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Eicosanoids are 20-carbon bioactive lipids derived from the metabolism of polyunsaturated fatty acids, which
can modulate various biological processes including cell proliferation, adhesion and migration, angiogenesis,
vascular permeability and inflammatory responses. In recent years, studies have shown the importance of
eicosanoids in the control of physiological and pathological processes associated with several diseases, including
cancer. The polyunsaturated fatty acid predominantly metabolized to generate 2-series eicosanoids is arachidonic
acid, which is the major n-6 polyunsaturated fatty acid found in animal fat and in the occidental diet. The three
main pathways responsible for metabolizing arachidonic acid and other polyunsaturated fatty acids to generate
eicosanoids are the cyclooxygenase, lipoxygenase and P450 epoxygenase pathways. Inflammation plays a decisive
role in various stages of tumor development including initiation, promotion, invasion and metastasis. This review
will focus on studies that have investigated the role of prostanoids and lipoxygenase-derived eicosanoids in
the development and progression of different tumors, highlighting the findings that may provide insights
into how these eicosanoids can influence cell proliferation, cell migration and the inflammatory process.
A better understanding of the complex role played by eicosanoids in both tumor cells and the tumor
microenvironment may provide new markers for diagnostic and prognostic purposes and identify new thera-

peutic strategies in cancer treatment.
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Biosynthesis of prostanoids

Prostanoid is a term used to define a family of biologically
active lipids containing 20 carbons, which include prosta-
glandins (PGs) (PGD, PGE and PGF), prostacyclin (PGI) and
thromboxane (TXA). These lipids are synthesized from the
polyunsaturated fatty acids (PUFAs) dihomo-gamma-linolenic
acid (DGLA, precursor of series 1 prostanoids), arachidonic
acid (AA, precursor of series 2 prostanoids) and eicosapentae-
noic acid (EPA, precursor of series 3 prostanoids). Among
these precursors, AA is the most important and predominant
in humans (1-4).

PGs were first observed by Kurzrok and Lieb (5) in 1930
in human seminal fluid. This observation was confirmed
by von Euler (6) in 1935, and twenty years later, Bergstrom
and Sjovall (7) successfully purified the first PGs, which
were subsequently named PGE; and PGFy,. In the 1970s, it
became clear that PGs have diverse effects on cells, although
the mechanisms of action were unknown. It became easier to
understand the action of PGs after the identification of their
membrane receptors, making this area of research attractive
and important (8,9).
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Prostanoids are ubiquitous lipids in animal tissues and
coordinate a multitude of physiological and pathological
processes, either within the cells in which they are formed or
in closely adjacent cells in response to specific stimuli. Under
normal physiological conditions, prostanoids are involved in
the relaxation and contraction of smooth muscles, regulation
of blood clotting, maintenance of renal homeostasis, modula-
tion of immune responses, inhibition and stimulation of neuro-
transmitter release, regulation of gastrointestinal tract secretion
and motility and protection of the gastrointestinal mucosa.
Prostanoids are also involved in many pathological conditions,
such as inflammation, cardiovascular disease and cancer (10-12).

The production of prostanoids occurs through a complex
enzymatic pathway (Figure 1). The first step is the activation
of cytosolic phospholipase A, (cPLA,), which, by hydrolysis,
releases AA from membrane glycerophospholipids. PG endo-
peroxide H synthase 1 or 2, more commonly known as cyclo-
oxygenase 1 or 2 (COX1 or COX2), then catalyzes a reaction in
which molecular oxygen is inserted into AA. This reaction
produces an unstable intermediate, PGG,, which is rapidly
converted to PGH, by the peroxidase activity of COX. The
resulting PGH, is then modified by specific synthases that
generate PGs and TXA, each of which has its own range of
biological activities (13-16).

After synthesis, prostanoids can cross the cell membrane
by simple diffusion (poorly, due to their charged nature at
physiological pH) or can be transported out of the cell by
members of the ABC transporter superfamily (17). In the extra-
cellular environment, prostanoids can bind to their specific
receptors to activate multiple intracellular pathways (18). There
are nine different receptors for the prostanoids: DP1 and DP2
receptors for PGD,; EP1, EP2, EP3 (splice variants) and EP4
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Figure 1 - General overview of series-2 prostanoid biosynthesis. After being released from membrane phospholipids (PLs) by the action
of cytosolic phospholipase A, (cPLA;), arachidonic acid is converted by cyclooxygenase 1 or 2 (COX1 or COX2) to an unstable
intermediate, prostaglandin H, (PGH;), which is rapidly converted to the PGs PGE,, PGD,, PGF,,, PGl,, and thromboxane A; by their
specific synthases. Membrane PL cleavage also results in the release of lysophosphatidylcholine, which can be converted to platelet-
activating factor (PAF). Prostanoids, thromboxanes and PAF are then released from the cell and can exert a wide range of actions
mediated by binding to their specific G protein-coupled receptors, EP1-4, DP1-2, FP, IP, TP and PAFR.

receptors for PGE,; FP receptor for PGF,,; IP receptor for
PGI,; and TP receptor for TXA, (19-21).

