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INTRODUCTION

The genus Baccharis (Asteraceae) includes 435 
species distributed mainly in South America (Flora do 
Brasil, 2018). Baccharis species produce essential oils 
(EOs) and are used for pharmaceutical purposes and in 
the fragrance industry. Baccharis species EOs mainly 
comprise monoterpenoids and sesquiterpenoids, and 

several studies have focused on the identification of their 
constituents and associated biological activities (Budel et 
al., 2012; Bogo et al., 2016; Campos et al., 2016). 

Biological activity assays are of fundamental 
importance in the screening of plants and their 
constituents. Toxicological tests complement biological 
assays (Maciel et al., 2002) and can be conducted 
commercially under the Administrative Rule 116/1996 
of the Health Surveillance Secretariat of the Brazilian 
Ministry of Health (Brasil, 1996), which regulates 
chronic and acute toxicity studies for herbal products, or 
as necessary validation for technological development 
(Sonaglio et al., 2007). Thus, preliminary biological tests 
are used to determine the potential biological activities 
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and toxicities of such products, and indicate the need for 
more specific tests. Preliminary tests are excellent tools in 
studies with medicinal plants, and should be implemented 
as they contribute to decreasing the use of experimental 
animals, which has been a concern of ethics committees 
in animal experimentation (Bednarczuk et al., 2010).

Several biological activities have been reported for 
the EOs of Baccharis species, including anti-inflammatory 
(Florão et al., 2012), insecticidal (Chaaban et al. 2017), 
antibacterial (Abad; Bermejo, 2007; Negreiros et al., 2016; 
Pereira et al., 2016), cytotoxic (Búfalo et al., 2010; Pereira 
et al., 2017), and antiulcerogenic (Massignani et al., 2009).

Baccharis erioclada DC., popularly known as 
“vassoura-lageana”, is a shrub with leaves that are 
sessile, pinnatinervate, and oblong, with an obtuse apex, 
attenuated base, and dentate margin above the middle of 
the leaf blade (Bobek et al., 2015). As observed in other 
Baccharis species, the EO of B. erioclada is stored in 
secretory ducts and glandular trichomes (Bobek et al., 
2015; Budel et al., 2018).

Biological activities are exerted by chemical 
components present in the EO (Barbosa, Filomeno, 
Teixeiro, 2016). However, the composition of the EO may 
differ as a result of edaphic and environmental factors, 
volatile oil extraction methods, and storage conditions 
(Brooker, Kleinig, 2006; Lemos et al., 2012). 

Considering the differences in the chemical 
composition of volatile oils sourced from different 
locations and the biological activities of Baccharis 
species, the aims of this study were to characterize 
the EO composition of B. erioclada collected in Ponta 
Grossa, Paraná, Brazil, and to assess its antioxidant, 
antimicrobial, and hemolytic activities. To the best of our 
knowledge, there are no previous studies investigating 
the biological activities of B. erioclada EO.

MATERIAL AND METHODS

Plant material

The aerial parts (stems, leaves, and f lowers) 
from B. erioclada DC. were collected in the region of 

Campos Gerais, Ponta Grossa, Paraná, southern Brazil 
(coordinates: 25° 08’ S and 50° 27’ W) during the 
summer of 2013. Plant identification was performed by 
the botanist Dr Gustavo Heiden (Embrapa - RS), and 
voucher specimens (ICN 20412) were registered at the 
herbarium of the State University of Ponta Grossa.

 EO extraction 

The EO was extracted from 100 g of dried aerial 
parts of B. erioclada that were ground using a knife 
mill and subjected to hydrodistillation in a modified 
Clevenger-type apparatus for 6 h. The EO was stored in 
a sealed amber jar glass at -18 °C ± 0.5 °C in the dark. EO 
yield was expressed as the percentage (volume/weight, 
v/w) of essential oil per 100 g of dried leaves (United 
States Pharmacopeia (USP), 2002).

