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OBJECTIVES: Lung transplantation is limited by the systemic repercussions of brain death (BD). Studies have
shown the potential protective role of 17b-estradiol on the lungs. Here, we aimed to investigate the effect of
estradiol on the long-lasting lung inflammatory state to understand a possible therapeutic application in lung
donors with BD.

METHODS: Female Wistar rats were separated into 3 groups: BD, subjected to brain death (6h); E2-T0, treated
with 17b-estradiol (50 mg/mL, 2 mL/h) immediately after brain death; and E2-T3, treated with 17b-estradiol
(50 mg/ml, 2 ml/h) after 3h of BD. Complement system activity and macrophage presence were analyzed. TNF-a,
IL-1b, IL-10, and IL-6 gene expression (RT-PCR) and levels in 24h lung culture medium were quantified. Finally,
analysis of caspase-3 gene and protein expression in the lung was performed.

RESULTS: Estradiol reduced complement C3 protein and gene expression. The presence of lung macrophages
was not modified by estradiol, but the release of inflammatory mediators was reduced and TNF-a and IL-1b gene
expression were reduced in the E2-T3 group. In addition, caspase-3 protein expression was reduced by estradiol
in the same group.

CONCLUSIONS: Brain death-induced lung inflammation in females is modulated by estradiol treatment. Study
data suggest that estradiol can control the inflammatory response by modulating the release of mediators after
brain death in the long term. These results strengthen the idea of estradiol as a therapy for donor lungs and
improving transplant outcomes.
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’ INTRODUCTION

Lung transplantation is the main treatment option for
patients with end-stage lung failure. However, despite advance-
ments in the medical field, there is still a shortage of suitable
lungs for transplantation (1). Although they mainly originate
from brain dead donors (2), brain death (BD) itself causes
hemodynamic, hormonal, and inflammatory effects, which
left alone, could decrease long-term transplant survival (3,4).
An often-neglected aspect of the effects of BD in lung grafts is
the immune response difference in female and male donors.

Studies show that hormonally active women tolerate trauma
better than men, producing less cytokines and having lower
mortality (5,6). However, in lung transplantation, there is a
higher risk of mortality for male recipients with grafts from
female donors (7,8). Hormonally active women, who would
normally have protection from traumatic injuries, could be
considered worse donors if BD results in a decline in female
sex hormones. This is illustrated by experimental studies
comparing brain dead female and male rats, where more
severe lung injury in females was associated with the reduc-
tion of female sex hormones, especially estradiol (9-11). Thus,
understanding the long-term role of estradiol in female lung
donors can contribute to therapeutic donor management
aiming to improve transplant outcomes. In this sense, the
evaluation of estradiol’s influence on the complement system
activity, which increases BD-induced lung injury and worsens
transplant outcomes (12,13), as well as on the inflammatory
response with activated neutrophil and macrophage release
of inflammatory mediators, is relevant. Therefore, in this
study, we investigated the effect of estradiol on BD-induced
lung inflammation, focusing on the long-term inflammatoryDOI: 10.6061/clinics/2021/e3042
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repercussions and complementary elements as a means to
understand estradiol as a possible therapeutic tool for lung
transplantation.

’ MATERIALS AND METHODS

Animals
Our study used female Wistar rats (60 days, n=32) during

the estrus or proestrus phases of the estral cycle (identified
via vaginal smears). The animals were housed at 23±2oC,
with a cycle of 12-h light-dark and ad libitum food and water.
All experiments were conducted according to the humane
care established by the ‘‘Principles of Laboratory Animal
Care’’ written by the National Society for Medical Research
and the ‘‘Guide for the Care and Use of Laboratory Animals’’
written by the Institute of Laboratory Animal Resources,
published by the National Institute of Health (NIH Publica-
tion No86-23, revised 1996). Experiments in this study were
also approved by the Faculdade de Medicina da Universi-
dade de São Paulo Ethic Committee for Research Projects
Analysis (SDC No4350/16/016).

