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SYNOPSIS

A technique is described for the rapid Fourier transform of large
series of numbers. The technique takes advantage of the fact that most
digital series are highly factorizable by the number 2, which permits
the use of the F.F.T. algorithm,.

Using two magnetic tape units, or alternatively magnetic disk fa-
cilities, very large series can be transformed efficiently with only
modest computer facilities,

For the transformation of odd-valued series the Thomas Prime-
Factor and Gentleman and Sande algorithms are treated in detail.

1 - GENERAL SURVEY ON FOURIER ANALYSIS

The Fourier transform has long been known to scientists for its wuseful-
ness in representing a variety of periodic phenomena. For continous signals

the transform pair may be written:

G(f) =[ g(t)e—izﬁftdt (la)

o0

g (t) =f sigeyetETEtaE (1b)

for a frequency f and time ¢ without finite limitations (i.e. -% <t <=, etc.).
In the particular example <cited above the Fourier transform permits the
representation of a function of time (g(t)) by a function in the frequency
domain (G(f)) and vice-versa; hence the mname of transform. It serves equally

to transform other domains such as wave-number and horizontal space.
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For earth scientists the obtention of continuous signals in machine-
processable form is usually prohibitively expensive and, for the majority of
applications, unnecessary. Consequently the continuous signal is usually
sampled at equal intervals of space or time, in which case a different form
of the Fourier transform is used, that is applicable to the discrete values
obtained by sampling. Called the Discrete Fourier Transform, or D.F.T., the

transform pair may be written, for N-valued series:

N-1 .
ROE) & (LD T o Ba)e TATKeAN (k=0,1,2,... N-1) (le)
n=0
N-1 .
c(n) = I, X(k)el2TE/N (n=0,1,2,... N-1) (1d)

An examination of the indexing shows that the number of mathematical
operations required to evaluate the D.F.T. of an N-valued series is propor-
tional to Nz. Consequently, for very large series the time and expense to
evaluate a D.F.T. become prohibitive. This, coupled with the fact that by
itself the D.F.T. has little significance 1in representing the signal of a
random '"noise'", caused the method to be overshadowed by other analytical
techniques with better computational speeds (e.g. convolution and spectral

analysis).

The D.F.T. had all the making of a mathematical dinosaur, when Cooley and
Tukey (1965) showed that a remarkable increase 1in computational speed can be
achieved if N is a highly factorizable number. Thus if N=rm, the D.F.T. can

be broken down into » separate D.F.T.'s of size " 2 etc.. Finally, one

arrives at an m-step algorithm, each step of which requires N.r operatioms.

It can be seen that the number of operations has been reduced sub-

stantially by a factor of r.m/N (viz: N2 versus N.r.m).

Franco (1970) has shown the process of the sub-division of the 1larger

D.F.T.'s into smaller ones for the case where N=2",

For binary digital computers the case where N=2" has important advantage
over other factors of r, both for multiplication economy and 1in addressing.
Accordingly the algorithms derived for N=2" both by Cooley and Tukey, and
Cooley and Sande, have acquired the name of the Fast Fourier Transform or

F.F.T.

The high computational speed of the F.F.T., has made it not only feasible
but also economically attractive, 1in terms of computer costs, to calculate
energy spectra and correlation functions via the F.F.T.

Franco and Rock (1971) have demonstrated the suitability of the F.F.T.
for the harmonic analysis of tides, where N=213=8192 hourly observations of
tidal heights, or nearly a years data. By the use of matrices, tidal com-
ponents centred at frequencies other than exact harmonics of the fundamental
frequency were successfully extracted. Further filtering produced both the

tidal and the residual energy spectrum.
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However the fact that the analysis is tied to a power of 2 1is a serious
drawback for many people. Few scientists are willing to neglect available data
and frequently better conditioned matrices,and better rejection of interfering
components may be obtained by an astute choice of N. Fortunately, if we are

willing to sacrifice computational speed,a more generalized form of the F.F.T.
may be derived.
2 - THE GENTLEMAN AND SANDE ALGORITHM

Let us consider the simplified case where N has a factor p, and having
obtained the D.F.T.'s of p separate series each of N/p numbers, we now require
the algorithm to combine p sets of N/p Fourier coefficients.

We may write the original D.F.T. ast!

N=-1
C(ﬂ) - kgo x(k).“Zan’N (n'O.I.Z,-..N'l) (Za)

or using the notation:
Wy o .-Zﬂifﬂ (2b)

N=1 Wl
e(n) = kao x(k)wN (n-O.I.z...-ﬂ-lj (26)
Now let k take the form k=(bp+]) { §=0,1,2,.00p"1
b=0,1,2,...(N/p)~1

m‘O.l.Z.--.P'l
and let n take the form n=(a+m(N/p)) {

.-°|1'2|--|(“KP)-1
We may now rewrite (2a) in terms of two separate summations:

p-1 (N/p)-1

c(a+m(N/p)) = jEO sk x(bp+j)wu(bp+j)(a*m(NfP)) (2d)

Note that if we write the original series X(k) as a two dimensional p{N/p)
array,the rearrangement of the data in equation (2d) corresponds to a row-wise

indexing instead of the column-wise indexing normally used in digital computers.