Gas chromatography-mass spectrometry (GC-MS) 
analysis

B. erioclada EO was analyzed via GC-MS using a 
Shimadzu GC-MS-QP 2010 Plus analyzer (Shimadzu 
Corp., Kyoto, Japan) equipped with a Rtx-5MS (30 m 
× 0.25 mm × 0.25 μm) using splitless injection at 250 
°C, and an ion source and interface at 300 °C. The mass 
range was m/z 40 to m/z 350, and helium was used as 
the carrier gas. Ramp injection temperature was set at 
250 °C, the column pressure was 20 psi, starting at 50 
°C for 5 min and increasing to 200 °C at a rate of 5 °C/
min. Identification of EO components was based on the 
comparison of Kovats retention indices and mass spectra 
with those reported in the National Institute of Standards 
and Technology (NIST) library, as well as those described 
in the literature (Adams, 2007). Analysis was carried 
out at the Federal University of Paraná and results are 
listed in Table I.
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TABLE I - Chemical compounds identified via gas chromatography-mass spectrometry (GC-MS) analysis of the essential oil 
(EO) of Baccharis erioclada

Compounds* Chemical class RI % RA Identificationc

Limonene M 1029 0.17 RI, MS

trans-pinocarveol OM 1139 1.29 RI, MS

Pinocarvone OM 1164 0.71 RI, MS

Terpien-4-ol OM 1177 0.33 RI, MS

α-Terpineol OM 1188 0.50 RI, MS

Myrtenol OM 1195 2.89 RI, MS

trans-Carveol OM 1216 0.73 RI, MS

Carvone OM 1243 0.97 RI, MS

α-Ylangene S 1375 0.62 RI, MS

β-Bourbonene S 1388 0.79 RI, MS

(E)-Caryophyllene S 1419 1.15 RI, MS

α-Humulene S 1454 0.29 RI, MS

γ-Gurjunene S 1477 0.25 RI, MS

γ-Himachalene S 1482 0.55 RI, MS

α-Vetispirene S 1490 0.44 RI, MS

Viridiflorene S 1496 0.74 RI, MS

α-Muurolene S 1500 0.63 RI, MS

Epizonarene S 1501 0.18 RI, MS

δ-Cadinene S 1523 1.56 RI, MS

α-Calacorene S 1545 0.81 RI, MS

Palustrol OS 1568 1.01 RI, MS

Dihydro-ar-turmerone OS 1595 27.96 RI, MS

Fokienol OS 1596 13.47 RI, MS

Ledol OS 1602 9.78 RI, MS

Sesquithuriferol OS 1605 2.16 RI, MS

1-epi-Cubenol OS 1628 0.88 RI, MS

α-Cadinol OS 1654 0.71 RI, MS

Gymnomitrol OS 1660 2.63 RI, MS

α-Santalol (7) OS 1675 5.35 RI, MS

Ishwarone OS 1681 1.57 RI, MS

n-Tetracosane AH 2400 0.48 RI, MS

Total (identified) 81.60
(continues on the next page...)
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TABLE I - Chemical compounds identified via gas chromatography-mass spectrometry (GC-MS) analysis of the essential oil 
(EO) of Baccharis erioclada

Compounds* Chemical class RI % RA Identificationc

(M) Monoterpenoid hydrocarbon (1) 0.17%

(OM) Oxygenated monoterpenoid (7) 7.42%

(S) Sesquiterpenoid hydrocarbon (12) 8.01%

(OS) Oxygenated sesquiterpenoid (10) 65.52%

(AH) Alkane hydrocarbon (1) 0.48%
*Name of compounds according to Adams, 2007. RI, retention index, relative to n-alkanes on capillary column; RA, relative 
area (peak area relative to the peak area), compared with RI reported in the literature; MS, mass spectra, compared with those 
reported in MS libraries). 

EO antioxidant activity 
Formation of the phosphomolybdenum complex 
method

The EO and standards (ascorbic acid and rutin) were 
diluted in methanol to a concentration of 200 μg/mL, and 
the method used was previously described by Prieto et 
al. (1999). The EO (300 μL) was diluted in 1 mL reagent 
solution (0.03 M ammonium molybdate, 0.1 M sodium 
phosphate, and 3 M sulfuric acid) and made up to 100 mL 
with distilled water. The tube was sealed and transferred 
to a water bath at 95 °C for 90 min. It was then cooled 
to room temperature (25 ± 30 °C), and absorbance was 
measured at 695 nm. The AA% relative to ascorbic acid 
was calculated using the following formula:

AA% compared to ascorbic acid = [(Asample - Ablank)/
(Acontrol) - (Ablank)] × 100

Where Asample is the absorbance of the test compound, 
Ablank is the absorbance of the blank, and Acontrol is the 
absorbance of ascorbic acid.

