
REVIEW

Molecular mechanisms of RET receptor-mediated
oncogenesis in multiple endocrine neoplasia 2
Simona M. Wagner*, ShuJun Zhu*, Adrian C. Nicolescu, Lois M. Mulligan

Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Pathology & Molecular Medicine, Queen9s University, Kingston, ON,

Canada. *contributed equally to the study.

Multiple endocrine neoplasia type 2 is an inherited cancer syndrome characterized by tumors of thyroid and adrenal
tissues. Germline mutations of the REarranged during Transfection (RET) proto-oncogene, leading to its
unregulated activation, are the underlying cause of this disease. Multiple endocrine neoplasia type 2 has been a
model in clinical cancer genetics, demonstrating how knowledge of the genetic basis can shape the diagnosis and
treatment of the disease. Here, we discuss the nature and effects of the most common recurrent mutations of RET
found in multiple endocrine neoplasia type 2. Current understanding of the molecular mechanisms of RET
mutations and how they alter the structure and function of the RET protein leading to its aberrant activation, and
the effects on RET localization and signaling are described.
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INTRODUCTION

Multiple endocrine neoplasia type 2 (MEN 2) is an
inherited cancer syndrome, characterized by medullary
thyroid carcinoma (MTC). The disease has three clinically
defined subtypes, as described elsewhere in this volume.
Briefly, familial MTC (FMTC), considered the least aggres-
sive form of MEN 2, exhibits MTC without additional
tumors or phenotypes, and frequently shows later onset
than other disease subtypes. MEN 2A is characterized by
MTC with pheochromocytoma, which occurs in approxi-
mately 50% of cases, and parathyroid hyperplasia or
adenoma in 10–35%. Finally, MEN 2B is also characterized
by MTC and pheochromocytoma, but parathyroid hyper-
plasia is rare. This is the most aggressive subtype, with
earliest onset of disease and metastasis, and poorest
prognosis. In MEN 2B, MTC has been documented in
patients as young as 2 months (1). In addition, patients with
MEN 2B frequently present with other non-tumor features
including ganglioneuromatosis of the mouth and gut,
corneal nerve thickening, delayed puberty, and a marfanoid
habitus (2,3).

MEN 2 is dominantly inherited, and its genetic cause,
mutations of the REarranged during Transfection (RET) proto-
oncogene, was first recognized nearly 20 years ago (4–6).
Since then, the range of mutations identified, their potential

for predicting clinical course, and the underlying functional
effects have been explored. Detection of RET mutations in
MEN 2 represents a paradigm for genetically guided patient
management, and genotype–phenotype correlations in this
disease now inform recommended interventions, patient
and family screening, and long-term follow-up (7,8).
Functional characterization of these mutations also has the
potential to define optimal therapeutic regimens, and may
identify additional phenotypic implications that have not
been broadly recognized. Here, we discuss our current
understanding of the molecular mechanisms for the more
common RET mutations and their potential significance.

RET RECEPTOR

The RET proto-oncogene encodes a receptor tyrosine
kinase that is required for the development of neural-crest-
derived cells, the urogenital system, and the central and
peripheral nervous systems, notably the enteric nervous
system (9,10). The RET protein has a large extracellular
domain containing a cysteine-rich region and a series of
cadherin homology domains, a transmembrane domain, and
an intracellular tyrosine kinase domain, required for RET
phosphorylation and downstream signaling (Figure 1A)
(11,12). The RET kinase is structurally similar to other
tyrosine kinases, sharing many conserved functional motifs
and regulatory residues that have been shown to have
importance for kinase enzyme function (13). RET is activated
by binding of a multi-protein ligand complex. RET binds a
soluble ligand of the glial cell-line-derived neurotrophic
factor (GDNF) family but also requires a co-receptor of the
GDNF family receptors a (GFRa), which is tethered to
the cell membrane via glycosylphosphatidylinositol linkage
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(Figure 1B) (14,15). Initially, GDNF binds to GFRa, and these
complexes are then able to recruit RET to form heterohex-
amers that are concentrated in regions of the cell membrane
called lipid rafts (14,16). These are membrane domains
enriched in glycosylphosphatidylinositol-linked proteins
and signaling molecules that provide a platform not only
for enhanced cell signaling, but also for regulation of receptor
kinase activity and downregulation (17). Activation of RET
leads to stimulation of multiple downstream pathways,
including mitogen-activated protein kinase and extracellular
signal-regulated kinase, phosphoinositide 3-kinase and pro-
tein kinase B, signal transducer and activator of transcription
3, proto-oncogene tyrosine-protein kinase Src1, and focal
adhesion kinase (18,19), that promote cell growth, prolifera-
tion, survival, and/or differentiation.