The prostanoid receptors can be divided into three groups
based on the type of G protein to which they are coupled and
consequently the function of the evoked cellular responses.
In the first category are the receptors related to relaxant
activity, IP, EP2, EP4 and DP, which are usually coupled to Gs
(stimulatory) proteins, and their activation stimulates the
production of cAMP by adenylate cyclase (AC).

The second category is represented by receptors with con-
strictor activity, such as EP1, FP and TP, which are coupled to
Gq proteins, mediating an increase in intracellular concen-
trations of Ca®". The third group is represented only by the
EP3 receptor, which is coupled to Gi (inhibitory) proteins
whose activation inhibits AC, reducing cAMP concentra-
tions. It is important to highlight that despite the specificity
of most receptors related to products of the COX pathway,
the TP receptor for TXA, can also be stimulated by the pro-
stanoids PGE,, PGI, and PGF,, (1,22).

Although most prostanoids bind to cell surface receptors,
in some cases, they can bind to nuclear receptors. One of the
main targets is the family of peroxisome proliferator-activa-
ted receptors (PPARs), which are known to regulate lipid
metabolism, cell differentiation and proliferation (23).

The intracellular concentrations of prostanoids are con-
trolled not only by their synthesis but also by their enzy-
matic degradation. Degradation begins with the transport
of prostanoids from the extracellular fluid to the cytoplasm
by the PG transport protein (PGT), followed by inactivation

by the action of 15-hydroxyprostaglandin dehydrogenase
(15-PGDH) (24,25).

This process gives rise to metabolites with very limited
biological activities including 13,14-dihydro-15-keto PGF,,
for PGF,, and 13,14-dihydro-15-keto PGE, in the case of
PGE,. PGD; is metabolized to PGs of the J series (PGJ,, delta-
12-PG]J,, 15-deoxy-deltal2,14 PGJ,) or F series (90,11B-PGF,).
TXA; and PGI, are unstable and are rapidly hydrolyzed to
their inactive metabolites TXB, and 6-keto- PGF;,, respec-
tively (26-28).

Prostanoids and cancer

Many studies over the years have shown the ability of
prostanoids to alter cancer cell proliferation and death,
influence angiogenesis, increase cell migration and invasion
and maintain a state of chronic inflammation (28,29).

Among prostanoids, PGE; is the most abundant PG in the
body and is produced by several cells, such as fibroblasts,
leukocytes and renal cells. This lipid mediator is the best
known member of the PG family, as it plays an important
role in several physiological systems, such as the gastro-
intestinal, renal, cardiovascular and reproductive system, in
addition to being the main mediator of inflammation. PGE,
is involved in pathological conditions such as cancer (28,30).
Elevated concentrations of PGE, are found in several human
malignancies, including colon, lung, breast and head and
neck cancer, and are often associated with poor prognosis.

The biological relevance of increased production of
PGE; in tumors has not yet been fully established. Recently,
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Brocard et al. (31) demonstrated that the addition of exoge-
nous PGE; to primary glioblastoma (GBM) cultures increased
the survival and proliferation of the analyzed cells. In another
study, the exogenous addition of PGE; to the T98G human
glioma cell line caused a significant increase in cell prolifera-
tion and migration, as well as a decrease in apoptosis (32).

The increase in PGE, concentration is often related to the
altered expression of COXs, especially COX2. The COX2
enzyme is overexpressed in cancer cells and is associated
with progressive tumor growth, as well as the resistance of
cancer cells to conventional chemotherapy and radiotherapy.
Evidence shows that increased COX2 expression and
subsequently increased downstream PGE, release contribute
to the repopulation of tumors and consequent inefficient
treatment (30,31).

In the work of Murakami et al. (33), increased expression
of COX2 and mPGES] in the HEK-293 cell line increased cell
proliferation. In addition, increased expression of COX2
and mPGES1 in the same cells injected into the flanks of
nude mice was responsible for the formation of large, well-
vascularized tumors. Treatment of HCA-7 colon carcinoma
cells with the mPGES]1 inhibitor CAY10526 decreased PGE,
production and attenuated cell proliferation, while increas-
ing mPGES1 expression, PGE, production and cell prolifera-
tion (34).