Reducing antioxidant power method

The reducing antioxidant power assay, also known 
as the Prussian blue assay, was performed in 25-mL test 
tubes containing 200 μg/mL B. erioclada EO. Potassium 
phosphate buffer (pH 7.0, 0.2 M) and 1.0% potassium 

ferricyanide were added. The mixture was incubated at 
45 °C for 20 min, before the addition of 1% trichloroacetic 
acid. Approximately 2.5 mL was transferred to 5-mL test 
tubes, and 1.5 mL distilled water, 1.0 mL ethanol, and 0.5 
mL FeCl3 were added adjust the concentration to 1.0% 
(w/v). Absorbance was then measured at 700 nm using a 
spectrophotometer (Yen, Chen, 1995; Morais et al., 2006).

Thiobarbituric acid reactive substances (TBARS) 
method

Antioxidant activity assessment was performed 
according to the method described by Morais et al. 
(2006). The following were added to a test tube: 0.1 mL of 
a 0.3% sample solution in ethanol, 0.4 mL water, 0.5 mL 
5% (w/v) egg yolk solution previously prepared in 0.55% 
sodium dodecyl sulfate (SDS), 50 μL 0.035% 2,2’-azo-bis-
2-amidinopropane chloride (ABAP), 1.5 mL 20% acetic 
acid (pH 3.5), and 1.5 mL 0.4% thiobarbituric acid (TBA) 
also prepared in 0.55% SDS solution. The tubes were kept 
in a water bath at 95 °C for 1 h. After cooling the solution, 
1.5 mL 1-butanol was added to extract the organic phase, 
and the tubes were centrifuged at 3000 rpm for 5 min. 
Absorbance of the supernatant was measured at 532 nm 
in triplicate using a spectrophotometer, and 1-butanol was 
used as a blank. The same solution was used as a positive 
control and the sample was replaced with 0.1 mL of 0.3% 
butylated hydroxytoluene (BHT) in ethanol. The same 
solution was used as a negative control and the sample 
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was replaced with 0.1 mL ethanol. The antioxidant index 
(IA) of the samples was calculated as a percentage (IA%) 
according to the following equation:

IA% = [1 - (Asample - Ablank)/Acontrol] x 100

Where, Asample = sample absorbance, Ablank = blank 
absorbance; Acontrol = control absorbance

Antibacterial activity

All assays were performed in triplicate using the 
following strains: Staphylococcus aureus (ATCC 25923), 
Escherichia coli (ATCC 25922), Pseudomonas aeruginosa 
(ATCC 10145), and the yeast fungus Candida albicans 
(ATCC 10231). The EO was prepared in 0.5% polysorbate 
80 and filtered through a 0.22-μm Millipore membrane 
(Merck Millipore, Burlington, MA, USA) to guarantee 
its sterility. Inoculation was performed by diluting three 
to four colonies of the isolated strains in saline solution 
to obtain a turbidity equivalent to 0.5 on the McFarland 
scale. The minimum inhibitory concentration (MIC) was 
determined via broth microdilution method (Lima, Luna, 
Santos, 2006; Santos et al., 2007).

Tests were performed in a sterile, 6-well, “sensitive 
microtiter”, enzyme-linked immunosorbent assay 
(ELISA) plate containing Mueller Hinton broth. EO (20 
μL, 250-2000 μg/mL) was added to each well containing 
170 μL Mueller Hinton broth and 10 μL microorganism 
suspension, to obtain a final volume of 200 μL in each 
well. Controls included broth only, broth with bacteria, 
and broth with 10 mg/mL chlorhexidine (Merthiolate®). 

Plates were incubated at 35 °C for 24 h. Absorbance 
was measured at a wavelength of 650 nm using an ELISA 
plate reader. Results were expressed as MIC, representing 
the lowest concentration of the extract capable of 
preventing ≥90% microbial growth.