Groups and treatment
Animals were randomly divided into three groups: BD,

animals subjected to BD; E2-T0, animals subjected to BD and
treated with estradiol for 6h, starting after BD confirmation
(T0); and E2-T3, animals subjected to BD and treated with
estradiol for 3h, starting 3h after BD confirmation (T3). The
animals from the treated groups received an intravenous
infusion of 17b-estradiol (E2–50 mg/mL, Sigma-Aldrichs,
USA) diluted in saline solution and administered continu-
ously (2 mL/h). For reference values, a group of false opera-
ted (sham) animals were subjected to cranial perforation
without a catheter and maintained for 6h under anesthesia
and mechanical ventilation.

Experimental brain death model
BD was induced as described by Breithaupt-Faloppa et al.

(9). Animals were anesthetized with isoflurane, and the
carotid artery and jugular vein were catheterized for the
mean arterial pressure (MAP) measurement and fluid replace-
ment and/or treatment administration. A balloon catheter
(Fogarty-4F, Baxter Healthcare Co., USA) was inserted into the
intracranial space and BD was induced by rapid inflation with
400 mL saline solution into the balloon. After BD confirmation
by increased MAP, reflex absence, and fixed and maximally
dilated pupil, anesthesia was interrupted. All animals were
monitored for 6h during BD.

Serum C3 quantification
The complement system component C3 was measured

using a commercial kit in serum samples, following the
manufacturer’s instructions (Abcam, UK).

Immunohistochemistry
The left lung lobe was insufflated with diluted Tissue-Tek

O.C.T. Compound (1:3, Sakura Finitek, Japan) and frozen
in a hexane solution using nitrogen. Cryosections of 10 mm
were fixed with acetone on a glass slide. For the immuno-
histochemistry reaction, endogenous peroxidase was blocked
(H2O2, 2%) followed by unspecific site blockage with bovine
serum albumin/Tris-buffered saline – Tween 20 (1%). Sub-
sequently, the slices were incubated with the primary
antibodies (1h at 37oC): anti-C5b-9 (1:200; Hycult Biotech,

The Netherlands), anti-CD80 (1:100 - Abcam), anti-C3 (1:100;
Millipore Corporation, USA), and anti-caspase-3 (1:100 –
Abcam). Secondary antibodies conjugated with horseradish
peroxidase (HRP) were incubated for 1h at 37oC: C5b-9 with
anti-mouse at 1:200 (Millipore Corporation), CD80 with anti-
rabbit at 1:200 (Millipore Corporation), C3 with anti-goat at
1:200 (Santa Cruz Biotechnology, USA), and caspase-3 with
anti-rabbit at 1:200 (Millipore Corporation). Staining was
performed using HRP as substrate (Diaminobenzidine,
Dako, USA). As a negative control, we incubated sections
in the absence of the first antibody. Staining areas were
quantified in lung sections after determining the threshold
and staining area fraction with an image analyzer (NIS
Elements, Nikon, Japan).

To analyze the CD163 expression, lung tissue samples
were embedded in paraffin and 4-mm sections were cut. After
deparaffinization, antigen retrieval (TRIS/HCl (pH 9.0) over-
night, 80oC) and endogenous peroxidase blocking (H2O2, 2%)
were performed. The CD163 primary antibody (Abcam) was
incubated at 1:500, the secondary antibody conjugated to
HRP (goat-anti-rabbit/HRP, Dako, USA) at 1:100, and the
secondary antibody (rabbit-anti-goat/HRP, Dako, USA) at
1:100. Finally, the reaction was developed by incubation with
diaminobenzidine (Dako, USA). As a negative control, we
incubated sections in the absence of the first antibody.
Staining areas were quantified in lung sections after
determining the threshold and staining area fraction with
an image analyzer (NIS Elements, Nikon, Japan).