In the case of COX1, Osman and Youssef (35) observed
a high expression of COX1 in 62.5% of renal cancer tissues.
As renal carcinoma tumor grade progressed from grade I-IV,
COX1 expression progressively increased in comparison
with that in normal renal tissues.

In the work of Cheng et al. (36), PGE, promoted increased
migration of Huh-7 hepatocarcinoma cells through its EP2
receptor. In the PC3 prostate cancer cell line, the migration
induced by PGE, was mediated, in part, by EP4 (37). In the
CCLP1 and HuCCT1 liver cancer cell lines, the increase in
migration caused by the addition of PGE, occurred through
the EP3 receptor (38).

Currently, proteins involved in the transport and degrada-
tion pathways of PGE, are gaining increasing attention, since
the procarcinogenic effects of PGE, are regulated not only by
their biosynthesis but also by their degradation. The inter-
nalization and inactivation of PGE, are performed by two
distinct proteins. PGE; is transported into the cells through
PGT and subsequently oxidized to 15-keto-PGE, by 15-PGDH.
Both steps are necessary for the efficient inactivation of PGE,
(39). Studies have shown that PGT and 15-PGDH expression is
often reduced in several neoplasms (26,40).

The analysis of 15-PGDH expression by qRT-PCR and
western blotting revealed low expression in the breast cancer
cell lines MCF-7, T-47D, BT-474, ZR75-1, MDA-MB-231,
MDA-SK-BR-3 and BT-20 (25). In high-grade neuroblastoma,
low expression of 15-PGDH and consequent high concentra-
tions of PGE, were identified relative to those in low-grade
neuroblastomas (41). These studies suggest that changes in
PGE; levels may play a crucial role in tumor development.

TXA; plays a central role in homeostasis and is increas-
ingly implicated in cancer progression. TXA, production has
been shown to be increased in human mammary carcinomas
relative to that in normal breast tissues and was related to
increased tumor size and metastatic potential, as well as the
absence of estrogen (ER) and progesterone receptors (PR)
(42). Additionally, the TXA, receptor TP in triple negative
breast cancer (TNBC) enhanced cell migration and invasion
and activated Rho signaling, phenotypes that could be reversed
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using Rho-associated kinase (ROCK) inhibitors. TP also pro-
tected TNBC cells from DNA damage by negatively regulating
reactive oxygen species (ROS) levels (43). In prostate cancer,
activation of TP led to cytoskeletal reorganization and rapid
cell contraction through the activation of the small GTPase
RhoA, while blockade of TP activation compromised tumor
cell motility (44,45).

In another study, analysis of TP mRNA levels in 120
human breast tumors and 32 noncancerous mammary tissues
showed that higher levels of TP transcripts were significantly
associated with higher grade tumors and shorter disease-free
survival (46). High expression levels of TP have also been
observed in lung, bladder and prostate cancer cell lines,
leading to increased cell proliferation, migration and invasion
capacity (44,45,47). In lung cancer cells, thromboxane A,
synthase (TXAS) inhibited apoptosis via negative regulation
of ROS production in the lung (48). The use of furegrelate, a
potent inhibitor of TXAS, in addition to inhibiting the
migration process, decreased adhesion, increased apoptosis,
decreased tumor growth in vivo and increased sensitivity to
radiation in glioma-derived cells (49-52).

In the literature, PGF,, is related to increased migration
and invasion observed in colorectal carcinoma cells (53). In
prostate cancer, the overexpression of aldo-keto reductase
1C3 (AKR1C3), an enzyme involved in PG metabolism, resul-
ted in the accumulation of PGF,,, which not only promotes
prostate cancer cell proliferation but also enhances prostate
cancer cell resistance to radiation (54).

Keightley et al. (55) observed that in endometrial cancer,
PGF,,, induced activation of the FP receptor in the epithelial
cells of endometrial adenocarcinoma, resulting in the stimu-
lation of the calmodulin-NFAT signaling pathway. This signal-
ing pathway leads to elevated ADAMTSI, which functions
in an autocrine/paracrine manner to promote epithelial cell
invasion and in a paracrine manner to inhibit endothelial
cell proliferation (55).

In endometrial cancer, the binding of PGF,, to the FP
receptor enhanced cell proliferation, migration and angio-
genesis of carcinoma cells through the activation of the extra-
cellular signal-regulated kinase (ERK) pathway (56). Miiller
et al. (57) also found downregulation of the FP receptor in
skin papillomas in mouse models of cancer, and its level of
expression was inversely correlated with PGF,, production,
suggesting that PGF,, regulates levels of the FP receptor in
the squamous epithelium. Scott et al. (58) also demonstrated
that in melanoma, the concentrations of PGF,, were higher
than those in normal melanocytes. These results show that
the binding of PGF,, to the FP receptor activates signals that
stimulate a differentiated phenotype. In addition, PGF,,
concentration was found to be consistently higher in breast
cancer than in benign and non-neoplastic tissues (59,60).