Wi ‘ng equation (2d) through, we get:
p-1 (N/p)-1
c(a+m(N/p)) = I, &0 x(bp+j)wu(bPl+3(l+m(NIp))+mbN)
p=1 (N/p)-1 mbN
- j;o bgo x(bp¢j)w:P'.H%(l+m(pr))-WN
but, according to (2b),
N P -27mi/(N/p)
“N =1 and HN = g H(va)
Thus rearranging
p-1 (N/p)=1
c(a+m(N;p)) - j;o wg(l+m(ﬂf9)) bao x(bp+j)"%;P (2‘)
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Cross-referring between the above equation and equation (2¢) it can be seen

that the innermost summation is already in the form of an N/p valued D.F.T.

(N/p)-1 i
Let B.(a) = LIy X(bpri)Wy

By reverting the indexing to the column-wise form, we create series, each

of p Fourier coefficients, and

=1

P .
clasm(N/p) = (I, B, (jug(2m/e)) (2£)

The complex multiplier of equation (2e) is more easily written:

j(a+m(N/p)) a .m,j
Wy (wu.wp)

since according to (2b):

N/p

WH Wp
from which it can be seen that the normal multiplier of the D.F.T. (viz: WEJ)
is multiplied by an additional <corrective factor w;J, called the "twiddle
by its originators Gentleman and Sande (1966), which serves to shift

factor"

the complex coefficients c¢yclically so that N/p and p may oe identical or
factorizable one by the another. When p=2 and N=2Y successive repetitions of

the algorithm make it formally similar to the F.F.T..
3 - THOMAS PRIME-FACTOR ALGORITHM FOR TWO FACTORS

If N can be expressed by

N = pq (3a)

where p and ¢ are prime with respect to one another, we can use this property

to eliminate the "twiddle factor'" by means of a suitable sequence.

As before we write:

N-1

e(n) = I, X(OUR® - (3b)

and put:

j=0,1,2... g-1
k = (jp+mq) Mod N (3e)
m=0,1,2... p-1

which defines the remainder of the 1interger division of (jp+mgq) by N. It is

possible to prove that k takes all the values in the interval

0<kg<N-1 (3d)
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The input data can thus be arranged as p sequences of g numbers. For p=7

and gq=3 an example of the two dimensional mapping of 21 numbers appears as in

Table 3-I.

TABLE 3-I - k = (7p+3q) Mod 21

m
5 0 1 2 3 4 5 6
0 0 3 6 9 12 15 18
1 7 10 13 16 19 1 4
2 14 17 20 2 5 8 11

Similarly we will suppose that output data sequence is represented in the

form:

g=0,1,2;..: p-1

n = (gI+hJ) Mod N B0, ls% v g=1 (3e)
where I and J are to be determined at our convenience.
Before replacing k and n in ng, by expressions (3e¢) and (3e) it is

convenient to derive a general expression for Wﬁ, according to the definition

of the operator Mod. 1If L is any integer so that
L = KM + B
where K is the quotient of the integer division of L by M, and B is the

remainder of that division, we have according to (2b):

L _ e-izﬂ(KH+B)!M

Wy

e-izﬂKe—iZwBIM B _ 4L Mod M

W (3£)

W M

Consequently

nk _ w(nk) Mod N
N

Wy

and from (3e) and (3e)

w“k =W [(jp+mq) Mod N (gI+hJ Mod N] Mod N
N N
or, according to Appendix I, formula (d):
Wtk o w}gjwmq)(gﬂhJ)
- wéjEPI+thJ+mng+mth)
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But, from (2b) and (3a) we have:

= W
q

WP = e-12ﬂpqu
N
and

W§ - e-i2ma/pq _ o

thus

wnl-:. = ngI.WJhJ.ngI.Hth

N q q p P (39)

Since we can choose I and J at our convenience, these factors may be chosen to

satisfy the following relationships:

I Mod q _ 0

UI = W W

q q q
wJ " wJ Mod q _ W

q q q (3h)
wk = L Mod p _ W

P P P
wJ i wJ Mod p w0

P P P

which means that I and J must be given by

I Mod q = 0 J Mod q = 1 (37)

I Mod p = 1 J Mod p = 0

thus, according to (3%), expression (3g) reduces to:
il b (34)

N q P

Consequently, by using (3e), (3b), (3e) and (3j) we can change (3b) into:

q-1 =1

i Ty jh mg
¢ | (g1+h3) Mod N | = ;2o 2o X[ (Gptma) Mod N | witWD

or

=3

q-1 s P ) .
- ijh . mg
¢ | (gI+hJ) Mod N | iZo 1 mko x| (ip+mq) Mod N | W

This expression can be split into two, by using a more suitable matrix

notation:
mg -
HWP ]|{Kj(m)} {aj(s)}

and

nghli{ag(j)} = {e ()
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Since we have g values of j and p values of g, there will be g groups of
values of aj(g), each one with p values.This is the result of the first step.
Now since we have p values of g and g values of % the result of the second
step will be p groups of values of cg(h) each one with g wvalues. In other
words we have ¢ analyses with a p x p matrix and p analyses with a g x g

matrix.

Table 3-II gives the output mapping for p=7 and q=3.

TABLE 3-II - n = (15g+7h) Mod 21

g
h 0 1 2 3 B 5 6
0 0 15 9 3 18 12 6
1 7 1 16 10 4 19 13
2 14 8 2 17 11 5 20

Another possibility exists to choose I and J so that

I Mod q = 0 J Mod q = q-1
I Mod p = p-1 J Mod p = 0

In this case it is easy to prove that the conjugates of c(n) are found, i.e.,
¢(N-n), for n=0,1,2, ... N-1. In other words the values of #n for p=7 and q=3
would be tabulated by subtracting the values of Table 3-I (except zero) from
21.

