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Resveratrol attenuates chronic pulmonary embolism-related endothelial cell
injury by modulating oxidative stress, inflammation, and autophagy
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� Resveratrol can effectively improve pulmonary thromboembolism-induced PAEC injury.
� Resveratrol can reduce pulmonary arterial pressure through a variety of mechanisms.
� These findings may contribute to the treatment of PH in the future.
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A B S T R A C T

Objectives: Due to Pulmonary Artery Endothelial Cell (PAEC) dysfunction, Pulmonary Hypertension (PH) persists
even after the Pulmonary Embolism (PE) has been relieved. However, the mechanism behind this remains
unclear.
Method: Here, the authors incubated Human PAECs (HPAECs) with thrombin to simulate the process of arterial
thrombosis.
Results: CCK8 results showed a decrease in the viability of HPAECs after thrombin incubation. In addition, the
expression of Tissue Factor (TF), Monocyte Chemoattractant Protein 1 (MCP-1), VCAM-1, ICAM-1, cleaved cas-
pase 3, cleaved caspase 9, and Bax protein were all increased after thrombin incubation, while Bcl-2 was
decreased. The effects of 3-MA treatment further suggested that autophagy might mediate the partial protective
effects of Resveratrol on HPAECs. To observe the effects of Resveratrol in vivo, the authors established a Chronic
Thromboembolic Pulmonary Hypertension (CTEPH) model by repeatedly injecting autologous blood clots into a
rat’s left jugular vein. The results exhibited that Mean Pulmonary Arterial Pressure (mPAP) and vessel Wall Area/
Total Area (WA/TA) ratio were both decreased after Resveratrol treatment. Moreover, Resveratrol could reduce
the concentration and activity of TF, vWF, P-selectin, and promote these Superoxide Dismutase (SOD) in plasma.
Western blot analysis of inflammation, platelet activation, autophagy, and apoptosis-associated proteins in pulmo-
nary artery tissue validated the results in PHAECs.
Conclusions: These findings suggested that reduced autophagy, increased oxidative stress, increased platelet acti-
vation, and increased inflammation were involved in CTEPH-induced HPAEC dysfunction and the development
of PH, while Resveratrol could improve PAEC dysfunction and PH.
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Introduction

Pulmonary Embolism (PE) has a very high mortality rate, ranking as
the third most common cardiovascular disease.1 Clinical investigations
have shown that PE carries a very poor prognosis, with a mortality rate
of 13% and 26% within 1 month and 1 year of diagnosis, respectively,
posing a serious threat to patients' lives.2 Chronic Thromboembolic Pul-
monary Hypertension (CTEPH) is a chronic development of Pulmonary
Hypertension (PH) in the pulmonary arteries and their branches due to
thromboembolism, resulting in long-term obstruction of blood flow, and
consequent intimal thickening and remodeling of the small pulmonary
arteries.3,4 Impaired Pulmonary Artery Endothelial Cells (PAECs) and
abnormal function play an important role in this process.5,6 Olaf Mercier
et al.7 suggested that PAECs in patients with CTEPH may induce Pulmo-
nary Artery Smooth Muscle Cell (PASMC) growth and monocyte migra-
tion via paracrine of growth factors and cytokines, aggravating fibrotic
vascular remodeling.

Resveratrol is a polyphenolic compound isolated from Veratrum
grandiflorum with a variety of biological activities including antioxi-
dant, anti-inflammatory, and anti-tumor properties.8 Resveratrol has
been reported to improve PH by modulating multiple signaling
pathways. For example, Resveratrol inhibits SphK1-mediated NF-κB
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activation and suppresses PASMC proliferation and pulmonary vessel
muscularization.9 According to Ying-Ying Liu et al.,10 Resveratrol inhib-
its the proliferation of PASMCs by regulating the miR-638/NR4A3/
cyclin D1 axis. Additionally, Resveratrol activates the SIRT1 pathway
and regulates the expression of p21 and cyclin D1 in PASMCs.11 Resvera-
trol prevents PASMCs proliferation by inhibiting the PI3K/AKT pathway
and hypoxia-induced arginase II expression.12 Except for its effect on
proliferation, Resveratrol administration inhibits HIF-1 alpha expression
in vivo and in vitro, suppressed peripulmonary artery inflammatory cell
infiltration, and reduces hypoxia-induced Reactive Oxygen Species
(ROS) production in PAMSC.13 In terms of effects on inflammation, Res-
veratrol is also reported to inhibit PE-induced MCP-1 expression and
MAPK pathway and reduced mean pulmonary artery pressure (mPAP)
in rats with PE.14 Moreover, Resveratrol inhibits the RhoA-ROCK
signaling pathway, suppresses Th17 cell differentiation, and improves
PH15.