Evidence from the literature suggests that PGI, may pro-
tect against cancer development by inhibiting tumor growth,
angiogenesis, invasion and metastasis, and thus can be con-
sidered a potential chemopreventive agent. Studies have
indicated that the lungs of mice treated with PGI, had 40-50
times fewer metastatic nodes than lungs of mice treated with
the positive control . The same study showed that treatment
of mice with PGI, resulted in a 10% decrease in the adhesion
of metastatic cells to endothelial tubules (61).

Preclinical chemoprevention studies showed that pulmon-
ary PGI synthase (PGIS) overexpression and elevated PGI,
concentrations protect against lung tumorigenesis in a variety
of murine tumorigenesis models, including those established
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by exposure to tobacco smoke (62,63). The administration of
tranylcypromine, which inhibits PGIS, has been shown to
reduce cancer multiplicity in murine carcinogenesis models,
indicating that the inhibition of this enzyme may be useful in
the chemoprevention of breast cancer (64).

In primary human lung tumor samples, loss of PGIS
mRNA was observed relative to that in matched normal
controls (65). These findings are in agreement with the study
by Stearman et al. (66), in which gene expression analysis of
non-small cell lung cancer (NSCLC) showed a loss of PGIS in
human lung tumor samples. However, a small group of
adenocarcinoma patients whose lung tumors retained PGIS
expression were found to have significantly enhanced sur-
vival. A statistically significant correlation was also observed
in head and neck squamous cell carcinoma. Patients who
expressed high levels of PGIS in head and neck squamous
cell carcinoma tissues had a higher 5-year survival rate than
patients with low levels of PGIS (67).

In the case of breast cancer, analysis revealed that the
expression of PGIS is associated with a reduction in patient
survival (68). On the other hand, the expression of the prosta-
cyclin receptor IP appears to indicate an angiogenic pheno-
type of tumor endothelial cells according to a study in which
migration and tube formation were inhibited by the IP receptor
antagonist RO1138452 (69). These apparently contradictory
actions of PGI, on cell survival may indicate that its effects
are highly dependent on the specific cellular environment.

The implications of PGD, production in tumor develop-
ment and progression have remained largely unexplored.
The few studies on this prostanoid consider PGD, to have an
antitumor activity (70). This hypothesis is supported by
studies showing that elevated levels of PGD, result in rela-
tively few metastatic foci in rat lungs, inhibition of leukemic
cell growth and Ehrlich tumor growth, and decreased meta-
static potential in melanomas (71-73).

In a study by Park et al. (74), which evaluated the possible
influence of PGD, on the development of intestinal adeno-
mas, a 50% increase in intestinal adenomas was shown in the
ApcMin/knockout mouse model for the hematopoietic PGD
synthase (H-PGDS) enzyme, whereas in the ApcMin/ +
mouse model with high expression of H-PGDS, an approxi-
mately 80% reduction in the adenomas was observed.

In gliomas, lower protein and mRNA levels of lipocalin-
PGD synthase (L-PGDS), the main PGDS produced in neurons
and glial cells, were observed in different GBM samples than
in normal brain tissues (75). Moreover, the exogenous addition
of PGD; to the A172 and C6 lines resulted in a decrease in the
proliferative capacity of the cells (75,76). Recent studies have
confirmed that PGD, can inhibit glioma cell proliferation.
However, at lower physiological concentrations of PGD,,
U87MG, U25IMG and A172 glioma cell proliferation and
migration were stimulated rather than inhibited (77)

The correlation between hepatic metastasis and PGD,
concentration in human cancer tissues has also been studied.
The mean PGD, concentration in primary cancer tissues was
significantly lower in the group with hepatic metastasis than
in the group without hepatic metastasis (78). Using gastric
cancer cells, Fukuoka et al. (79) observed that PGD,
significantly decreased the proliferation of tumor cells via
the PPARy pathway. In 277 human gastric tumors, L-PGDS-
positive cases were significantly correlated with PPARYy-
positive cases. In recent years, several studies have shown
that PGD, has antiproliferative activities and can induce
cellular apoptosis via the activation of caspase-dependent
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pathways in human leukemia cells (80,81) and colon cancer
cells (78).

In a study with A549 lung carcinoma cells, PGD, induced
cell death through the intrinsic apoptotic pathway, and
similar results were also found with another lung carcinoma
cell line, H2199. Moreover, the generation of 15-deoxy-
deltal2,14 PG]J,, a metabolite of PGD,, seems to be the key
factor responsible for the apoptosis observed in A549 cells (82).