THE RET PROTO-ONCOGENE IN MEN 2

MEN 2 is associated with point mutations of RET,
predictably leading to its activation in the absence of

ligands and co-receptors. Mutations are primarily amino
acid substitutions affecting a very small number of RET
codons in either the extracellular domain or within the
kinase domain (Table 1; Figure 1A). Mutations are domi-
nant, requiring only a single mutant allele to confer the
disease phenotype. Summaries of MEN 2 RET mutation
occurrence are well reviewed elsewhere (20–23) or are
available online (http://www.arup.utah.edu/database/
MEN2/MEN2_welcome.php). Together, these data suggest
strong overall themes as to functional effects of these
mutations, but also as to their clinical significance.

Strong associations of disease subtype, and also specific
disease phenotypes, with individual RET mutations have
made it possible to stratify risk of MEN 2 by genotype (7,8).
The management guidelines of the American Thyroid
Association (8) base the recommendations for initial
diagnosis, therapeutic intervention, and long-term follow-
up on patient genotype and the current understanding of
the natural history of the disease associated with each RET
mutation. Mutations of cysteine residues (primarily

Figure 1 - The RET receptor: structure, activation, and oncogenic mutations. (A) Schematic diagram depicting RET tyrosine kinase
receptor domains and the location of recurrent oncogenic mutations. The RET protein has a large extracellular domain containing a
cysteine-rich region and a series of cadherin homology domains, a transmembrane domain, and an intracellular tyrosine kinase
domain. The positions of the most common mutations found in patients with multiple endocrine neoplasia type 2 (MEN 2) are shown.
(B) Mechanism of RET activation. Wild-type RET activation requires the dimerization of RET, mediated through formation of a
multicomponent complex. RET is activated by binding both a soluble ligand (glial cell-line-derived neurotrophic factor; GDNF) and a
non-signaling extracellular co-receptor (GDNF family receptor; GFRa). Upon activation of RET, phosphorylation of multiple intracellular
tyrosines leads to stimulation of downstream signaling pathways.
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cysteines 609, 611, 618, 620, 630, and 634) in the RET
extracellular domain account for the majority of MEN 2A
cases, and are also common in patients with FMTC.
Intracellular kinase domain mutations are mainly associated
with FMTC and MEN 2B. Mutations in the intracellular
codons 768, 790, 791, 804, and 891 underlie FMTC, and occur
less commonly in patients with MEN 2A (20,24), while
specific mutations of codon 918 (M918T) or 883 (A883F)
account for the vast majority of MEN 2B cases, and are
exclusive to the subtype (3,25). In addition to association
with disease subtype, significant correlations of specific
mutations with disease features are reported. For example,
RET codon 634 mutations carry a greater patient risk for
pheochromocytoma and parathyroid hyperplasia (4,26–28),
and are associated with a higher frequency of detection of
MTC at the time of early thyroidectomy (29). Variation in
clinical presentation has even been observed with different
codon 634 substitutions. The specific substitution of an
arginine at codon 634 (C634R) is strongly associated with
increased risk of parathyroid hyperplasia (4,26–28), in-
creased frequency of distant metastases, earlier onset of
both lymph node and distant metastases, and bilaterality of
pheochromocytoma (30,31).