Gene expression analysis
Lung samples were stored at -80oC in an RNA stabilization

solution. RNAwas extracted with a commercial kit (mirVana
Kit, Ambion, USA) and cDNAwas transcribed using a High-
Capacity Reverse Transcriptase Kit (Applied Biosystems, USA).
Real-time polymerase chain reaction (PCR) was performed
with SYBRsGreen PCR Master Mix (Applied Biosystems,
USA) and SYBRsGreen primers (Applied Biosystems, USA)
against b-actin, C3, C3aR, decay-accelerating factor (DAF),
tumor necrosis factor (TNF)-a, interleukin (IL)-1b, IL-10, IL-6,
and Caspase-3 (Table 1). Targets were amplified over one
cycle for 2 min at 50oC, one cycle for 10 min at 95oC, 40 cycles

Table 1 - Primer sequence used for real-time polymerase chain
reaction (PCR) analysis.

Real-time PCR SYBRsGreen

b-actin RN b-act fw 50-GGAAATCGTGCGTGACATTAAA-30

RN b-act rv 50GCGGCAGGGCCATCTC-30

C3 RN C3 fw 50-CAGCCTGAATGAACGACTAGACA-30

RN C3 rv 50-TCAAAATCATCCGACAGCTCTATC-30

C3aR RN C3AR fw 50-CCTAAGCAGATGTTCTGAGGTGAA-30

RN C3AR rv 50-AGGGTGGCCAGGCTGTCTA-30

DAF RN DAF fw 50-TGTCATCGTCTTGAAGGTGTGCTA-30

RN DAF rv 50-TATGCATTGAAAAGACCATTCCAGA-30

TNF-a RN TNFa fw 50-AGGCTGTCGCTACATCACTGAA-30

RN TNFa rv 50-TGACCCGTAGGGCGATTACA-30

IL-1b RN IL-1B fw 50-CAGCAATGGTCGGGACATAGTT-30

RN IL-1B rv 50-GCATTAGGAATAGTGCAGCCATCT-30

IL-10 RN IL-10 fw 50-GCAACAGCTCAGCGCATCT-30

RN IL-10 rv 50-ACAAACTGGTCACAGCTTTCGA-30

IL-6 RN IL-6 fw 50-CAACTTCCAATGCTCTCCTAATG-30

RN IL-6 rv 50-TTCAAGTGCTTTCAAGAGTTGGAT-30

Caspase-3 RN CASP-3 fw 50-GCATGCCAGAAGATACCAGTGG-30

RN CASP-3 rv 50-AGTTTCAGCATGGCGCAAA-30

DAF, decay-accelerating factor; TNF, tumor necrosis factor; IL, interleukin.
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for 15s at 95oC, and for 1 min at 60oC. Relative gene expres-
sion was determined in relation to reference values obtained
from sham animals (n=5).

Lung ex vivo culture
Following Breithaupt-Faloppa et al. (14), the lungs were

perfused through the pulmonary artery. The lung was then
cut into 4 small fragments, placed in 1 mL of Dulbecco’s
modified Eagle medium (Vitrocell, Brazil) at 37oC in a
humidified atmosphere of 5% CO2 for 24h. At the end of the
incubation period, lung fragments were dried and weighed,
and the medium was stored at -80oC for further analysis.

Lung culture inflammatory mediator quantification
TNF-a and IL-1b were quantified in lung culture medium

with enzyme-linked immunosorbent assay (ELISA) kits
performed according to the manufacturer’s instructions
(R&D Systems, Inc., USA). IL-10 and IL-6 were also quantified
in lung culture medium, but using a Milliplex MAP kit (EMD
Millipore Corporation, USA) using a Luminex 200 system
with xPonent Analyst Software v.4.2 (EMD Millipore Cor-
poration). The data were expressed as pg/ml/mg dry weight.

Statistical analysis
Study data are presented as means±standard error of

the mean (SEM) or median and 95% percentile interval (all
gene expression data). Comparisons between groups of data
were performed using GraphPad Prism Software v.8.3.1
(GraphPad Software Inc, USA), using the Kruskal-Wallis test
followed by Dunń s test for multiple comparisons.

