*2Y(8856"BETA(8"INV(4',G~MA 
tNTEGER*2 KTAB(llOl' 
DIMENSION SINQ(21',COSQ(21',SINPl14"COSP(14),Y(41',WBETA(4" 

lRA(41),RB(4l) 
DIMENSION VV(4528, 
COMMON VA(1107"WA(1107"A(110S"3(110S,,YY(1107),OUMMY'5133' 
E QUI V A L E NC E 'V A l 1) , Y (l ) , , l Y V (l ) , A ( 1 , ) 
DATA BETA/O,I,4,S,2,3,6,7/ 
DATA INV/O,2,1,3/ 

C FAST FOURIER ANAlYSIS OF TIOES ON ~AGNETIC TAPE 
C USING THE THOMAS PRIME ÁlGORITHM IN CONJUNCTION WITH THE FFT 

READl5,500'NFFT,NDAYS,IQ,IP 
C DATA= NO. OF FFT'S =2**M, NO OF OAtS IN SEQUENCE,FACTORS OF DFT'S 
C WHICH SHOUlD SE 000 
C ARRAY lINV) IS BIT-REVERSED SEQUENC= FOR 2**'M-l' NUMBERS 
C ARRAY (BETA) IS INTERPOSEO Bll-REVE~SEO SEQUENCE FOR 2*.M NUMBERS 

SOO FORMAT( 4141 
IPQ=IP*IQ 
LGRUP=O 
GAMA=3 
NT=IPQ*NFFT 
N=NDAYS*24 
IF{N.NE.NTIGOTO 299 
RN=2./N 
REWIND 2 
REWIND 3 
IE=O 

C DATA SERIES READ AS AN INTEGER ARRAt 
REAOlS,SOl'(Y(I),I=I,NI 

501 FORMAT (24131 
lSUM=O 
DO 12 1=I,N 

12 ISUM=Y'I'&ISUM 
YSUM=ISUM 
YSUM=YSUM/N 
DO 14 II=I,NFFT 
KK=SETA'II'*IPQ-NFFT&1 

C STATEMENT TO HAlF-BIT REVERSE SERIES 
DO 13 l=I,IPQ 
KK=KK&NFFT 
IF(KK.GT.N,KK=KK-N 

13 All)=Y'KK,-YSUM 
14 WRITE(2'(All',1=1,IPQ, 

C DATA STORED ON TAPE FOR SUCCESSIVE P\SSES OF lHOMAS PRIME AlGORITHM 
REWIND 2 
FAe T=6. 28318IIPQ 
IPQ1=IPQ-l 
IQ2=IQ&2 
IP2=IP&2 
101= IQ-1 
l J> ... =IP-l 

C GENERATE SINE ANO eOSINE TABlES 
ARG=FACT*IP 
ANG=O. 
I HQ= l 1 QU ) /2 
DO 10 J=l,IHQ 
SINQlJ)=SIN(ANG) 
COSQ(J)=COS(ANG) 

10 ANG=ANG&ARG 
ARG=FACT*IQ 
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ANG=O. 
I HP = ( I P ta l 12 
00 20 J=I,IHP 
SINPlJl=SINlANGl 
COSP(J)=COS(ANG' 

20 ANG"'ANG&ARG 
C CALCULATE TRIPLE SORTING FACTORS 

NP=NFFT*IP 
NQ=NFFT*IQ 
IMPa&! 

6 IMP=IMP&IP 
IF(MOD(IMP,NQ).NE.OlGdT06 
IMQ=&l 

1 IMQ=IMQUQ 
IFlHOD(IHQ,NP).NE.O)GOTO 1 
INFT=&l 

8 INFT=INFT&NFFT 
IFlMOOlINFT,IPQ,.NE.O)GOTO 8 

C INFT IS DEFINED BY MOOflNFT,NFFTl=l ANO AlSO MOOllNFT,IP*IQ)·O ETC. 
MM=-IMQ 
KK=O 

C CONSTRUCT SORTING TABLE FOR EACH BLlCK 
DO 24 J=I,IQ 
MM=MM&IMQ 
IF(MM.GE.NlMM=MM-N 
M=MM 
DO 24 I=l,IP 
KK=KK&1 
IFlM.GE.N'M=M-N 
KTABlKKl=M 

24 M=M&IMP 
C APPLICATION OF THOMAS PRIME SUCCESSI/ELY 

25 REAOl2'lYYlll,I=I,IPQ, 
M=O 
DO 350 11=1,IPQ,IQ 
K=lI-IP 
DO 110 L=I, IQ 
K=K&IP 
IFlK.GT.IPQ'K=K-IPQ 

110 XlLl=YY(Kl*RN 
C DATA SORTEO ON ENTRY FOLLOWING Y(I,K)-XlIQ*M&IP*PllM=O,IP-1SP=O,IQ- , ) 

JQ=M&IQ2 
DO 125 JJ=I,IHQ 
SINFI=SINQlJJ) 
COSFI=COSQlJJ) 
COSTH=COSFI&COSFI 

C THE NUMBER OF FACTORS TO BE EVALU~TEO MUST BE 000 
U2=0. 
Ul=X(IQl 
1=IQl 

120 UO=Xll'&Ul*COSTH-UZ 
U2=Ul 
Ul=UO 
1=1-1 
IFlI-l'121,121,120 

121 M=M&l 
AlM)=Xll)&COSFI*UI-U2 
BlM)=SINFI*Ul 

C SUBSTITUTING THE COMPlEX CONJUGATES 
JQ=JQ-l 
AlJQ,=AlM) 
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125 B(JQ)=-B(M) 
C RESETTING M 