MOLECULAR MECHANISMS OF RET MUTATIONS

Evidence-based assessment of MEN 2 genotypic data
demonstrate that not all RET mutations have equivalent
clinical significance, although all reported mutations
are thought to lead to ligand-independent constitutive

activation of the RET receptor, autophosphorylation of
RET, and aberrant stimulation of downstream signaling
pathways. It follows that the molecular mechanisms of
mutations associated with these different phenotypes may
also be distinct and that these mechanisms may provide
clues to disease origin and, potentially, treatment for
patients with these mutations. Here, we discuss some of
the current understanding of the mechanisms of RET
dysfunction seen in MEN 2, and explore the potential
implications of these mechanisms.

RET Extracellular Domain Cysteine Residues
The most frequently identified RET mutations in MEN

2 affect cysteines in the extracellular cysteine-rich region
(primarily residues between Cys515 and Cys634) (Figure 1A;
Table 1). In the normal protein, intramolecular cysteine–
cysteine disulfide bonds contribute to the tertiary structure
of the RET extracellular domain. Correct positioning of
residues in this region is critical to interactions with GDNF–
GFRa ligand complexes (14,15,32). Amino acid substitu-
tions, resulting in replacement of a normal cysteine with any
amino acid, lead to loss of intramolecular bonds and to an
unpaired cysteine that is available for intermolecular
interactions with other mutant RET proteins (Figure 2A)
(33–35). These mutant RET dimers are constitutively active
in the absence of ligands. Furthermore, mutant dimers are
not recruited to lipid rafts through GFRa interactions, and
may be activated in other membrane compartments, which
can affect the nature and intensity of the resultant down-
stream signals (36,37). Downstream signaling regulation, via

Table 1 - Molecular effects of RET mutations in multiple endocrine neoplasia 2.

Mutation location

Affected RET

Codons

Putative function of the

wild-type residue Predicted mutation effects Phenotype

Recommended

intervention (8)

Extracellular-

cysteine rich

domain

C609

C611

C618

C620

C630

Contributes to tertiary

structure of RET through the

formation of intramolecular

disulfide bonds

Weakly activating. Alteration in

protein folding and maturation.

Formation of mutant RET dimers

that are constitutively active in

the absence of ligands

MEN 2A

and FMTC

Prophylactic thyroid

surgery before the age of

5. Under some conditions

may delay beyond 5 years

C634 Role in formation of

intramolecular disulfide

bonds

Strongly activating. Ligand-

independent dimerization of

receptor molecules, enhanced

phosphorylation of intracellular

substrates.

MEN 2A Surgery before age 5

Intracellular

tyrosine kinase

domain

L790, Y791 In the N-terminal lobe

of the RET kinase

Moderately activating. Affects ATP

binding and inter-lobe flexibility.

MEN 2A

and FMTC

May delay surgery

beyond 5 years

E768 In close proximity with

the ATP binding site

Alters interactions within the region

and facilitates the transition to an

active conformation

FMTC

V804 A gatekeeper residue

which regulates access to

the ATP binding site

Alters hinge flexibility and positioning

of RET helices for catalysis

FMTC

S891 C-terminal lobe of the

kinase, adjacent to the

activation loop of the kinase

Alters activation loop conformation

and promotes monomeric RET

activation

MEN 2A

and FMTC

A883 Situated next to

activation loop

Strongly activating. Local

conformational change which

destabilizes the inactive form of the

protein and promotes its activation

MEN 2B As early as possible

(within first year of life)

M918 Lies in the substrate-binding

pocket of the kinase and

plays a role in stabilizing

the receptor–ATP complex

Strongly activating. Alters protein

conformation and substrate specificity.