In vitro hemolytic activity

This method was carried out following the 
protocol reported by Banerjee et al. (2008) with 
some modifications. Lamb blood was purchased 
from Newprov® and was lightly homogenized before 

transferring 5 mL to a test tube for centrifugation for 5 
min at 3000 rpm. The supernatant was discarded, and the 
remaining solution was washed with ice-cold phosphate-
buffered saline (PBS). This process was repeated until 
the supernatant was completely clear. The erythrocyte 
pellet was diluted with PBS to obtain a 2% dilution. For 
the hemolysis test, the EO was used at concentrations 
of 100-1000 μg/mL and the samples were diluted with 
10% methanol and PBS. A solution comprising 200 μL 
PBS in 200 μL 2% erythrocyte solution was used as a 
negative control, and the positive control comprised 200 
μL distilled water with 200 μL 2% erythrocyte solution. 
For the solvent control, 20 μL methanol and 180 μL PBS 
were added to 200 μL 2% erythrocyte solution. 

This analysis was carried out in Eppendorf tubes 
containing samples and controls (200 μL) and 200 μL 
2% erythrocyte solution. The tubes were manually 
homogenized via gentle shaking and incubated for 3 h 
at 37 °C. Subsequently, they were centrifuged at 3000 rpm 
for 5 min. The supernatant was transferred to a 96-well 
ELISA plate, and absorbance was measured at 540 nm. 
Duncan’s test (Duncan, 1955) was used to compare the 
means of the activity indices (IA%). Differences were 
considered statistically significant if p < 0.05.

RESULTS AND DISCUSSION

Yield and chemical composition of the EO

In the present study, the chemical composition of 
the EOs and their biological activities were investigated. 
The EO from the aerial parts of B. erioclada had a light-
yellow color, characteristic aroma, and lower density than 
water. The yield was 0.4%, relative to the weight of the 
dry material. The yield of EOs from Baccharis species 
is not high, and ranged from 0.17% for B. megapotamica 
Spreng. and B. anomala DC. (Budel et al., 2012), to 0.5% 
for B. articulata (Lam.) Pers., and 0.3% for B. oxyodonta 
DC. (Agostini et al., 2005).

The GC-MS analysis of EOs led to the identification 
of 31 different compounds (Table I), representing 81.60% 
of the total EO components of the aerial parts of B. 
erioclada. The principal class of compounds represented 
was the sesquiterpenoids, comprising oxygenated 



Page 6/10 Braz. J. Pharm. Sci. 2022;58: e19118

Vanessa B. Bobek, Luiza S. Cruz, Camila F. Oliveira, Fernando C. M. Betim, Juliane N. D. Swiech,  
Daniela G. Folquitto, Carmen A. S. Ito, Jane M. Budel, Sandra M. W. Zanin, Josiane F. P. Paula, Obdúlio G. Miguel

sesquiterpenoids (62.52%) and sesquiterpenoid 
hydrocarbons (8.01%). These are also the principal 
compounds of the EOs of several Baccharis species (Lago 
et al., 2008; Budel et al., 2012; Bogo et al., 2016; Campos 
et al., 2016; Pereira et al., 2016). However, Agostini et 
al. (2005) observed a predominance of monoterpenoids 
in the EO of Baccharis uncinella.

In the present study, turmerone (27.97%), fokienol 
(13.47%), ledol (9.78%), and santalol (5.35%) were the 
principal compounds identified in the EO of B. erioclada. 
However, a different chemical composition was identified 
for specimens of this species collected in Campos do 
Jordão, São Paulo (female/male): β-pinene (21.44%/1.16%), 
limonene (15.16%/2.68%), β-caryophyllene (4.21%/10.70%), 
and spathulenol (6.61%/12.57%; Ferracini et al., 1995). 
Although the chemical composition is related to seasonal 
conditions and environmental influences (Heinzmann, 
Spitzer, Simões, 2017), the link between variations in the 
composition of the EO and different chemotypes of B. 
erioclada should be investigated. 

In this context, a different chemical composition was 
identified in three samples of B. milleflora (Pereira et al., 
2016). Spathulenol was present in two samples (16.2% 
and 25.3%), and β-pinene was present in the third sample 
(34.2%). The principal compounds identified in the EO of 
B. dracunculifolia DC. and B. uncinella DC., α-pinene and 
E-nerolidol, were present at levels between 18.76-27.45% 
and 12.96-14.02%, respectively (Fabiane et al., 2008). 
However, Boix et al. (2010) identified verbenone (10.1%), 
myrcene (10.2%), 1,8-cineol (10.4%), and camphor 
(25.2%) as the principal compounds of B. dracunculifolia. 
These differences in chemical composition reinforce the 

importance of characterizing essential oils via GC-MS 
to establish a correlation between chemical composition 
and biological activities.