Although the effects of Resveratrol on PE or PH are known, there are
few available reports on the role of Resveratrol in PAECs. According to
Bruder et al.,16 Resveratrol treatment produces an elongation of bovine
PAECs in a dose-dependent manner. Moreover, Resveratrol also has anti-
inflammatory effects on PAECs. For example, the study of Jian-Wei Lin et
al.17 showed that Resveratrol down-regulated TNF-α-induced MCP-1 level
in primary rat PAECs via the MAPK signaling pathway. Besides, Resvera-
trol and its metabolites improve HAECs damage and inflammation, mani-
fested by reduced eotaxin-1 responses in atherosclerosis.18 Except for
anti-inflammatory effects, Resveratrol also significantly improved endo-
thelial dysfunction and attenuated oxidative stress and NADPH oxidase
expression in small pulmonary arteries induced by monocrotaline in
rats.19 However, the role of Resveratrol in PAECs has not been studied in
the CTEPH model or in human-derived PAECs.

In this study, by incubating Human PAECs (HPAECs) with thrombin
and repeatedly injecting autologous blood clots into rat left jugular vein,
the authors investigated the effects of Resveratrol on CTEPH in vitro and
in vivo. Through detecting the expression of inflammatory cytokines,
chemokines, SOD, platelet activation markers, autophagy-related pro-
teins, and apoptosis-related proteins in HPAECs and pulmonary artery
tissues, the authors explored the possible mechanisms by which Resvera-
trol protected PAECs to provide a basis for the clinical application of
Resveratrol.

Materials and methods

HPAEC culture

HPAECs (ATCC, PCS-100-022, Manassas, VA, USA) were cultured in
Endothelial Basal Medium 2 (EBM2) containing 10% FBS, 100 U/mL
Fig. 1. HPAECs were damaged upon thrombin stimulation. A, HPAEC viability upon t
1, VCAM-1, and ICAM-1 in HPAECs. C, Western blot analysis of caspase 3, caspase 9, c
0.01; *** p < 0.001. All experiments were repeated three times.
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penicillin, and 100 U/mL streptomycins at 37°C with 5% CO2. After
growth to confluence, HPAECs were incubated in the same serum-free
EBM2 medium for 1‒2 hours, stimulated with thrombin that mimics the
chronic thrombotic stimulation process in CTEPH, and incubated with
various concentrations of RSV (5, 10 or 20 μM, Sigma-Aldrich, St. Louis,
MO, USA). Cell assays were done on HPAECs within passages 7.
CTEPH model

Twenty-seven male Sprague Dawley rats (Shanghai SLAC Laboratory
Animal Corporation, Shanghai, China), weighing 250‒300 g and
3 months old, were housed in an air-conditioned room at 23 ± 2°C
and 65 ± 5% humidity, with free access to food and water. This study
was approved by the Ethics Committee of Jinshan Hospital Affiliated
with Fudan University. The rats were randomly divided into Sham,
CTEPH, and CTEPH+RSV groups, and each group was divided into
three subgroups according to the timing of observation (1 week, 2 weeks
and 4 weeks), with 3 rats in each group. Autologous blood clots were
prepared and CTEPH models were established according to a previous
study.20 RSV (10 mg/kg/day) was intraperitoneally injected to the rats
for 1h prior to the start of the CTEPH protocol.
Cell counting kit-8 (CCK8) assay

HPAEC viability was assessed using CCK8 (Beyotime C0037, Wuhan,
China) according to the manufacturer's protocol. Briefly, a total
of 1 × 104 cells/well were inoculated in 96-well plates. After thrombin
treatment, 10 µL of CCK8 solution was added to the medium and incu-
bated at 37°C and 5% CO2 for 2h. Absorbance at 6h, 12h, and 24h was
measured at 450 nm using an Eon spectrophotometer (BioTek Instru-
ments, Winooski, VT, USA). The experiments were performed indepen-
dently in triplicate.
Western blot

After lysis of HPAECs or pulmonary artery tissues, protein concentra-
tions were determined by the BCA method. Tissue Factor (TF), MCP-1,
Acetylated-Forkhead box O1 (Ac-FOXO1), FOXO1, VCAM-1, ICAM-1,
caspase 3, caspase 9, cleaved caspase 3, cleaved caspase 9, Bax, Bcl-2,
p62, LC3, von Willebrand Factor (vWF), and P-selectin protein expres-
sion were analyzed by Western blot analysis according to a previous
study.21 For the detection of target proteins in cells, rabbit anti-human
primary antibody (Santa Cruz Biotechnology, Dallas, TX, USA) was
used. For detection of target proteins in tissues, rabbit anti-rat primary
antibody (Abcam, Shanghai, China) was used. After incubation of
hrombin stimulation was detected by CCK-8. B, Western blot analysis of TF, MCP-
leaved caspase 3, cleaved caspase 9, Bax, and Bcl-2 in HPAECs. * p < 0.05; ** p <
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primary antibody overnight at 4°C, membranes were incubated with
goat anti-rabbit secondary antibody (1:5000, Abcam) for 2h.