The mutant can dimerize and become

phosphorylated in the absence of

ligand stimulation

MEN 2B

FMTC, familial medullary thyroid carcinoma; MEN 2, multiple endocrine neoplasia 2; RET, REarranged during Transfection.
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interactions with ubiquitin ligases such as CasitasB-lineage
lymphoma proto-oncogene (CBL) (38), or with cellular
phosphatases such as SHP1 and SHP2 (39,40) that are
involved in limiting or terminating signals, differ from that
of the raft-associated wild-type receptor, enhancing the
effect of the oncogenic mutation.

Although the molecular mechanisms of activation are
similar, cysteine RET mutations also vary in impact. In
general, mutations located closer to the RET transmembrane
domain have greater transforming ability and are linked to
increased risks of more aggressive MEN 2 disease (41)
(Table 1). Codon 634 mutations confer the greatest degree of
RET activation, with higher levels of autophosphorylation
and transforming ability than the other cysteine mutations,
and are linked to broader phenotypes and more severe
disease, as described above. Interestingly, mutations of
other cysteine residues are believed to affect the efficiency of
RET protein folding and maturation, and to impair
transport to the cell membrane, resulting in decreased
levels of cell surface protein and weaker signaling capability
(33–35,42,43). In fact, a subset of RET cysteine mutations,
sometimes referred to as Janus mutations, can lead to a
partial loss-of-function phenotype, as well as to oncogenic
effects. These mutations, generally affecting codons 609, 611,
618 or 620, are thought to confer cell-type-specific decreases
in functional protein on the cell surface. Inactivating
mutations of RET can lead to the congenital abnormality
Hirschsprung disease, which is characterized by the absence
of the enteric neurons from the distal colon (44). Janus
mutations have been linked to an insufficiency of mature

RET protein in the gut, resulting in the Hirschsprung
phenotype, yet at the same time, risks remain high for MEN
2 phenotypes, as sufficient mature protein is expressed in
the thyroid for development of MTC (45–47).

RET Intracellular Domain Mutations
Intracellular RET kinase mutations fall into two groups:

high-penetrance mutations causing MEN 2B, and less
aggressive mutations that lead to FMTC or, more rarely,
MEN 2A (Table 1). These RET mutations fall within the N-
terminal and C-terminal lobes of the kinase (Figure 3).
Although the mutations are spread out along the linear
protein sequence (Figure 1A), they appear to cluster on
either the ATP-binding face or substrate-binding/autoinhi-
bitory face of the protein tertiary structure, suggesting some
common themes in their functional effects (Figure 3;
Table 1). The precise mechanisms by which these intracel-
lular mutations activate RET are various, but it is suggested
that they all do so through destabilizing the inactive form of
RET, and shifting the equilibrium of RET receptors towards
the active state (48).

MEN 2B Mutations
Over 95% of MEN 2B cases are associated with the same

methionine to threonine change at codon 918 (M918T) in the
RET kinase domain (Figure 3). Structurally, this residue lies
in the substrate-binding pocket of the kinase, and the M918T
mutation appears to increase RET–ATP binding affinity and
the stability of the active ATP-bound form, effectively

Figure 2 - Molecular mechanisms of pathogenic RET activation. Schematic diagrams showing mechanisms of RET activation in the
presence of various multiple endocrine neoplasia type 2 (MEN 2) mutations. (A) Substitutions of extracellular cysteines lead to
formation of intermolecular disulfide bonds and to constitutive RET dimerization and activation. (B) The MEN 2B mutation, M918T
(star) in the kinase domain, leads to a conformational change with multiple effects including an increase in RET kinase activity and
activation of receptors in either dimeric or monomeric form. (C) Intracellular kinase domain mutations asterisk implicated in familial
medullary thyroid carcinoma (FMTC) (e.g. residues 791 and 891), permit activation of monomeric RET, allowing for a partially active
conformation.
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making RET more active, more of the time (48–51). The
M918T mutation appears to increase the stability of
monomeric active forms of RET, but activation of these
mutants can also be further enhanced by binding of
GDNF–GFRa complexes, suggesting that these mutant
RET forms may induce signal transduction from both
within and outside the lipid rafts, perhaps via distinct
signaling complexes (Figure 2B). As a result, RET down-
stream signals are enhanced, and activation of targets is
increased, notably including upregulation of gene tran-
scripts that contribute to cell proliferation or to metastasis-
promoting cell behaviors (52,53). Although it has been
postulated that the M918T mutation alters the preferred
substrates of the mutant RET protein with respect to both
autophosphorylation of RET tyrosine residues, and phos-
phorylation of downstream signaling molecules (54,55),
novel downstream targets that cannot also be stimulated at
lower levels by other less active RET mutants or by ligand
activation of wild-type RET have not been broadly
identified (48–51,53).