4 - THOMAS PRIME-FACTOR ALGORITHM FOR THREE FACTORS

If it is possible to split p into two mutually prime factors r and &, so

that
p = rs (b4a)

we have

N = rsq (4b)
and a new step can be added to the analysis. In fact we can make:

a=0,1,2,...5-1
m = (ar+bs) Mod p (be)
b=0,1,2,...r-1
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and

Em0.,1.,2,.0 0s®=1
n = (gI+hJ+IL) Mod N h=0,1,2,...5-1 (4d)
1=0,1,2,...q-1

where I, J and L may be chosen at our convenience.

We have from (3e) and (4e¢):
k = (jp+tmg) Mod N = {jp + [(ar+bs) Mod pJq} Mod N

After some Mod operator algebra (see Appendix I) this expression may be

changed into:

k = [j(rs) + a(rq) + b(sq)] Mod N (4e)

this expression gives the input mapping. For r=3, s=5 and q=4 we have the

result shown in Table 4-I.

TABLE 4-I - k = (15j + 1l2a + 20b) Mod 60
Input mapping for 3 factors = r=3, g=4, s=5

j =0 =1 =2 J =3

b

0 1 2 0 1 2 0 1 2 0 1 2

a
0 0 20 40 15 35 55 30 50 10 45 5 25
1 12 32 52 27 47 7 42 2 22 57 17 37
2 24 44 4 39 59 19 54 14 34 9 29 49 .
3 36 56 16 51 11 31 6 26 46 21 41 1
4 48 8 28 3 23 43 18 38 58 33 53 13
TABLE 4-II1 - n = (40g + 36h + 451) Mod 60
OQutput mapping for 3 factors = r=3, g=4, s=5
g=0 g = 1 g =2
1
0 1 2 3 0 1 2 3 0 1 2 3
h

0 0 45 30 15 40 25 10 55 20 5 50 35
1 36 21 6 51 16 1 46 31 56 41 26 11
2 12 57 42 27 52 37 22 7 32 1:7 2 47
3 48 33 18 3 28 13 58 43 8 53 38 23
4 24 9 54 39 4 49 34 19 44 29 14 59
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Now from (4d) and (4e) we can obtain:

ng = WN[j(rS) + a(rq) + b(sq)]31+hJ+lL)
rsI,jg rsJ, jh rsL,jl

rql, ag rqJ, ah rql,al
x (g7 %8 (g L gt

x (gdT)PE, (upddyPh, (ugalybl 4

But we have from (2b) and (4b):

rs _ e-iZTrrs/rsq-w
N q

Wit o e—12ﬁrq/rsq_ws
wsd - e—12waq/r5q=w
r
thus
s JgaT e Jha e 5
W = (W W W
( q) ( q) ( q)
I.ag,..J,ah , L;al
X (WS) (W) (W)

bl

»

I.bg, J.bh . L
(W) B )P )

Since we can choose I,J and L so that

I Mod =0 J Mod =0
e = I Mod qs = 0 1 =J Mod qr = 0
I Mod s =0 J Mod r =0
I Mod r = 1 J Mod s =
(4g)
L Mod s =0
= L Mod rs =0
L Mod r =
L Mod q =
it follows that
wgk = waz.wah.w:g (4h)
thus from (3b), (4d), (4e) and (4h) we obtain:
: qg-1 s-1 r-1 . 8 .
= . ji..ah
c| (g1+navin) Mod N| =z ro cro x{[iCrs) + ara) + b(sa) | Mod wiwltuIhE
or, by using a more suitable notation,
q-1 i 7 s-1 ik r—-1

2 j
cgh (B = 3Ip g ako s wko
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By using matrix notation this expression can be split into the following
formulae:
[ W281] (X, (0)) = {a;, (o))
W3 )] fay (@)} = Ly (0)) (42)
W3 H 11y gy (DY = Loy ()

If one of the factors is a power of 2, then the respective summation can be

treated by the F.F.T..

arranged accord-
c(n)
(See Tables 4-I

It may be noted that xja(b) represents the values of X(k)
ing to expression (4e) as 1input data; whereas cgh(l) are the values of
appearing in the output according to the order given by (4d).

and 4-I1 for a three dimensional mapping of input and output).

5 - APPLICATION TO TIDAL SPAN

The main objection to the method of tidal analysis via F.F.T. is that the

number of samples must be a power of 2.

cation)

which make

rections.

by the method here described.

so that the constituents

number of

it difficult to obtain the

says that the inter—tidal bands are contaminated by

noise level

without

In fact Cartwright (personal

communi-
tidal side bands

complicated cor-

Thus it may be useful to establish tidal spans which can be treated

cycles.

This
My, 854 K

Since we are not obliged to work with a whole number of days

can be done by choosing the number of days

and 0

accomplish

approximately a whole

we have used half a day every time a better approximation could be made.