B LIPOXYGENASE PATHWAY

5-Lipoxygenase (5-LOX)

The 5-lipoxygenase (5-LOX) pathway is the most well
characterized among the lipoxygenase pathways. It begins
with the insertion of molecular oxygen and the formation of
a hydroperoxyl group at carbon 5 of the AA chain, resulting
in 5-hydroperoxyeicosatetraenoic acid (5-HpETE) that can be
converted to 5-hydroxyeicosatetraenoic acid (5-HETE) (83).
5-HpETE can also be converted to leukotriene A, (LTAy),
a leukotriene with no known biological activity that serves as
a precursor for the synthesis of biologically active leukotrienes.
The conversion of LTA; by the enzyme LTA, hydrolase
(LTA4H) results in the production of leukotriene B, (LTBy),
while the enzyme LTC,4 synthase produces leukotriene C,
(LTCy) (Figure 2). LTCy, in turn, is the precursor of the other
members of the cysteinyl leukotrienes including LTD, and
LTE,. (12,84). Leukotrienes and 5-HETE have similar effects
on neutrophils and other leukocytes, serving as potent che-
moattractants in addition to modulating adhesion, migration
and degranulation. However, little is known about the specific
receptors of 5-HETE (85). Several studies indicate that 5-HETE
is a substrate for 5-hydroxyeicosanoid dehydrogenase
(5-HEDH), resulting in the synthesis of the non-classical eico-
sanoid 5-oxo-eicosatetraenoic acid (5-oxoETE), with a much
more potent effect than 5-HETE on neutrophils (86,87).

Lepley et al. (88) were the first to show the mechanisms
controlling the activation of 5-LOX, identifying the presence
of phosphorylated 5-LOX in activated neutrophils, thereby
correlating the activity with its phosphorylation. The regu-
lation of the enzymatic activity of 5-LOX depends on its
interaction with Ca*, interaction with the FLAP protein and
5-LOX translocation through cellular compartments. Addi-
tionally, 5-LOX is phosphorylated at residues Ser271, Ser663
and Ser523 by the activity of MAPKAP2 (Ser271), ERK2
(Ser663) and protein kinase A (PKA) (Ser523). Several addi-
tional phosphorylation sites, at Tyr42, Tyr53 and either Tyr94
or Tyr445, were recently identified by Markoutsa et al. (89).
Once bound to Ca®>*, 5-LOX translocates to the nuclear
envelope. The FLAP membrane protein, with affinity for AA,
is found in the nuclear envelope. The exact mechanisms that
regulate the relationship between FLAP and 5-LOX are still
not fully understood, but once 5-LOX is activated and is
present in the nuclear envelope, FLAP acts as a substrate
carrier that presents AA to the 5-LOX enzyme (90-93).

The expression of 5-LOX is usually low or absent in nor-
mal tissues but detected in response to pathological condi-
tions in cells derived from bone marrow, such as granulocytes,
macrophages, and B lymphocytes (94). The leukotrienes
and 5-HETE generated by 5-LOX play an important role in
the inflammatory process associated with numerous dis-
eases including cancer, allergic asthma, dermatitis, rhinitis,
arthritis, atherosclerosis, ischemia and septic shock (95,96).

The relationship between 5-LOX and cancer has been
explored in the literature over the past two decades. In the
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Figure 2 - General overview of leukotriene biosynthesis. After being released from membrane phospholipids (PLs) by the action of
cytosolic phospholipase A; (cPLA;), arachidonic acid is converted by the lipoxygenases (LOXs) 5-LOX, 12-LOX and 15-LOX-1 or 15-LOX-2
to the corresponding hydroperoxyeicosatetraenoic acid (HpETE) - 5-HpETE, 12-HpETE or 15-HpETE. These are rapidly converted to
hydroxyeicosatetraenoic acids (HETEs) - 5-HETE, 12-HETE and 15-HETE. In addition, 5-HpETE is catalyzed by 5-LOX to form the unstable
leukotriene LTA4, which, through the action of LTA; hydrolase, results in the synthesis of LTB,4. Alternatively, LTA; can be converted
into the cysteinyl leukotriene LTC4 by the action of LTC,4 synthase. LTC4 can then be converted to LTD4 and LTE4. Linoleic acid
(LA) can be metabolized by 15-LOX producing 13-hydroperoxyoctadecadienoic acid (13-HpODE), which is then metabolized to
13-hydroxyoctadecadienoic acid (13-HODE). 15-HpETE can also be catalyzed by 5-LOX, often transcellularly, to produce lipoxin A4
(LXA,). Leukotrienes and HETEs are then released from the cell and can exert a wide range of actions mediated by binding to their

specific receptors, BLT1-BLT2, CysLTR1-CysLTR2 and 12-HETER.

late 1990s, an in vitro study with PC-3 and LNCaP prostate
cancer cell lines showed that MK886, a FLAP-binding 5-LOX
inhibitor, leads to apoptosis due to the inhibition of 5-LOX
activities. Furthermore, the addition of 5-HETE or 5-oxo-ETE
was sufficient to prevent the effects of MK886 (97).