An intriguing finding has been that activation of M918T
RET begins before the receptor arrives at the cell surface,
stimulating signaling pathways from the endoplasmic
reticulum before the receptor reaches its fully glycosylated
mature form (56), which has not been observed for other
mutants. RET signaling from intracellular compartments
may differ (in intensity or otherwise) from that at the
plasma membrane, which has been shown to be the case
when wild-type RET is internalized into endosomes

following ligand stimulation (57) and for cytosolic RET
mutants found in papillary thyroid carcinoma (37).

An alanine to phenylalanine substitution at codon 883
(A883F) is the only other recurring MEN 2B mutation
(58,59). Structurally, this residue lies between the activation
and catalytic loops of the kinase (Figure 3), and would be
predicted to increase the flexibility of these domains, so
destabilizing the inactive form of the protein and promoting
its activation. Although generally considered a high-risk
mutation, some studies suggest that it may have a lesser
effect than the M918T mutation (60).

A handful of instances of double mutations in MEN 2B
have also been reported: V804M/E805K (51), V804M/Y806C
(61), and V804M/S904C (62). It appears that the combina-
tion of two mild intracellular mutations can cooperate to
produce a more severe mutant. Each mutation alone
(V804M, E805K, Y806C, S904C) has low or no transforming
ability, consistent with the observation that V804M gener-
ally leads to FMTC (discussed below), but when coupled
together, they exert a synergistic effect on the transforming
ability of mutated RET (51,63).

Lower Risk Intracellular Domain Mutations
Recurrent mutations in the intracellular codons 768, 790,

791, 804, and 891 are found in patients with FMTC and, less
commonly, MEN 2A (20,64). This group of mutations is the
most diverse in functional effects, phenotypic variability,
and long-term clinical implications.

Figure 3 - Structure of the RET tyrosine kinase domain. Ribbon diagrams of the intracellular regions of activated RET, in two
orientations, showing the positions of key functional features of the kinase: the ATP binding pocket; the activation or autoinhibitory
loop; and the substrate binding pocket. Two orientations of the model, displaying the autoinhibitory/substrate binding face (left) and
the ATP-binding face (right), are shown. Amino acid residues that are mutated in patients with multiple endocrine neoplasia type 2
(MEN 2) are represented in the stick form. The three-dimensional representation was based on the crystal structure of the
phosphorylated (activated) RET tyrosine kinase domain (residues 709–990).
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Mutations of glutamic acid 768 occur almost exclusively
in patients with FMTC, whereas leucine 790 mutations
have been recognized in both FMTC and MEN 2A families
(20–23). These are considered lower penetrance mutations,
associated with later-onset disease, as reflected by evidence-
based clinical management recommendations suggesting
that delayed prophylactic surgery may be acceptable
(Table 1) (8). The E768 and L790 residues lie close to the
ATP binding site (Figure 3) and may alter interactions in
this region, and/or increase flexibility of domains, making
the transition to an active conformation relatively easy.