’ RESULTS

Estradiol’s effect on complement system response
to BD

Figure 1 presents the serum quantification of the comple-
ment system C3 components. The high concentration of C3
in animals from the BD group was reduced by the longer
estradiol treatment (E2-T0). The C3 deposit in the lung tissue
is shown by immunohistochemistry analysis in Figure 2A.
The expression of C3 in the lung tissue was also reduced
by treatment with E2 for 6h (E2-T0). On the other hand,
the C5b9 deposit in the lung tissue was not influenced by
E2 treatment (Figure 2B). In addition, we analyzed the gene
expression of the complement system components (Figure 3).
Genes for the C3 and C3a receptor (C3aR) were upregulated
after BD, and estradiol treatment reduced C3 and down-
regulated C3aR, especially in the E2-T3 group (Figure 3 A,
B). The DAF gene expression was not altered by BD;
however, estradiol treatment had a downregulatory effect.

Macrophage presence in lung tissue
Immunohistochemical analysis of CD80 and CD163, mark-

ers for macrophage presence, is shown in Figure 4A and B,
respectively. The numbers of CD80- and CD163-positive
macrophages, which are highly present in lungs after BD,
were not altered by the estradiol treatment.

Long-lasting lung release of inflammatory
mediators
To study the effect of E2 on the long-lasting release of

inflammatory mediators by the lungs after BD, we measured
TNF-a, IL-1b, IL-10, and IL-6 in the lung culture medium

(24h). In parallel, their gene expression was also quantified.
Despite the reduction in TNF-a gene expression (Figure 5C)
observed in the lungs of treated animals in both groups, its
release by the lungs was lower only in the E2-T3 group
(Figure 5A). Conversely, IL-1b content in the medium of the
BD group lungs (Figure 5B) and tissue gene expression
(Figure 5D) were reduced in both estradiol-treated groups.
E2 treatment also tended to reduce IL-10 and IL-6 levels
in the lung culture medium of animals with BD, but no
significant differences were found (Figure 6A, B). In gene
expression (Figure 6C, D), E2 induced an IL-10 increase in
the E2-T3 group.

Gene and protein analysis of caspase-3
To analyze the effects of BD on apoptosis, we quantified

the gene and protein expression of caspase-3 in the lung
tissue (Figure 7A, B). Data showed that caspase-3 protein
expression after BD model was reduced in the E2-T3 group.
In relation to gene expression, we observed similar expres-
sion in all studied groups.

’ DISCUSSION

The lung is one of the organs most vulnerable to the effects
of BD, presenting higher rejection than other organs after
transplant, since BD affects lung tissue homeostasis and
triggers a persistent inflammatory process (3,4). As reported
previously, the present BD experimental model results in
lung injury, characterized by leukocyte infiltration and inflam-
matory mediators release in comparison to sham operated
animals (15). In this study, our main focus was to determine
whether estradiol treatment could influence the long-term
inflammatory response to BD in the lungs. Therefore, it is
important to mention the role of donor sex related to the risk
of mortality after lung transplant, which is reported to be
higher when lungs from female donors are transplanted in
male recipients (7,8). Indeed, an experimental study identi-
fied donor sex as an important factor in lung graft quality,
showing that females have more severe lung injury than

Figure 1 - Serum quantification of complement system C3
component. Female rats were separated in groups: sham animals
as control, BD animals subjected to brain death (BD), E2-T0
animals subjected to BD and treated with 17b-estradiol (E2)
starting after BD confirmation, and E2-T3 animals subjected
to BD and treated with E2 3h after BD confirmation. Data
are expressed as mean±SEM from 8-9 animals. Kruskal-Wallis
p=0.0891.
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males after BD, which has been associated with the reduction
of female sex hormones. Female sex hormones have been
proven to protect the lungs from injury after trauma events
(5,6). Particularly, estradiol has shown short-term effects in
controlling lung inflammation after BD (15). Thus, we anal-
yzed aspects of the immune response known to be relevant to
lung transplant success, such as complement system activity,
macrophage presence, apoptosis, and lung release of inflam-
matory mediators. We found that estradiol reduced lung and

systemic C3 and the IL-1b and TNF-a concentrations in lung
cultures, showing a reduction in the long-lasting release of
inflammatory mediators.