TABLE 5-I1 — Tidal series

_Span Span T _—_, Number of cycles per series
in days in hours M2 S2 Kl 0l
15.0 360 5x9x8 28.984 30 15.041 13.943
29.0 696 29x3x8 56.036 58 29.079 26.957
58.0 1392 29%3x16 112.072 116 58.159 53.913
87.0 2088 29x9x8 168.108 174 87.238 80.870
104.5 2508 33x19x4 201.923 208 104.786 97.136
133.5 3204 29x27x4 2:57+959 267 133.866 124.093
162.5 3900 39x5x4 313.994 335 162.945 151.050
177 .5 4260 71x15x4 342.979 355 177.986 164.993
192.5 4620 35x33x4 371.963 385 193.027 178.936
2205 5292 49x27x4 460.066 441 221.103 204.963
235.5 5652 157x3x4 455.050 471 236.145 218.906
279.5 6708 43x39x4 540.070 559 280.265 259.805
297.0 7128 31x11x8 537.885 594 297.813 276.072
325.0 7800 39x25x8 627.929 650 325.890 - 302.099
355.0 8520 71x15x8 685.957 710 355.972 329.985
369.0 8856 41x27x8 713.009 718 370.010 342.999
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Table 5-I shows the figures in days and hours. The hours have been factor-
ized and the result is shown in the third column. Note that the last factor is
always a power of 2 which means that one of the steps can be worked out by the

Cooley-Tukey algorithm.

6 - NOTES ON COMPUTATION

In both the Thomas prime-factor and the Gentleman and Sande algorithm, the
smallest blocks of D.F.T.'s are formed using a very efficient algorithm due to
Watt (1959). The algorithm is a recurrence formula that requires only one sine

and cosine to evaluate a pair of Fourier coefficients.

Briefly for an argument 6 = 2mn/N (n=0,1,2,...N-1) ,wvhere N is the extent

of the series, the recurrence formula is

X, = Y(k) + 2 cos e.xk+1—xk+2 : (6a)

Y (k) being a real-valued series sampled at equidistant intervals
(k=0,1,2,...N-1).

Putting XN=0 and XN+1-0’ the formula is iterated N times and the nth har-

monic Fourier coefficients found from

. = (xo-xl cos 0)2/N

b = (X

" , sin 8)2/N

A fuller treatment of the method may be found in Cartwright and Catton
(1963).

The chief advantage of the Thomas prime-factor algorithm is the com-
putational speed gained by avoiding the use of the '"twiddle-factor" of the
Gentleman and Sande algorithm. It suffers in being restricted to only mutually
prime factors, being messy and bulky to program, and the need for extra memory

space to sort the output.

There exist at least two distinctive ways of programming the '"twiddle
factor" into the Gentleman and Sande algorithm. In equation (2f) for each of
the N/p series Ba(j) = (a=0,1,2,...(N/p-1)) the argument a of the "twiddle
factor wéa is equivalent to a phase-shifting of the complex multiplier

i
] i : 3 . 2 i ] +
w;m = wémN/p which necessitates a recalculation of the multiplier W;(a m(N/p))
for each series. However the method is extremely compact to program (see Ap-
pendix II) and, by sacrificing some of the speed of the calculation, can be
programmed so that the Fourier coefficients are calculated "in-place", or in
other words only one array is needed to store the data at any phase of the

computation.

On the other hand, to avoid <continuous recalculation of the '"twiddle
factor", if several sets of data will use the algorithm on the same computer
pass, the complex array wja can be calculated at the start of the program,

stored, and multiplied directly with the coefficients Ba(j).
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Bgn (0) Cgn (M
Bgn (4) }’ Cgn (2)
Bgn (2) , Cgn (3)
Bgn (6) i Cqn (4)
Bgn (1) \ Cqn (5)
Ben (5) : ¢ g (6)
Bgn (3) Cgn (7)
Bgn (7) ‘ Cqn (8)

-W -wz

FIG. 1 — signal flow - diagram for the F.F.T. treatment of g=2% blocks
of D.F.T. s size » x s.

The Watt sub-algorithm has been used as the basic building block of both
the Gentleman and Sande and the Thomas prime-factor algorithm. But the F.F.T.,
by a series of linear combinations, avoids the use of the sub-algorithm, and
can substitute the Watt algorithm with greater computational efficiency. More-
over, most series have a factor that is a power of 2 (especially time-series
due to the mnatural divisions of days, hours, minutes and seconds), which

suggests that a general purpose algorithm should take advantage of the F.F.T..

The use of the Thomas prime-factor algorithm in connection with the F.F.T.
is indicated; since with one factor even and the others -of necessity-odd,
there is a good possibility of finding at least three mutually prime factors.
An examination of equation (47) shows that if q=2™ the D.F.T. consists of

8 X q separate calculations of an r-size D. F. T., »r x q calculations
on an s-size D. F. T., and » X s calculations of a q=21 size F. F. T.
Leaving the Fq. F. T. stage until the last summation, allows combi-

nation via the F. F. T. to be effected in q=2® blocks of size r x 8. Note
that this is identically equal to r x 8 blocks of g-size of F.F.T., but in the
computer the former has computational advantages of speed and memory space.
Figure 1 shows the treatment of the q=2™ blocks by the F.F.T. algorithm, as a
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signal flow diagram (Cochran et al., 1967). Since the F.F.T. only requires
two blocks of data in the memory core at one time, the blocks of data for each
stage of the calculation can be stored either on magnetic disk or magnetic

tape.

The reader is referred to Cochran et al. (1967) and Franco (1970) for a
fuller discussion of the F.F.T. algorithm,

For reasons of convenience in the manipulation of magnetic tape, a par-
ticular form of the F.F.T. was selected, where the data enters in "bit- re-
versed"* order and the Fourier coefficients exit in natural order. A very
simple technique for <calculating bit-reversed numbers is presented in Table

6-I (E. Bergamini, 1968, personal communication).