Enzyme-linked immunosorbent assay (ELISA) and activity assay

After the rats were anesthetized, blood was taken from the ophthal-
mic vein plexus and left to stand at 4°C. Then, the supernatant was col-
lected by centrifugation. IL-6, IL-1β, TF, MCP-1, MPO, SOD, vWF, P-
selectin, VCAM-1, ICAM-1 level in rat peripheral blood and HPAECs cul-
ture supernatants were determined as per the instructions of the ELISA
kits (R&D Systems, Minneapolis, MN, USA). Optical Density (OD)
at 450 nm was recorded using an Eon spectrophotometer (BioTek Instru-
ments, Winooski, VT, USA). Experiments were performed independently
in triplicate. Colorimetric activity assays were performed to determine
plasma TF (Abcam), MPO (Sigma-Aldrich), SOD (Sigma-Aldrich), and
vWF activity (Abcam) in rats at weeks 1, 2 and 4, respectively, according
to the manufacturer's instructions.
Fig. 2. Resveratrol improved HPAECs damage. A, The viability of HPAECs treated wi
FOXO1, FOXO1, VCAM-1, ICAM-1 in HPAECs treated with Resveratrol. C, Western blo
Bcl-2 in HPAECs treated with Resveratrol. D, Western blot analysis of p62 and LC3 in H
tin, VCAM-1, and ICAM-1 in HPAEC culture supernatant were assessed by ELISA. F, RO
1, vWF, P-selectin, Ac-FOXO1, and FOXO1 in HPAECs treated with Resveratrol or 3-
caspase 9, Bax, and Bcl-2 in HPAECs treated with Resveratrol or 3-MA.
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ROS measurement

The ROS assay was performed as previously described.22 Briefly,
1 × 106 cells were incubated with 10 µmoL/L DCF-DA (Sigma) at 37°C
for 30 min and cell fluorescence intensity was recorded by FACS Canto
flow cytometer and analyzed using FlowJo Software (Tree Star Inc, OR,
USA).

mPAP measurement

The mPAP was recorded according to the previous method.14

After repeated injections of autologous blood clots at 1w, 2w and
4w respectively, rats were anesthetized with 10% chloral hydrate
(0.3 g/kg). A polyvinyl chloride catheter was slowly inserted into
the right external jugular vein and connected to a biosignal
recorder. The mPAP was recorded when the catheter reached the
pulmonary artery.
th Resveratrol was detected by CCK-8. B, Western blot analysis of TF, MCP-1, Ac-
t analysis of caspase 3, caspase 9, cleaved caspase 3, cleaved caspase 9, Bax, and
PAECs treated with Resveratrol. E, IL-6, IL-1β, MCP-1, MPO, SOD, vWF, P-selec-
S in HPAECs was measured by flow cytometry. G, Western blot analysis of MCP-

MA. H, Western blot analysis of caspase 3, caspase 9, cleaved caspase 3, cleaved
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Histological analysis

According to a previous report, lungs were dissected, and pulmonary
artery tissue was extracted.23 Lung tissues were fixed in 10% formalde-
hyde for 24h, paraffin-embedded, and sectioned at 5 μm thickness.
Hematoxylin-Eosin (HE) staining was performed according to a previous
method.21 Pulmonary artery pathological changes were observed by
light microscopy (BX5, Olympus, Tokyo, Japan), and the degree of pul-
monary artery remodeling was evaluated by calculating the Wall Area/
Total Area (WA/TA) ratio of pulmonary artery vessel using ImageJ soft-
ware (NIH, Bethesda, MD).
Statistical analyses

Data were analyzed using GraphPad Prism 9.0.0 software (GraphPad
Software, San Diego, CA, USA) and expressed as mean ± standard devia-
tion. One-way analysis of variance (ANOVA) or unpaired Student's t-test
was used for statistical analysis of differences between groups, with a p-
value < 0.05 considered a significant difference.
Results