M=M&IHC-l 
350 CONTINUE 

C END OF FIRST BLOCK. NOW WATT'S FOR~UlA IS APPLIEO TO COMPLEX COEFFI CIENTS 
MM=1 
DO 450 1I=I,IQ 
M=MM 
ML=M&IP 
L=O 
DO 360 K=II,IPQ,IQ 
L=L&l 
RA(L)=A(K) 

360 RB(L) .. B(K) 
JJ=1 
DO 395 JJ=I,IHP 
SINFI=SINP(JJ) 
COSFI=COSP(JJ) 
COSTH=COSFI&COSFI 
U2=0. 
Q2=O. 
Ul=RA(IPI 
Ql=RB(IPI 
I=IPl 

390 QO=RB(II&Ql*COSTH-Q2 
UO=RA(I)&COSTH*Ul -U2 
U2=Ul 
Q2=Ql 
Ul=UO 
Ql=QO 
1=1-1 
IFll-11391,391,390 

391 AR=RAlll&COSFI*Ul-U2 
BR=RBlll&COSFI*Ql-Q2 
AI=SINFI*Ul 
BI=SINFI*Ql 

C COMBINING THE REAL ANO IMAGINARY PA~TS 
WAlMI=CMPLXlAR-BI,BR&AII 
IFlJJ.NE.IIWAlMlI=CMPLX(AR&BI,BR-~II 

C STATEMENT TO SORT THE COMPLEX CONJU;ATE 
ML=ML-l 

395 M=M&1 
450 MM=MM&IP 

lGRUP=LGRUP&l 
WRITEl3I(WA(II,I=l,IPQ) 

C STORING THE FOURIER CO~FFICIENTS FRO~ THE SUCCESSIVE PASSES OH TAPE 
IF(lGRUP.lT.NFFT) GOTO 25 
NFT4=NFFT/4 
NFT2=NFT4&NFT4 
NSTOP=N/2&1 
INF4=MOOlINFT*NFT2,NI 
M ~ 1 
FACT=6.28318/NFFT 

C GENERATION OF COMPLEX MULTIPLIERS cOR F.F.T. 
00 151 I=1,NFT2 
ARG=FACT*INV(II 

151 WBETA(II=CMPLX(-COS(ARG),-SIN(ARGI) 
C NOTE THE CHANGE OF SIGN IN THE COHPLEX HUlTIPlIER TO FACILITATE THE 
C COMPUTATION 

ITAPE=3 
JTAPE=2 

Bolm Inst. oceanogr. S Paulo, 20 (2): 79-104, 1971 101 



NSTEP=NFTZ 
lPASS=O 

C INTIAlISE TAPE lABElS 
691 lPASS=lPASS&l 

REWINO ITAPE 
REWINO JTAPE 
lBlOC·O 
K=O 
GOTO 700 

695 REAO( ITAPE) 
100 REAO(ITAPE)(VA(I),1-1.IPQI 

REAO ( IT APE ) 
REAO(ITAPE)(WAlII,I·l,IPQ) 
lBlOC=lBLOC &1 
IF(LBLOC.EQ.NFT4)REWINO ITAPE 
K=K&1 
WBK=WBETA(K) 
IF(K.EQ.NSTEP)K=Q 

C BlOCK FOR OETERMINING THE COMPlEX MJlTIPLIER 
C COMBINING BLOCKS VIA F.F.T.AlGORITH~ 

815 DO 8Z0 1=1,IPQ 
Vl=VA(I) 
VA(II=WA(II&Vl 

820 WA(I)=(WA(II-V11*WBK 
C THE FORMULA IS CHANGEo SLIGHlLV WITi THE SIGN STOREO IN lHE COMPlEX 
C MULTIPLlER 

IF(LPASS.EQ.GAMAIGOTO 120 
WRIlE(JTAPE)(VA(I),I=l,IPQI 
WRITE(JTAPE)(WA(I),1=1,IPQ) 
IF(lBlOC.NE.NFT2IGOTO 695 
JFT=ITAPE 
ITAPE=JTAPE 
JTAP E= JFT 
NSTEP-NSTEP/2 
GOTa 691 

72 0 KK =(lBLOC-1)*INFT&1 
C OUTPUT SORTEo ACCOROING TO K.INFT*M~ & IMQ.II &IMP.JJ 
C MM=0,1,2 •••• NFFT-l),III=0,1,2 •••••• I J -ll.(JJ·0,1,2 •••••••• IP-ll 