TABLE 6-I — Generation of bit-reversed series

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21 4 0o 1
v ¥
2 -
2i02'13*
23+oz.26:1537¢
+ .
2y 0 8 4 12 2 10 6 14 1 9 55 13 3 11 7 15

NOTE: Each sucessive line 1is generated by doubling the sequence of the line
above. The odd sequence to the right of the dotted separator is formed
by adding one to the even sequence to the left of the separator.

Instead of arranging the blocks of data on magnetic tape in complete bit-
reversed order, the odd numbers are interposed with the even numbers of
sequence (viz: for a normal bit-reversed sequence 0,4,2,6,1,5,3,7, the order
becomes 0,1,4,5,2,3,6,7). 1Initially, every other block (i.e. even numbered)
is read from the first tape to form pairs for combination. The resulting pair
of blocks after combination are written 1in sequence onto a second tape. On
completion of the first half of the pass, the tape being read is rewound and
the process continued reading and combining those data blocks that were
skipped on the first half of the pass (i.e. odd numbers). Both tapes are
then rewound, their roles reversed and the process repeated for the second

pass. For r=2M the process has m such iterative stages.

7 - CONCLUSION

A very large data series that is highly factorizable by 2 can thus be

Fourier transformed very efficiently using very little computer memory core.

* By a bit-reversed number, one understands a number that when represented
in binary notation has its binary bits arranged in reverse sequence to that
of its natural equivalent.
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Problems arise from the bit-reversing of the data at the input and sorting
the out-put, both of which need additional memory core. Notwithstanding,
these problems ;an be over&ome either by the use of separate subprograms, or
the extensive use of magnetic disk. The optimum solution depends on the com-

puter configurationa

Although it appears feasible to program also the Gentleman and Sande
algorithm in conjunction with the F.F.T., there are no distinct advantages
in doing so and only in exceptional circunstances might programming effort

be justifiable.

RESUMO

Apresenta-se neste trabalho uma técnica de transformagao rapida de Fourier
aplicada a uma longa série de valores numéricos. A técnica tira partido do
fato de que a grande maioria das séries digitalizadas &, em geral, suscetivel
de fatoragao onde aparece frequentemente o fator 2, o que permite o emprego do

algoritmo da transformagao rapida de Fourier (F.F.T.).

Com o emprego de duas fitas magnéticas ou discos, pode ser efetuada efi-
cientemente a transformagEQ de longas séries em computadores de modesta memo-
ria.

0 algoritmo de fatores primos de Thomas e o de Gentleman e Sande sao,
respectivamente, tratados em detalhe, na transformagao de séries com numero

impar de valores.
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APPENDIX I

It is necessary to derive some general expression involving the operator

"Mod" in order to simplify expression (4f).

From the definition itself of A Mod N, it follows that

((((A Mod N) Mod N) Mod N ...))) = A Mod N (a)

Now, if a and f are the remainders of the division of integers A and B,

respectively, by N, we can write:

A =IN+ o —> o =A ModN (b)
= JN + B —— B = B Mod N
thus
AB = INJN + aJN + BIN + apf
but, if K is the quotient of the integer division of oB by N then
af = KN + v ———» vy = (aB) Mod N
and
AB = (INJ + aJ + BI + K) N + ¥y
thus
(AB) Mod N = y = (aBf) Mod N (e)
or, according to (b)
(AB) Mod N = | (A Mod N) (B /tod N)| Mod N (d)

From (b)

A+ B = (I + J) N+ (a+ B)

but, if M and a are the quotient and the remainder, respectively of the

division of o + R by N, it follows that

o+ B =MN + § —— & = (a + B) Mod N
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thus
A+ B = (IL+J+MNG+3S 6 > § = (A + B) Mod N
consequently
(A + B) Mod N = (a + B) Mod N (e)
or, according to (b)
(A + B) Mod N = (A Mod N + B Mod N) Mod N €

Finally, if
P<N

(g)
P Mod N = P

Expressions (a), (d), (f) and (g) are all we need to effect all the

developments.
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APPENDTIZX II

FLOW DIAGRAMS and COMPUTER PROGRAMS
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ELOW DIAGRAM-|
THOMAS PRIME FAGTOR ALGORITHM
FOR THREE FACTORS UTILISING
THEFRFT

READ BLOCK
OF R x §
NUMBERS

DECLARE

BIT-REVERSED
SEQUENCES

READ EXTENT
OF SERIES+FACTORS
Q. R,
READ SERIES 1
OF TIDAL MAG SBTAIN "E®
HETGHTS EARE FOURTER
1 COEFFS. VIA
WATT'S
PROCESS
R - 5UB
BLOCKS
1 PROCESSED
1
WRITE
BLOCKS 1N
INTERPOSED
B IT-REVERSED
e L
“§-syB
ILOCKS
REWIND
CALCULATE OBTAIN “R"™
SORTING FOURIER
FACTORS COEFFS. FROM
REAL
PART ATT'S
% PROCESS 1IN
+ ; THO PARTS
GENERATE S
SORTING OBTALN "R
55§:§"°5 COEFFS. FROM
NUMBERS THAG INARY
PART
GENERATE
(v Y72 NO SUB-BLOCKS
sines/ PROCESSED
COSINES =
GENERATE
(s+1} /2
SINES WRITE
L]
R XS
COSINES e
RIER

COEFFICIENTS

Q
BLOCKS
PROCESSED
T
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CALCULATE
COMPLEX
MULTIPLIERS
FOR F.F.T.