Furthermore, the EO of B. erioclada contains four 
major compounds in higher concentration than others, 
which are present only in trace amounts, and these 
compounds are fundamental for the pharmacological 
actions of other compounds (Bakkali et al., 2008; Galindo 
et al., 2010). The principal compound identified in the 
EO of B. erioclada was turmerone, which has shown 
antifungal activity against Aspergillus flavus (Ferreira 
et al., 2013) and larvicidal activity against the malaria 
vector Anopheles gambiae (Ajaiyeoba et al., 2008).

EO antioxidant activity 

It is important to investigate the antioxidant potential 
from EOs, as these compounds possess the ability to 
stabilize free radicals and other reactive oxygen species, 
which, when present in the organism, may lead to several 
cellular changes related to various diseases, including 
heart disease, cancer, diabetes, and Alzheimer’s disease 
(Miguel, 2010; Li, Wang, Luo, 2012). 

The effects of the antioxidant activity of the EO 
from the aerial parts of B. erioclada on reduction of 
the phosphomolybdenum complex, lipid peroxidation 
(TBARS), and reducing power (Prussian blue) were 
evaluated (Table II). However, few studies regarding 
the antioxidant activity of the EO of Baccharis species 
are available, in comparison to those involving extracts 
and fractions, thus highlighting the need to carry out 
these investigations.

TABLE II - Antioxidant activity of Baccharis erioclada determined via different methods

Sample Phosphomolybdenum complex assay (%) TBARS (%) Reducing power (%)*

Essential oil 50.02 ± 1.31 20.26 ± 0.14 -

BHT - 56.07 ± 0.17 88.57 ± 0.002

Rutin 36.15 ± 1.21 - 107.01 ± 0.03

Ascorbic acid 100 ± 0.18 - 90.03 ± 0.08

TBARS, thiobarbituric acid reactive substances; BHT, butylated hydroxytoluene. *Total antioxidant activity is considered to be 
100% in relation to the antioxidant potential of ascorbic acid and rutin. 
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Different techniques are used to determine the 
antioxidant activity of substances. Among these 
techniques, the phosphomolybdenum method is preferable 
as it provides information regarding total antioxidant 
capacity. It is based on the reduction of molybdenum 
(VI) to molybdenum (V) in the presence of certain 
substances with antioxidant properties, leading to the 
formation of a green complex comprising phosphate/
molybdenum (V) (Prieto, Pineda, Aguilar, 1999). The EO 
of B. erioclada displayed 50.02% antioxidant activity, and 
was superior to that of rutin which was used as a standard. 
Pereira et al. (2017) evaluated B. milleflora EO samples 
during different seasons throughout the year using the 
phosphomolybdenum method and showed that samples 
collected in autumn and winter exhibited 79.81% and 
79.1% antioxidant activity.

The antioxidant capacity of a compound may also 
be evaluated by its ability to inhibit lipid peroxidation 
by quantifying the formation of malondialdehyde, 
which then reacts with thiobarbituric acid to generate a 
derivative that can be measured spectrophotometrically 
(Morais, 2006). The sample displayed 20.26% inhibition 
of lipid peroxidation, which is lower than that exhibited 
by BHT (56.07%). In the test performed on B. milleflora 
EO, an antioxidant activity of 29.06% was observed for 
the sample collected in winter. This activity was superior 
to that shown by the standard BHT (26.42%). The sample 
collected in autumn showed an antioxidant IA close to 
that of BHT (25.91%; Pereira et al., 2016). 

Evaluation of the reducing power is based on the 
ability of phenolic compounds to reduce Fe3+, with the 
consequent formation of a colored complex with Fe2+. 
The ferricyanide ion is reduced to ferrocyanide, which, 
in the presence of the ferric ion (from FeCl3), forms the 
Prussian blue complex Fe4[Fe(Cn)6]3 (Yen, Chen, 1995; 
Jayanthi, Lalitha, 2011). The EO did not demonstrate 
any antioxidant activity at the concentration tested 
and no trials involving the use of this technique on 
other Baccharis species were reported in the literature. 
However, ethanolic extracts of Calendula officinalis L, 
which is also part of the Asteraceae family, exhibited 
low reductive capacity in relation to routine commercial 
measurements varying from 4.38 to 9.06% (Santos  
et al., 2015). 