KK =MOO(KK,N) 
DO 830 l=l,IPQ 
II=KTAB( I I&KK 
IF( I1.GT.N)II=II-N 
IF(II.lE.NSTOPIVV(III=VA(11 
JJ=II&INF4 
IF(JJ.GT.NIJJ=JJ-N 

830 IF(JJ.lE.NSTOPIVV(JJI=WAlII 
IFllBLOC.NE.NFT2IGOTO 695 
REWINo 2 
WRITE(ZI(VV(II,I=1,NSTOPI 
GOTO 301 

299 WRIT El6,6001 
bOO r URMAT(' P & Q FACTORS ARE NOT CJRRECT') 
301 CALL EXIT 

END 
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IMPLICIT COMPLEX(W) 
INTEGER*2VI695' 
OIMENSION WA(696',SINQ(10',COSQ(lJ',XI139',RA(5"X8f5' 

C METHOO-- ALGORITHM OF GENTLEMAN .ANO. SANOE USING THE OIFFERENCE MElHO D 
C OF WATT FOR REAL VAlUEO FOURIER SERI:S 

REAO(5,500'N,IP,IQ 
C OATA--N=NUMBER OF VALUES TO SE REAO.OUTPUT IS OF N/2 &1 FOURIER COEFFICIENTS 
C IP,IQ ARE THE FACTORS OF N, WHICH CA~ SE EVEN OR IOENTICAL 

500 FORMATI314, 
IPQ=IP*IQ 
FACT=6.2831B/IPQ 
IQ2=IO&2 
IP2=IP&2 
IPl=IP-l 
101=10-1 
IHP=( IP&l)!2 
1 HQ = ( I O & 1) /2 
IFIN.NE.IPQ,GOTO 299 
REAO(5,501'(V(I',I=l,N' 

501 FOR~AT(24I3' 
ARG=FACT*IP 
ANG=O. 
DO 10 J=l,IHO 
SINO(J,=SIN(ANG' 
COSO(J'=COS(ANG' 

10 ANG=ANG&ARG 
C END OF INITALISING THE SINE TASLES 

RN=2./N 
M=O 

C DATA SORTED ON ENTRV TO LOOP ANO WATI 'S PROCESS APPLIEO 
DO 350 11 = I, 1 P 
L=O 
DO 110 K=II,IPQ,lP 
L""L&1 

110 X(L,=V,K,*RN 
JQ=M&lQ2 
DO 125 JJ=l,IHQ 
COSFI=COSO'JJ' 
COSTH=COSFI&COSFI 
U2=0. 
Ul=X(IO' 
1=101 

120 UO=X(I'&COSTH*UI-U2 
U2=Ul 
U1=UO 
1=1-1 
IF(I.NE.l'GOTO 120 
M=M&1 
WA(M)=CMPlX(X(l'&COSFI*U1-U2,SINQ(JJ)*UL) 
JO=JQ-l 

125 W4( JO'=CONJG(WA(M" 
35v ~1. M &IHO-1 

C END OF FIRST BlOCK. NOW WATT'S FOR~ULA IS APPLIEO TO COMPlEX COEFFI CIENTS 
MM=1 

C INTIAlISING COlUMN ARGUEMENT DF TWI)OlE FACTOR 
ARGP=FACT*IO 
ARG=O. 
00 450 11=1,10 
M=MM 
L=O 
00 360 K=II,IPQ,IQ 

Be1m Inst. oceanogr. S Paulo, 20 (2): 79-104, 1971 103 



L=-ua 
RAIL)=REAL(WA(K» 

360 XB(L)=AIMAG(WA(K) 
C INITIALISE ROW ARGUEMENT OF TWlooLE FACTOR 

ANG=ARG 
DO 370 JJ=l,IP 
S INF I=S IN(ANG) 
COSFI=COS(ANG) 
COSTH=COSFI&COSFI 
U2=0. 
V2=O. 
Ul=RA(IP' 
Vl=XB(IP) 
I=IPl 

390 VO=XB(I'&COSTH*VI-V2 
UO=RAII)&COSTH*UI-U2 
U2=Ul 
V2=Vl 
Ul=UO 
V1=VO 
1=1-1 
IFll-l)391,391,390 

391 WA(M)=CMPLX(RA(I)&COSFI*Ul-SINFI*Jl-U2,SINFI*Ul&COSFI*Vl&XBfl)-V2) 
C COMBINING REAL ANO IMAGINARY PARTS 

WRITEf6,601)(I,WA(I),I=-l,N) 
M=M&IQ 

310 ANG=ANG&ARGP 
C INCREMENT ROW ARGUEMENT 

MM=MM&.l 
450 ARG=ARG&FACT 

( INCREMENT COLUMN ARGUEMENI 
WRITE(6,601)(I,A(I),B(I),I=I,N) 

601 FORMAT(4(lX,I4,IX,EI2.4,EIZ.4» 
29Y CALL EX IT 

ENO 
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