REALLOCATE
TAPE LABELS.
REWIND TAPES

FILE 1

SKIP

READ
SECOND
BLOCK

SELECT
COMPLEX
MULTIPLIER

COMBINE
THE TWO
BLOCKES
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FLOW DIAGRAM-|
(CONTINUED)

20 (2): 79-104, 1971

WRITE TWO
RESULTANT
BLOCKS

END
DATA
FILE

oF

COMBINATIONS
COMPLETE

M. STAGE ALL

PROCESS s STAGES

Q=" COMPLETE
1

— )

SORT OUTPUT
IN PAIRS
OF BLOCKS

1

WRITE
FOURIER
COEFFS

CALL EXIT
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FLOW DIAGRAM 2
GENTLEMAN 8 SANDE ALGORITHM

START
SELECT P
READ PAIRS OF
FOURIER COEFFS -
FACTORS COLUMNWISE
P, Q
GENERATE ADVANCE
Q SINE & COLUMN  ARGU-
COSINE MENT OF TWIDDLE
TABLE FACTOR
INITIALISE
READ INPUT
ROW ARGU
SERTES ARGUMENT
OF TWIDDLE

FACTOR

SELECT.
VALUES
ROW-WLSE

Q

ADVANCE
ROW  ARGUMENT

TWIDDLE FACTOR
+ A
SELECT
SINE/COSINE COMBINE
FACTOR RESULT TO
FORM PAIR
CALCULATE +
FOURTER
COE:;:I;T APPLY WATT'S
AT 'S PROCESS SEPARA-
1 TELY TO EACH
+ FOURTER/COEFF .
SUBSTITUTE
FOR COMPLEX
CONJUGATE 4
PAIRS OF
COEFFS CALC.
(Q+1)/2

PAIRS COEFFS
CALCULATED

SERIES OF

D.F.T.'S
CALC.
t

FOURIER
COEFFS

CALL EXIT
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IMPLICIT COMPLEX(VaW)
INTEGER*2Y(8856) ,BETA(8),INV(4) ,GAMA
INTEGER*2 KTAB(1107)
DIMENSION SINQ(21),C0S5SQ(21)sSINP(L&),COSP(14),X(41),WBETA(4),
1RA(41),RB(4])
DIMENSION VV(4528)
COMMON VA(1107),WA(1107),A(1108),3(1108),YY(1107),DUMNY(5733)
EQUIVALENCE (VA(1),Y(1)),(VVI(1),Al1))
DATA BETA,0|1'4|5l213I6i7,
DATA INV/042,1,3/
FAST FOURIER ANALYSIS OF TIDES ON YAGNETIC TAPE
USING THE THOMAS PRIME ALGORITHM IN CONJUNCTION WITH THE FFT
READ(5,500)NFFT,NDAYS,IQ,IP
DATA= NO. OF FFT'S =2%*%M, NO OF DAYS IN SEQUENCE,FACTORS OF DFT'S
WHICH SHOULD BE 0ODD
ARRAY (INV) IS BIT-REVERSED SEQUENC:= FOR 2#**(M-1) NUMBERS
ARRAY (BETA) IS INTERPOSED BIT-REVERSED SEQUENCE FOR 2%*%M NUMBERS
500 FORMAT(414)
IPQ=IP*1Q
LGRUP=0
GAMA=3
NT=IPQ*NFFT
N=NDAYS*24
IFIN.NE.NT)GOTO 299
RN=2./N
REWIND 2
REWIND 3
[E=0
c DATA SERIES READ AS AN INTEGER ARRAY
READ(54501)(Y(I),I=14N)
501 FORMAT (2413)
ISUM=0
DO 12 I=1.4N
12 ISUM=Y(I)EISUM
YSUM=ISUM
YSUM=YSUM/N
DO 14 II=1,NFFT
KK=BETA(II)*IPQ-NFFTE&EL
C STATEMENT TO HALF-BIT REVERSE SERIES
DO 13 L=1,1IPQ
KK=KKENFFT
IF(KKeGTN)IKK=KK=N
13 A(L)=Y(KK)=YSUM
14 WRITE(2)(A(I),I=1,1IPQ)
C DATA STORED ON TAPE FOR SUCCESSIVE PASSES OF THOMAS PRIME ALGORITHM
REWIND 2
FACT=6.28318/1PQ
IPQ1=1IPQ-1
1Q2=1Q&2
IP2=1P&2
101=1Q-1
Iki=IP-1
C GENERATE SINE AND COSINE TABLES
ARG=FACT=*IP
ANG=0.
IHQ=(1Q&1) /2
DO 10 J=1,1IHQ
SINQ(J)=SIN(ANG)
C0SQ(J)=COS(ANG)
10 ANG=ANGEARG
ARG=FACT*IQ

o000 0o
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ANG=0.
IHP=(IPE&EL1) /2
DO 20 J=1,IHP
SINP(J)=SIN(ANG)
COSP(J)=COS(ANG)
20 ANG=ANGEARG
C CALCULATE TRIPLE SORTING FACTORS
NP=NFFT*IP
NQ=NFFT*1Q
IMP=E1
6 IMP=IMPEIP
IF(MOD(IMP,NQ) .NE.O)GOTD &
IMQ=61
7 TMQ=IMQEIQ
IF{MOD(IMQ,NP).NE.O)GOTO 7
INFT=E1
8 INFT=INFTENFFT
IF(MOD(INFT,IPQ).NE.O)GOTO 8
c INFT IS DEFINED BY MOD(INFT,NFFT)=1 AND ALSO MOD(INFT,I1P*IQ)=0 ETC.
MM==1MQ
KK=0
Cc CONSTRUCT SORTING TABLE FOR EACH BLICK
DO 24 J=1,1Q
MM=MME IMQ
IF(MM.GE.N)MM=MM-N
M=MM
DO 24 I=1,1P
KK=KKE1
IF{M.GE.N)M=M=N
KTAB(KK)=M
24 M=MEIMP