Thrombin promoted HPAEC inflammatory injury

The authors first incubated HPAECs with thrombin to simulate the
process of PE. CCK-8 assay showed that thrombin inhibited HPAEC via-
bility in a time-dependent and concentration-dependent manner
(Fig. 1A). Thrombin of 0.5 U/mL and 12h incubation duration was cho-
sen for subsequent experiments. The authors then examined the effects
of thrombin on the expression of TF, chemokines, and adhesion mole-
cules in HPAECs. The results showed that thrombin promoted the
expression of TF, MCP-1, VCAM-1, and ICAM-1 (Fig. 1B). In addition,
Fig. 3. Resveratrol lowered mPAP and altered plasma cytokine profiles. A, mPAP w
MCP-1, IL-1β, IL-6, VCAM-1, ICAM-1, vWF, and P-selectin in peripheral blood of CTE
sured.
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Western blot analysis of apoptosis-related proteins also showed that
thrombin could promote apoptosis in HPAECs (Fig. 1C).

Resveratrol improved thrombin-induced HPAEC dysfunction

The effects of Resveratrol on HPAEC dysfunction were investigated
via multiple assays. CCK-8 assay showed that Resveratrol could partially
restore the thrombin-induced decrease in HPAEC viability (Fig. 2A). In
addition, Western blot results showed that Resveratrol could inhibit the
expression of TF, MCP-1, Ac-FOXO1, VCAM-1, and ICAM-1 (Fig. 2B).
The detection of apoptosis-related and autophagy-related proteins
revealed that Resveratrol could inhibit apoptosis of HPAEC (Fig. 2C)
and promote autophagy of HPAEC (Fig. 2D). Moreover, the authors
examined the effects of Resveratrol on inflammation and injury using
ELISA. The results showed that Resveratrol could inhibit the expression
of IL-6, IL-1β, MCP-1, MPO, vWF, P-selectin, VCAM-1, ICAM-1 and pro-
mote the expression of SOD (Fig. 2E). Meanwhile, flow cytometry results
showed that Resveratrol could scavenge ROS to some extent (Fig. 2F).
Besides, through western blot, the authors found that the inhibitory
effect of Resveratrol on MCP-1, vWF, P-selectin, Ac-FOXO1, cleaved cas-
pase 3, cleaved caspase 9, and Bax was partially reversed by 3-MA
(Fig. 2G, H).

Resveratrol inhibited the general level of inflammation, oxidative stress, and
platelet activation in CTEPH rats

The role of Resveratrol in vivo was investigated in a CTEPH rat
model. As shown in Fig. 3A, elevated mPAP in CTEPH rats could be
reduced by Resveratrol. This change occurred from the first week
onwards. ELISA results showed that Resveratrol was able to downregu-
late the levels of MPO, TF, MCP-1, IL-1β, IL-6, VCAM-1, ICAM-1, vWF,
P-selectin and increase the level of SOD in peripheral blood (Fig. 3B). In
addition, the activity of TF, MPO, and vWF in peripheral blood
as recorded in CTEPH rats. B, ELISA assay for concentrations of MPO, SOD, TF,
PH rats. C, The activity of TF, MPO, SOD and vWF in peripheral blood was mea-



Fig. 4. Resveratrol promoted thrombolysis and pulmonary artery function recovery. A, Western blot assay for TF, MCP-1, Ac-FOXO1, FOXO1, VCAM-1, and ICAM-1
expression in pulmonary artery tissues. B, Western blot assay for caspase 3, caspase 9, cleaved caspase 3, cleaved caspase 9, Bax and Bcl-2 expression in pulmonary
artery tissues. C, Western blot assay for p62 and LC3 expression in pulmonary artery tissues. D, HE staining for pulmonary tissues. E, WA/TA ratio was measured.
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decreased accordingly after Resveratrol treatment, while SOD activity
increased (Fig. 3C).

Resveratrol alleviated inflammatory damage to the pulmonary arteries in
CTEPH rats

Western blot analysis was performed in dissected pulmonary artery
tissues. The results showed that Resveratrol could inhibit the expression
of TF, MCP-1, Ac-FOXO1, VCAM-1 and ICAM-1 (Fig. 4A). After Resvera-
trol treatment, the protein expression of pro-apoptotic and p62
decreased, while the expression of LC3-Ⅱ protein increased (Fig. 4B, C).
In addition, HE is staining of lung tissues revealed that Resveratrol alle-
viated CTEPH-induced thrombosis and pulmonary artery wall thicken-
ing (Fig. 4D, E).