The complement system is an important part of the
immune response, generating effector molecules that can
potentially cause tissue injury, autoimmunity disease, allo-
reactivity, and transplant rejection (16). We have to consider
that hormonally active females have lower complement
system activity, when compared to males, and restricted

Figure 2 - Complement system C3 (A) and C5b-9 (B) component expression on lung tissue and respective photomicrography of
the immunohistochemical reaction. Female rats were separated in groups: sham animals as control, BD animals subjected to brain
death (BD), E2-T0 animals subjected to BD and treated with 17b-estradiol (E2) starting after BD confirmation, and E2-T3 animals
subjected to BD and treated with E2 3h after BD confirmation. Data expressed as mean±SEM from 5 photos/sample, 3 samples/animal,
5 animals/group. Kruskal-Wallis p=0.0442 (A) and p=0.8881 (B).

Figure 3 - Lung gene expression of complement system components C3 (A), C3aR (B) and decay-accelerating factor (DAF) (C).
Female rats were separated in groups: sham animals as control, BD animals subjected to brain death (BD), E2-T0 animals subjected
to BD and treated with 17b-estradiol (E2) starting after BD confirmation, and E2-T3 animals subjected to BD and treated with E2 3h
after BD confirmation. Data are expressed as median and 95% percentile interval from 6 animals. Kruskal-Wallis p=0.0015 (A), p=0.1715
(B) and p=0.005 (C).
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terminal pathway activity, resulting in the inability to pro-
mote inflammation through the membrane attack complex
(17,18). In our study, we found that estradiol could reduce
complement activity until the C3 level, which is explained
by the existence of an estradiol-responsive element in the
promoter region (19). A lower complement system acti-
vity will increase lung transplant success (12,13). Indeed,
by reducing C3, estradiol may inhibit actions of the
active fragments such as C3a and C5a, which cause tissue
damage by microvascular changes in flow and permeability,

leukocyte extravasation, and migration (20). They would
specifically attract and activate neutrophils and macro-
phages, releasing more complement fragments as well as
other cytokines and chemokines (21).
In the lung, alveolar macrophages are the first line of

defense, recognizing danger signals and attracting an influx
of neutrophils and monocytes that quickly derive into inflam-
matory macrophages, amplifying the response. If the inflam-
matory stimuli continue, inflammation cannot be resolved
and may cause tissue damage (22). Our data indicate an

Figure 4 - Lung protein expression of CD80 (A) and CD163 (B). Female rats were separated in groups: sham animals as control, BD
animals subjected to brain death (BD), E2-T0 animals subjected to BD and treated with 17b-estradiol (E2) starting after BD
confirmation, and E2-T3 animals subjected to BD and treated with E2 3h after BD confirmation. Data are expressed as mean±SEM from
5 photos/sample, 2 samples/animal, 5-6 animals/group. Kruskal-Wallis p=0.1534 (A) and p=0.1228 (B).

Figure 5 - TNF-a and IL-1b levels in the lung culture medium (A, B) and lung relative gene expression (C, D). Female rats were separated
into groups: sham animals as controls, BD animals subjected to brain death (BD), E2-T0 animals subjected to BD, and treated with
17b-estradiol (E2) starting after BD confirmation, and E2-T3 animals subjected to BD and treated with E2 3h after BD confirmation.
(A, B) Data are expressed as mean±SEM from to 7-9 animals. (C, D) Data are expressed as median and 95% percentile interval from
to 5-6 animals. Kruskal-Wallis p=0.1888 (A), p=0.0483 (B), p=0.005 (C) and p=0.0115 (D).
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Figure 6 - L-10 and IL-6 concentration in lung culture medium (A, B) and lung gene expression (C, D). Female rats were separated
in groups: sham animals as control, BD animals subjected to brain death (BD), E2-T0 animals subjected to BD and treated with
17b-estradiol (E2) starting after BD confirmation, and E2-T3 animals subjected to BD and treated with E2 3h after BD confirmation.
(A, B) Data are expressed as mean±SEM from 5 animals. (C, D) Data expressed as median and 95% percentile interval from 5-6 animals
(C) and 7 animals (D). Kruskal-Wallis p=0.1449 (A), p=0.2391 (B), p=0.0247 (C) and p=0.8071 (D).