C APPLICATION OF THOMAS PRIME SUCCESSIVELY
25 READ(2)IYY(I),I=1,1IPQ)
M=0
DO 350 1I=1,1IPQ,I1Q
K=ILI-IP
DO 110 L=1,1IQ
K=KEIP

IF(K.GT.IPQ)K=K-1PQ
110 X(L)=YY(K)*RN
c DATA SORTED ON ENTRY FOLLOWING Y(I,K)=X{IQ*MEIP*P)(M=0,1P-18P=0,1Q- )
JQ=MEIQ2
DU 125 JJ=1,1HQ
SINFI=SINQ(JJ)
COSFI=C0SQ(JJ)
COSTH=COSFI&COSFI
c THE NUMBER OF FACTORS TO BE EVALUATED MUST BE 0ODD
u2=0.
ul=x(1IQ)
I=1Q1
120 UO=X(I)E&UL*COSTH-U2
uz2=uUl
ul=uo
I=I-1
IF(I-1)121,121,120
121 M=ME&1l
A(M)=X(1)ECOSFI*Ul-U2
B(M)=SINFI*Ul
c SUBSTITUTING THE COMPLEX CONJUGATES
JQ=JQ-1
A(JQ)=A(M)
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125 B(JQ)==-B(M)

C RESETTING M
M=MEIHQ-1

35C CONTINUE

C END OF FIRST BLOCK. NOW WATT®S FORMULA IS APPLIED TO COMPLEX COEFFICIENTS
MM=1
DO 450 II=1,IQ
M=MM
ML=MEIP
L=0
D0 360 K=I1,1PQ,I1Q
L=LEL
RA(L)=A(K)

360 RB(L)=B(K)
JJ=1
DO 395 JJ=1,IHP
SINFI=SINP(JJ)
COSFI=COSP(JJ)
COSTH=COSFI&COSFI
uz2=0.
Q2=0.
Ul=RA(IP)
Ql=RB(IP)
I=IP1
390 QO=RB(I)E&EQ1*COSTH-Q2
UO=RA(T)ECOSTH*Ul -U2
u2=ul
Q2=01
ul=uo
Q1=Qu
I=1-1
IF(I-1)391,391,390
391 AR=RA[1)E&COSFI*Ul-U2
BR=RB(1)&COSFI*Q1-Q2
AI=SINFI*Ul
BI=SINFI*Ql

c COMBINING THE REAL AND IMAGINARY PARTS
WA(M)=CMPLX({AR-BI,BREAI)
IF(JJ.NE.1)WA(ML)=CMPLX{AREBI,BR-AI)

c STATEMENT TO SORT THE COMPLEX CONJU5ATE
ML=ML-1

395 M=M&l

45U MM=MMEIP
LGRUP=LGRUPE1
WRITE(3)(WA(I),I=1,1PQ)

C STORING THE FOURIER COEFFICIENTS FROY THE SUCCESSIVE PASSES ON TAPE
IF(LGRUP.LT.NFFT) GOTO 25
NFT4=NFFT/4
NFT2=NFT4ENFT4
NSTOP=N/2E&1
INF4=MOD(INFT®NFT24N)

MM 1
FACT=6.28318/NFFT
c GENERATION OF COMPLEX MULTIPLIERS “OR F.F.T.
DO 151 I=1,NFT2
ARG=FACT=®INVI(I)