Later studies identified 5-LOX as a potential biomarker
for malignancy. Larré et al. (98) found higher concentrations
of LTB, in prostate carcinoma tissues than in peritumoral
tissues. Another study with 42 patients analyzed 5-LOX
expression by immunohistochemistry in brain tumor sam-
ples. With the exception of three low-grade gliomas, all
samples showed 5-LOX expression (99). Additionally, 5-LOX
expression in 111 colon adenomas showed a correlation with
high risk factors that traditionally are markers for malignant
transformation to colorectal adenocarcinoma, thereby pro-
viding clues about the link between 5-LOX and colorectal
cancer malignancy (100). Leukotriene receptors were also
found to be altered in cancer, with increased BLT1 expression
in prostate (101) and colon carcinoma (102), and the phar-
macological blocking of BLT1 activity was sufficient to
reduce cell proliferation.

The data accumulated so far, notably in prostate and
colorectal carcinoma, points to an important role of 5-LOX
during tumor development and progression. Recently, the
physiological role of 5-LOX products as chemoattractants
and stimulators of myeloid cells was correlated with their

role in cancer progression (103). Interestingly, evidence
shows that 5-LOX activity in mast cells is important for the
promotion of abnormal cell proliferation during intestinal
polyposis in mice (104). In another recent study, the impor-
tance of microenvironment-derived 5-LOX products was
assessed by injecting Lewis lung carcinoma cells into 5-LOX-
deficient rats to compare tumor growth with that in control
rats (105). The tumor microenvironment of 5-LOX-deficient
rats showed an increase in angiogenesis and reduction in
neutrophils and cytotoxic T cells, leading to larger tumors
than in control rats. Although the importance of 5-LOX in
tumor development and progression is convincing, the roles
played by 5-LOX metabolism from the tumor microenviron-
ment versus the tumor cells are still not fully elucidated.

12-Lipoxygenase (12-LOX)

12-Lipoxygenase (12-LOX) is another enzyme in the
lipoxygenase family, responsible for the insertion of mole-
cular oxygen and the formation of a hydroperoxyl group
at carbon 12 of the AA chain to form 12-HpETE. Similar to
5-HpETE, 12-HpETE has no known biological activity, serv-
ing as a precursor for 12-HETE production (Figure 2).

The former name 12-LOX platelet-type was due to the detec-
tion of 12-HETE in platelets during the 1970s, and 12-HETE
was subsequently characterized as an endothelial retrac-
tion factor (106). 12-LOX is expressed in smooth muscle cells,
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keratinocytes, endothelial cells, macrophages and platelets,
and the physiological roles of 12-HETE are associated with
lymphatic vessel permeability and smooth muscle cell
retraction to modulate vessel contraction (107). Furthermore,
12-HETE displays both antithrombotic and prothrombotic acti-
vities through the modulation of platelet aggregation (108-110).

One of the earliest correlations between 12-LOX and
cancer was reported in a study with 112 samples from radical
prostatectomy, where an increase in 12-LOX expression was
found to correlate with advanced stage, poor differentia-
tion and invasive potential according to pathological stage,
histological grade and surgical status (111). Since then, many
studies have found that 12-HETE is strongly correlated with
metastasis. Similar to the activities of other eicosanoids,
12-HETE activities are triggered through its recognition by
specific receptors on the plasma membrane. A specific G
protein-coupled receptor, GPR31, also called 12-HETE recep-
tor (12-HETER), was recently identified (112). The activation
of 12-HETER leads to protein kinase C (PKC) activation,
stimulating the PKC/ERK1/2 pathway and altering cell pro-
liferation (113). Furthermore, 12-HETE release downregu-
lates E-cadherin and stimulates endothelial cell migration,
increasing lymphatic vessel permeability (114). Additionally,
a similar mechanism is responsible for increased endothelial
barrier permeability by 12-HETE (115). By altering vascular
permeability, 12-HETE plays a key role in neutrophil migra-
tion through the endothelial barrier and also modulates
RhoA-dependent migration (116, 117).