Mutation of serine 891 to an alanine was initially
recognized as an FMTC mutation, but more recently has
been linked to MEN 2A features (65). Codon 891 lies in a
conserved region of the RET protein, and its mutation
appears to alter protein autoinhibition and ATP binding,
favoring an active conformation. Interestingly, S891A and
Y791F mutations are functionally unique in that they do not
require RET dimerization for full activation, and so RET
autophosphorylation and downstream signaling are not
further enhanced by ligand binding (Figure 2C) (66). As for
other RET mutants, this means that RET is not recruited into
lipid rafts by GFRa, and hence it is likely that the nature,
intensity, and duration of signaling is altered for these
mutants (36–40).

The most common of these lower-risk mutations is
substitution of valine 804 (67). This residue lies in the
sequence linking the N-terminal and C-terminal lobes of the
kinase domain, in a conserved region critical for RET–ATP
binding, which is required for activation of the kinase.
Substitution of valine 804 for a leucine (V804L) or methionine
(V804M) changes the conformation of the ATP binding
pocket, making it more permissive for binding ATP, and thus
enhancing RET activation (51,68,69). Residue 804 represents a
classical gatekeeper residue (51), positioned so as to regulate
access to the ATP-binding site. Competitive binding to this
region is the mechanism of action of multikinase inhibitors
such as vandetanib, which has recently been approved for
treatment of advanced MTC (70). Although vandetanib
effectively inhibits wild-type and other mutant RET forms,
the V804L or V804M mutations confer resistance to the drug
(48,68). As other kinase inhibitors (such as sorafenib, which is
currently under review for managing advanced thyroid
carcinoma (71,72)) are not affected by codon 804 mutations
(68), RET mutation status can have profound clinical
importance for optimizing treatment regimens.

The molecular effects of substitution of phenylalanine for
tyrosine at codon 791 (Y791F) of RET are not clearly defined.
This residue is not a known site of tyrosine phosphorylation
(73), so direct protein interactions of RET with other
molecules are unlikely to be altered by this mutation. The
position of the residue, close to the ATP binding pocket,
may enhance ATP access, or may again alter protein
flexibility, favoring the active conformation. In vitro, Y791F
mutations have been shown to enhance signal transducer
and activator of transcription 3 (STAT3) signaling (74). Like
S891A mutants, the Y791F form of RET appears to exist as
an active monomer as it does not require dimerization to be
activated, and ligand binding does not further enhance
autophosphorylation or downstream signaling (66). The
significance of the Y791F mutation remains somewhat
controversial. Reports have identified this mutation, alone
or in combination with other mutations, in MEN 2A and
FMTC, and in sporadic MTC and pheochromocytoma

tumors (24,75). Co-occurrence of Y791F and codon 634
mutations has been shown to increase the risk of pheochro-
mocytoma in some families (76), whereas other studies have
concluded that this mutation is not pathogenic (77).
Interestingly, a clue is perhaps provided by studies
identifying Y791F and Y791N mutations in patients with
Hirschsprung disease (75,78,79), possibly suggesting that
mutations of tyrosine 791 may act as modifiers of multiple
phenotypes.

CONCLUSIONS AND PERSPECTIVES

The landscape of MEN 2 disease management has been
transformed by the identification and cataloguing of its
underlying genetic causes. Mutation genotype has guided
the evidence-based diagnosis, prediction, and management
of MEN 2 as for few other diseases. However, we are only
beginning to reap the benefits of functional characterization
of RET mutations. The new crop of anti-RET therapeutics
being developed has implications not just for MEN 2, but for
thyroid cancer in general, and for other diseases that have
recently been linked to RET activity including pancreatic
and breast cancers (80–82). Conversely, mutations or altered
expression of RET that result in decreased receptor function
have been linked to developmental defects, such as
Hirschsprung disease (44) and kidney anomalies (83,84),
and current research also links GDNF and survival of
dopaminergic neurons in Parkinson disease (85). Together,
these studies clearly indicate that understanding of the
normal functions and physiological role of RET are essential
in assessing the short-term and long-term benefits and
potential harms of novel RET-targeted therapeutics.
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