Discussion

PAEC dysfunction contributes to CTEPH progression. Here, the
authors found that Resveratrol ameliorated thrombin-induced HPAEC
cell apoptosis, which might be related to the inhibition of inflammatory
response, platelet activation, oxidative stress, and promotion of autoph-
agy by Resveratrol. In a CTEPH rat model, the authors further verified
5

the effects of Resveratrol on pulmonary arteries. The authors found that
Resveratrol reduced mPAP, as well as decreased the levels of inflamma-
tory cytokines, chemokines, and adhesion molecules in peripheral blood
increasing the levels of SOD. Additionally, Resveratrol could inhibit
platelet activation. In pulmonary artery tissues, Resveratrol treatment
resulted in decreased levels of apoptosis, increased levels of autophagy,
and improvement in CTEPH-induced thrombus formation and thickened
pulmonary artery walls. These findings suggested that Resveratrol might
be a promising medication for CTEPH.

Resveratrol is a naturally non-flavonoid polyphenol,24 abundant in
wine, berries and peanuts.8 It has a plasma half-life of only 8 to
14 minutes25 and peaks in plasma after 1 hour after ingestion.26 Many
studies have labeled Resveratrol as an antioxidant, anti-platelet activa-
tor or anti-inflammatory agent that could play a potential therapeutic
role in cardiovascular disease by scavenging ROS in vivo, inhibiting
cyclooxygenases, and activating many anti-inflammatory pathways.27

For example, Resveratrol increased serum concentrations of SIRT1,
thereby inhibiting NF-κB signaling pathway activation and the synthesis
of pro-inflammatory cytokines.28 Rivera et al. showed that Resveratrol
could induce lipocalin expression and improved cardiometabolic disor-
ders.29 A derivative of Resveratrol helped to release nitric oxide and
inhibit platelet aggregation via the arachidonic acid agonist pathway.30
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Park et al.31 described Resveratrol as a potent antagonist of phosphodi-
esterase, reducing the contractile response of vascular smooth muscle
cells in a PDE1-dependent manner and alleviating hypertension. More-
over, Resveratrol might reduce insulin resistance by decreasing the
expression of enzymes responsible for free radical production and
increasing the production of enzymes involved in scavenging ROS.32

Resveratrol as a natural autophagy regulator has a therapeutic role in
many diseases. For example, it could prevent and treat Alzheimer's Dis-
ease by regulating the mTOR signal pathway, activating SIRT1, and
deacetylating histone acetylases.33 Additionally, Resveratrol has neuro-
protective effects through modulation of autophagy- and inflammation-
related pathway to reduce cerebral ischemic injury.34 Moreover, Resver-
atrol prevents post-ovulatory oocyte senescence by inducing mitochon-
drial autophagy.35 However, the effects of Resveratrol on PAECs in
CTEPH have not been reported. Whether it ameliorates CTEPH-induced
PAEC dysfunction by modulating autophagy has also never been
studied.

In this study, to investigate the roles of Resveratrol in CTEPH, the
authors tested a number of biochemical parameters. Considering that
inflammation is a possible driver of CTEPH progression,36,37 inflamma-
tory mediators were measured. MCP-1 is a key mediator in stimulating
the infiltration of inflammatory cells into the lung, reported being
expressed in all pulmonary artery walls after pulmonary thromboembo-
lism.17 VCAM-1 and ICAM-1 are inflammatory mediators secreted by
endothelial cells that promote the infiltration of inflammatory cells into
the pulmonary artery tissue.38 MPO, a marker of neutrophil activation,
is enriched in neutrophils and released upon external stimuli.39 Besides,
TF is a kind of pro-coagulant whose upregulated expression plays a key
role in thrombosis.40 SOD, also called superoxide dismutase, controls
the levels of various ROS and reactive nitrogen, thereby limiting the
potential toxicity of these molecules.41 Furthermore, vWF and P-selectin
were also measured. When endothelial cells are damaged, they may
secrete vWF into the circulation, which binds to circulating platelets to
form emboli and mediates the recruitment of leukocytes to the vascular
endothelial surface along with P-selectin.42 The dysregulation of these
biochemical parameters and effectiveness of Resveratrol suggested the
importance of inflammation in driving PH progression and opens up
new prospects for more targeted treatment. The present results implied
that current or new immunosuppressive agents targeting inflammation
might be promising drugs for CTEPH. However, the clinical application
of these drugs should be following careful validation of safety and effec-
tiveness.

In conclusion, by constructing in vitro and in vivo models of PE, the
authors found that Resveratrol can effectively improve pulmonary
thromboembolism-induced PAEC injury and reduce pulmonary arterial
pressure through a variety of mechanisms, including anti-inflammatory,
anti-oxidant, anti-coagulant and pro-autophagy effects.
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