By acting on vascular permeability, cell attachment and
cell migration, 12-HETE can facilitate tumor cell migra-
tion through the endothelial barrier, thereby facilitating
metastasis. Chen et al. (118) showed a correlation between
12-HETE production and metastasis by treating C57BL/6]
mice with the selective 12-LOX inhibitor N-benzyl-N-hydroxy-
5-phenylpentamidine (BHPP). A reduction in lung colonies
was observed in animals treated with BHPP. Another study
showed in vitro that the same inhibitor could attenuate
endothelial cell migration and proliferation in response to
angiogenic factors. In addition, 12-LOX inhibition signifi-
cantly reduced angiogenesis in vivo. (119). In the MKN-28
gastric cancer cell line, inhibition of 12-LOX with baicalein
induced apoptosis (120). Not only the inhibition but also
the upregulation of 12-LOX in colorectal cancer cells led
to changes in proliferation and migration. The induced
overexpression of 12-LOX in these cells increased migra-
tion and metastasis in mice (121). Reinforcing the role of
12-LOX in metastasis, the secretion of 12-HETE by MCF-7
breast cancer cell spheroids co-cultured over a lymphatic endo-
thelial monolayer induced circular discontinuities due to
endothelial retraction (122). As previously mentioned, these
effects on endothelial cells have been proposed to be an
important step in 12-HETE-stimulated metastasis. More recen-
tly, in MCF-7 or MDA-MB-231 breast cancer cell spheroids
co-cultured with lymphatic endothelial cells, 12-HETE was
shown to increase intracellular Ca>™ release in endothelial
cells, inducing a Ca®*-dependent disruption in their barrier
functions and increasing the number of discontinuities in
the endothelial monolayer (114,123).

15-Lipoxygenases (15-LOX-1 and 15-LOX-2)

Human 15-lipoxygenases (15-LOXs) are a subfamily
formed by two isoforms: 15-LOX-1 and 15-LOX-2. 15-LOX-
1 (also known as 15-LOX reticulocyte-type) was initially
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identified in rabbit reticulocytes and is normally expressed in
eosinophils, reticulocytes and respiratory epithelia (124).
Both 15-LOX-1 and 15-LOX-2 were classified and named
based on their ability to insert molecular oxygen and form
a hydroperoxyl group at carbon 15 of AA, producing
15-HpETE, which can be reduced to 15-HETE (Figure 2).
Although 15-LOX-1 and 15-LOX-2 can both use AA as a
substrate, both molecules can also oxygenate the 18-carbon
fatty acid linoleic acid (LA) at carbon 13 to produce
13-hydroperoxyoctadecadienoic acid (13-HpODE) that can
then be reduced to 13-hydroxyoctadecadienoic acid (13-HODE)
(125). However, the substrate specificity of the two enzymes
is not identical. The 15-LOX-1 enzyme has a higher affinity
for LA (therefore producing 13-HODE), while 15-LOX-2
shows a preference for AA (therefore producing 15-HETE)
and poorly metabolizes LA (126,127).

Due to differences between their activities and differences
in substrates/products, both 15-LOX-1 and 15-LOX-1-2 are
correlated with many pathological processes associated with
chronic inflammation, such as in asthma, atherosclerosis,
insulin resistance and cancer (128-130). The preference of
15-LOX-1 to metabolize LA to 13-HODE has been correlated
in many studies with a protective effect in inflammatory
diseases. Depletion of 15-LOX-1 is proposed to exacerbate
inflammation in atherosclerosis, encephalomyelitis, asthma
and osteoarthritis (131-134). The roles of 15-HETE, on the
other hand, are associated with inflammatory processes and
angiogenesis. Zhang et al. (135) demonstrated that 15-HETE
stimulation led to the migration and formation of endothelial
cell tubes in vitro in a process dependent on PI3K-AKT-
mTOR activation. Wang et al. (136) showed the functional
role of 15-HETE and the 15-LOX pathway in angiogenesis in
a mouse stroke model, consistent with the literature in which
an increase in 15-HETE concentrations followed post-ischemic
hypoxia in neural tissues (137-139).