Figure 7 - Lung gene (A) and protein (B) expression of caspase-3 with photomicrography of the immunohistochemical reaction. Female
rats were separated in groups: sham animals as control, BD animals subjected to brain death (BD), E2-T0 animals subjected to BD and
treated with 17b-estradiol (E2) starting after BD confirmation, and E2-T3 animals subjected to BD and treated with E2 3h after BD
confirmation. (A) Data are expressed as mean±SEM from 5 photos/sample, 2 samples/animal, 5 animals/group. (B) Data expressed as
median and 95% percentile interval from 6 animals. Kruskal-Wallis p=0.0328 (A) and p=0.7793 (B).
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apparent increase in macrophages in the lung tissue caused
by BD. Zhao et al. (23) showed that alveolar macrophages
are essential for acute damage in the lung after ischemia
and reperfusion, whereas neutrophils have a main role in
long-term injury. In a previous study from our laboratory
with female rats, we showed some cellular mechanisms by
which estradiol controlled the inflammatory process that
leads to lung injury after 6h in the BD model, especially by
reducing leukocyte infiltration (15). However, we found that
estradiol may exert a more prolonged effect on macrophage
activation and recruited neutrophils. The concentration of
mediators released in the lung culture, independent of further
stimuli from the system and the expression of their genes,
was reduced by E2. Considering how the BD inflammatory
response was altered by an estradiol infusion to the donor
suggests a reduction in the graft’s long-lasting inflamma-
tory response.
In acute lung injury, TNF-a and IL-1b are considered

‘‘early response cytokines,’’ produced by alveolar macro-
phages through the activation of nuclear factor kappa B (24).
They increase adhesion molecules and chemokine release,
attracting more leukocytes. In the later phase of inflamma-
tion, neutrophils and macrophages produce superoxide
anion and matrix metalloproteinases 2 and 9, causing
damage to basal membranes and epithelial cells in the lung
(3). These cells play an obligatory role in the persistence
of the inflammatory response, leading to chronic inflamma-
tion (25). A previous study showed that estradiol reduces
metalloproteinase activity, intercellular adhesion molecule
1 expression, and leukocyte infiltration (15). In this context,
if estradiol is able to reduce the future release of TNF-a
and IL-1b by resident and infiltrated cells, it would affect
the long-term inflammatory response. In light of our
results, we infer that estradiol plays a role in controlling
lung inflammation by controlling leukocyte release of
inflammatory mediators, such as IL-1 b and complement
fragments, resulting in better lung quality and influencing
the transplantation outcome.
Previously, we also reported that estradiol is able to reduce

caspase-3 expression and increase BCL-2, an anti-apoptotic
protein in the heart tissue of brain dead females (26). Our
data showed that BD-induced lung apoptosis was regulated
by estradiol treatment, as evidenced by the lower expression
of caspase-3. Activation of caspase-3, a major executioner of
caspase in the apoptosis process, signifies cell death. There-
fore, a treatment that inhibits caspase could reduce lung
injury (27,28). Notably, the complement system could also
have a role in caspase-3 expression. A study by Hu et al. (29)
identified that complement activity can lead to apoptosis of
alveolar macrophages, contributing to the development of
acute lung injury. We suggest that estradiol could influence
apoptosis not only by reducing complement activity, but
also by reducing the release of TNF-a, which is known to
induce cell death signaling through caspase-3 activation, the
extrinsic pathway (30).
We understand that female sex hormones play an important

role in BD-induced short- and long-term lung inflammation
and female donor treatment with estradiol could regulate this
response. The results presented here strengthen the possibility
of estradiol as a donor therapeutic treatment, resulting in the
improvement of lung grafts. We suggest that further research
on estradiol as a therapy for controlling lung graft immune
response after transplant is necessary as well as its application
in graft preservation maneuvers.
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