151 WBETA(I)=CMPLX(-COS(ARG)s—SIN(ARG))
NOTE THE CHANGE OF SIGN IN THE COMPLEX MULTIPLIER TO FACILITATE THE
COMPUTATION

[TAPE=3
JTAPE=2

o0
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NSTEP=NFT2
LPASS=0
C INTIALISE TAPE LABELS
691 LPASS=LPASSEl
REWIND ITAPE
REWIND JTAPE
LBLOC=0
K=0
GOTO 700
695 READ(ITAPE)
700 READ(ITAPE)(VA(I),.I=1,1PQ)
READ(ITAPE)
READ(ITAPE) (WA(I)I=1,1PQ)
LBLOC=LBLOC &1
IF(LBLOC.EQ.NFT4)REWIND ITAPE
K=K&l
WBK=WBETAI(K)
IF(K.EQ.NSTEP)K=0
Cc BLOCK FOR DETERMINING THE COMPLEX MJLTIPLIER
C COMBINING BLOCKS VIA F.F.T. ALGORITHH4
815 DO 820 I=1,IPQ
Vi=VAI(I)
VA(I)=WA(I)EV1
820 WA(TI)=(WA(I)=-V1)*WBK
c THE FORMULA IS CHANGED SLIGHTLY WIT4 THE SIGN STORED IN THE COMPLEX
c MULTIPLIER
IF(LPASS.EQ.GAMA)GOTO 720
WRITE(JTAPE)(VA(T)sI=1,1IPQ)
WRITE(JTAPE) (WA(IL),I=1,1PQ)
IF(LBLOC.NE.NFT2)GOTO 695
JFT=ITAPE
ITAPE=JTAPE
JTAPE=JFT
NSTEP=NSTEP/2
GOTO 691
720 KK=(LBLOC-1)*INFTEL
C OUTPUT SORTED ACCORDING TO K=INFT*M4 & IMQ*II EIMP%*JJ
C MM*O|1:2...¢NFFT-1!II!I'DIIOZictoa.!J-lli(JJ‘O,I'Z.---....IP-II
KK=MOD(KK,N)
DO 830 I=1,1PQ
II=KTAB(I)E&KK
IF(II.GT.N)II=II-N
IF(II.LE.NSTOP)VVIII)=VAI(I)
JJ=ITIEINF4
IF(JJ.GT.N)JJ=JJ-N
B30 IF(JJ.LE.NSTOP)IVVIJJ)=WALI)
IF(LBLOC.NE.NFT2)GOTO 695
REWIND 2
WRITE(2)(VV(I),I=1,NSTOP)
GOTO 301
299 WRITE(6,600)
600 rURMAT(®* P & Q FACTORS ARE NOT CIRRECT')
301 CALL EXIT
END
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IMPLICIT COMPLEX(W)
INTEGER*2Y([695)
DIMENSION WA(696),SINQ(TO0),COSQ(72)4X(139),RA(5),XB(5)
(o METHOD-- ALGORITHM OF GENTLEMAN AND SANDE USING THE DIFFERENCE METHOD
C OF WATT FOR REAL VALUED FOURIER SERI:S
READ(5,500)N,IP,IQ
DATA--N=NUMBER OF VALUES TO BE READ, OUTPUT IS OF N/2 &1 FOURIER COEFFICIENTS
IP,1IQ ARE THE FACTORS OF N, WHICH CAN BE EVEN OR IDENTICAL
500 FORMATI(314) )
IPQ=IP*]Q
FACT=6.28318/1PQ
1Q2=1Q&2
IP2=1P&2
IP1=1P-1
IQ1=1Q-1
IHP=(IPE1)/2
IHQ=(1Q&1l)/2
IFIN.NE.IPQ)GOTO 299
READ(5,501)(Y(I)yI=14N)
501 FORMAT(2413)
ARG=FACT*]IP
ANG=0.
DO 10 J=1,1IHQ
SINQ(J)=SIN(ANG)
COSQ(J)=COS(ANG)
10 ANG=ANGEARG
c END OF INITALISING THE SINE TABLES
RN=2./N
M=0
C DATA SORTED ON ENTRY TO LOOP AND WATI 'S PROCESS APPLIED
DO 350 I1I=1,IP
L=0
DO 110 K=II,IPQ,IP
L=LEL
110 X(L)=Y(K)*RN
JQ=M&IQ2
DO 125 JJ=1,1IHQ
COSFI=C0SQ(JJ}
COSTH=COSFI&COSFI
u2=0.
ul=x(1Q)
I=1Q1
120 UO=X(T)&COSTH*Ul-U2
uz2=uUl
ul=uo
I=1-1
IF(I.NE.1)GOTO 120
M=ME1
WA(M)=CMPLX({X(1)&COSFI*U1-U2,SINQ{ JJ)*U1l)
JQ=JQ-1
125 WA(JQ)=CONJG(WA(M))
350 t+ M&IHQ-1
C END OF FIRST BLOCK. NOW WATT®S FORYULA IS APPLIED TO COMPLEX COEFFICIENTS
MM=1
c INTIALISING COLUMN ARGUEMENT OF TWIDDLE FACTOR
ARGP=FACT*IQ
ARG=0.
DO 450 11I=1,1Q
M=MM
L=0
DO 360 K=II,IPQ,IQ

a0
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L=LEL
RA(L)=REAL(WA({K))
360 XB(L)=AIMAG(WA(K))

c INITIALISE ROW ARGUEMENT OF TWIDDLE FACTOR

ANG=ARG
DO 370 JJ=1,1P
SINFI=SIN(ANG)
COSFI=COS(ANG)
COSTH=COSFI&COSFI
uU2=0.
v2=0.
Ul=RA(IP)
V1=XB(IP)
I=IP1

390 VO=XB(I)E&COSTH*Vl-V2
UO=RA(I)E&COSTH*ULl-U2
u2=ul
V2=Vl
ul=uU0
V1i=Vo0
I=1-1
IF(I-1)391,391,390

391 WA(M)=CMPLX(RA(1)ECOSFI*UL-SINFI*/1~ UZ.S!NFI*UI&CDSF!*Vl&XBIII-VZI

C COMBINING REAL AND IMAGINARY PARTS
WRITEl6,601)(I4WA(I),I=1,4N)
M=MEIQ

370 ANG=ANGEARGP

C INCREMENT ROW ARGUEMENT

MM=MME1
450 ARG=ARGEFACT

C INCREMENT COLUMN ARGUEMENT

WRITE(64601L)(I14A(1)«B(I)sI=1,4N)
601 FORMAT(4(1X;1441XsEL2.44EL12.4))
299 CALL EXIT

END

Bolm Inst. oceanogr. S Paulo, 20 (2): 79-104, 1971

104