Regarding the roles of 15-LOX-1 and 15-LOX-2 in cancer,
one of the first studies to propose an antitumorigenic role for
15-LOX-1 showed a decrease in 13-HODE production and
15-LOX-1 expression in 18 colon cancer samples compared
with those in normal colon samples (140). Several subse-
quent studies have provided support for the antitumorigenic
role of 13-HODE in specific tumors. Shureiqi et al. (141)
showed in colorectal cancer cell lines that treatment with the
specific COX2 inhibitor celecoxib caused apoptosis following
an increase in 13-HODE concentration. Interfering with 13-
HODE production by silencing 15-LOX-1 protected cele-
coxib-treated cells from death. Another study using HCT-116
and HT-29 colon cancer cells, which do not have detectable
levels of 15-LOX-1, showed that the induced expression of
15-LOX-1 significantly decreased cell proliferation and increa-
sed apoptosis. Furthermore, a decrease in adhesion to fibro-
nectin, anchorage-independent growth on soft agar, and
migratory and invasive capacity on Matrigel was observed
to strongly associate 15-LOX-1 activity with the inhibition
of migration and metastatic capacity in colon cancer (142).
This association between 15-LOX-1 and an antitumorigenic
role was also reported in a study with weaker 15-LOX-1 in
120 breast cancer tissue samples than in normal tissues,
indicating that the loss of 15-LOX-1 expression may be
correlated with tumorigenesis (143). Additionally, in pan-
creatic cancer cell lines and pancreatic carcinoma samples
(n=12), 15-LOX-1 expression was found to be reduced.
Stable expression 15-LOX-1 in pancreatic cancer cell lines
was found to reduce proliferation (144). Exogenous treatment
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of 13-HODE in breast and colorectal cancer cells also caused a
reduction in cell viability (141,145).

Although a number of studies suggest the antitumorigenic
role of 13-HODE, others show a different role for 15-LOX-1
and 13-HODE in the prostate. The prostate cancer cell lines
PC-3 and LNCaP have high concentrations of 13-HODE.
Moreover, treatment of PC-3 cells with 13-HODE led to
enhanced MAP kinase (MAPK) pathway signaling, resulting
in increased proliferation (146). Kelavkar et al. (147) observed
strong 15-LOX-1 expression in 48 prostatectomy samples
with varying degrees of malignancy, and the expression level
of 15-LOX-1 was positively correlated with p53 mutations
and the degree of malignancy. Sen et al. (148) evaluated the
adenovirus-mediated overexpression of 15-LOX-1 by inject-
ing adenoviruses harboring 15-LOX-1 with green fluorescent
protein (GFP) or GFP alone into the dorsolateral prostates
of C57BL/6 mice. After 90 days, the expression of 15-LOX-1
resulted in the development of a prostate intraepithelial
neoplasia-like phenotype, increasing the expression of Ki-67
as well as the angiogenic markers FGF-a and FGF-b. The
study thus proved that the forced overexpression of 15-LOX-
1 in normal prostate tissue is enough to increase cell proli-
feration and upregulate genes associated with malignancy.

While 13-HODE and 15-LOX-1 are generally believed to
play an antitumorigenic role, data on 15-LOX-2 are less
conclusive. Most research data available on 15-HETE refers
to the 12/15-LOX rodent isoform, which can metabolize AA
to form both 12-HETE and 15-HETE, making it more difficult
to correlate the data with human 15-LOX-2 (149). Despite
previous in vitro results reporting the overexpression of
15-LOX-2 in breast cancer cell lines (150), in breast tumor
biopsy samples (n=120), 15-LOX-2 expression was decrea-
sed in comparison with that in normal tissues (143). In
lung cancer, a recent study treated NSCLC cell lines with
both 13-HODE and 15-HETE and found a decrease in pro-
liferation, induction of apoptosis and activation of peroxi-
some proliferator-activated receptor y (PPARY) (151). While
15-LOX-1 is overexpressed and 13-HODE is present at higher
concentrations in prostate cancer, 15-LOX-2 and 15-HETE are
reportedly decreased in high-grade prostate neoplasia (152),
suggesting opposing roles for 15-LOX-1 and 15-LOX-2 in pro-
state cancer. The work of Hsi et al. (146) corroborated these
opposite effects of 15-LOXs by showing that in the PC-3
prostate cell line, 13-HODE upregulated the activity of MAPK
and increased the phosphorylation of PPARy, while 15-HETE
downregulated MAPK and decreased PPARy phosphorylation.

The role of eicosanoids and their degradation products in
the development and progression of cancer has been a target
of investigations for many years. Despite considerable study,
many controversies still exist in the literature in relation to
individual eicosanoids in specific tumor settings. As we have
highlighted in this review, many eicosanoids are considered
to be tumorigenic, some are believed to be antitumorigenic,
and several have mixed properties dependent on the tumor
type in question. Clearly, the complex interplay among the
eicosanoid pathways, their products, their receptors and the
subsequent intracellular signaling pathways that are acti-
vated need to be better delineated and remain important
subjects for future studies. An important goal in these studies
will be to provide a better understanding of the complex role
played by eicosanoids in both tumor cells and the tumor
microenvironment. Such detailed information could provide
new diagnostic and/or prognostic markers and identify new
therapeutic strategies in cancer treatment.
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