Considering the results from the different assays 
performed, we concluded that the EO of B. erioclada 
shows antioxidant activity at the tested concentrations. 
Because EOs are complex mixtures, antioxidant capacity 
may result from the presence of antioxidant compounds 
or synergism between these compounds. Antioxidant 
compounds exert beneficial effects because of their 
ability to prevent oxidative damage, thus preventing the 
progression of various diseases.

Antimicrobial activity

A large number of studies on the antimicrobial 
activity of Baccharis species have been performed 
(Kurdelas et al., 2012; Campos et al., 2016). The EO of 
B. erioclada contains constituents that may be considered 
potent antimicrobial agents. The MICs of the EO were 
1000 μg/mL in both E. coli and C. albicans, and   >2000 
μg/mL in P. aeruginosa and S. aureus. In a study by 
Kurdelas et al. (2012) assessing the EO of Baccharis 
darwinii, MICs were 1000 μg/mL in E. coli, Yersinia 
enterocolitica, and Salmonella enterica.

The EO of B. uncinella was inactive against all 
bacteria tested, and that of Baccharis semiserrata DC. 
showed moderate activity against S. aureus (Vannini et 
al., 2012).

Ferronatto et al. (2007) demonstrated that the EOs 
from B. uncinella and B. dracunculifolia were active 
against S. aureus, E. coli, and P. aeruginosa. Zapata et al. 
(2010) showed that the EO of Baccharis latifolia (Ruiz & 
Pav.) Pers. was active against Aspergillus fumigatus (MIC 
= 157.4 mg/mL). In a study by Parreira et al. (2010), the 
EO from B. dracunculifolia showed no activity against 
yeasts belonging to the genus Candida.

In vitro hemolytic activity

The use of plants by the general population, and the 
interest of industries and research institutes have shown a 
remarkable increase in recent years. Toxicological screening 
of plant species is therefore necessary. In vitro toxicology 
studies are useful in screening plants that have toxic effects, 
reduce costs, provide rapid responses, and contribute to 
replacement, reduction, and refinement. In vitro and/or 
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alternative tests allow the preliminary identification of 
plants with potential toxic effects and the reduction of 
experimental animals (Bednarczuk et al. 2010).

The hemolytic activity of the B. erioclada EO was 
evaluated in sheep erythrocytes. The concentrations 
studied ranged from 1000 to 75 μg/mL, no direct or 

inversely proportional relationship was observed between 
the increase in concentrations and hemolytic activity. This 
observation may be explained by the synergism of the 
compounds present in the oil, which may be more or less 
active, depending on the concentration. The hemolytic 
potential of the EO is listed in Table III.

TABLE III - Evaluation of the hemolytic activity of the essential oil (EO) of Baccharis erioclada

Sample Concentration (µg/mL) Hemolysis (%)

Control - 100a ± 0.215

Essential oil

75 10.93e ± 0.0043

100 32.97d ± 0.0071

250 9.8ef ± 0.004

500 9.26f ± 0.0035

750 44.68c ± 0.037

1000 70.34c ± 0.003

Note: same letters do not differ statistically. 

In vitro hemolytic activity may be considered to 
be a good toxicity screening test for extracts and plant 
fractions, as by evaluating the mechanical stability of 
the sheep erythrocyte membrane, we can characterize 
the damage that a compound may cause (hemolysis) 
and correlate the toxicity of extracts or fractions with 
potential therapeutic activity (Zohra, Fawzia, 2014).

CONCLUSION

The yield of the EO of B. erioclada obtained 
was 0.4%, and was composed of 31 compounds. The 
oxygenated sesquiterpenes were the main class of 
components, and turmerone, fokienol, ledol, and 
santalol were the principal compounds identified. The 
phosphomolybdenum method revealed that the antioxidant 
activity of the EO of B. erioclada was higher than that of 
the standard rutin, and a reducing antioxidant power assay 
further showed the EO’s excellent activity. Moderate 
antimicrobial activity and hemolytic potential were also 

observed. This study contributes to the enrichment of the 
database concerning the specie B. erioclada EO and your 
biological activities and antioxidant properties.
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