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Early prediction of acute respiratory distress syndrome complicated by acute
pancreatitis based on four machine learning models
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H I G H L I G H T S

� ML can be a practical and effective early prediction method of AP complicated by ARDS.
� PaO2, CRP, PCT, LA, Ca2+, NLR, WBC, and AMY were used as the optimal subset of features to early identify AP patients with a high risk for developing ARDS in ML.
� BC was the superior predictive model and EDTs could be promising for predicting large samples.
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A B S T R A C T

Background: Acute Respiratory Distress syndrome (ARDS) is a common complication of Acute Pancreatitis (AP)
and is associated with high mortality. This study used Machine Learning (ML) to predict ARDS in patients with
AP at admission.
Methods: The authors retrospectively analyzed the data from patients with AP from January 2017 to August 2022.
Clinical and laboratory parameters with significant differences between patients with and without ARDS were
screened by univariate analysis. Then, Support Vector Machine (SVM), Ensembles of Decision Trees (EDTs),
Bayesian Classifier (BC), and nomogram models were constructed and optimized after feature screening based on
these parameters. Five-fold cross-validation was used to train each model. A test set was used to evaluate the pre-
dictive performance of the four models.
Results: A total of 83 (18.04%) of 460 patients with AP developed ARDS. Thirty-one features with significant dif-
ferences between the groups with and without ARDS in the training set were used for modeling. The Partial Pres-
sure of Oxygen (PaO2), C-reactive protein, procalcitonin, lactic acid, Ca2+, the neutrophil:lymphocyte ratio,
white blood cell count, and amylase were identified as the optimal subset of features. The BC algorithm had the
best predictive performance with the highest AUC value (0.891) than SVM (0.870), EDTs (0.813), and the nomo-
gram (0.874) in the test set. The EDT algorithm achieved the highest accuracy (0.891), precision (0.800), and F1
score (0.615), but the lowest FDR (0.200) and the second-highest NPV (0.902).
Conclusions: A predictive model of ARDS complicated by AP was successfully developed based on ML. Predictive
performance was evaluated by a test set, for which BC showed superior predictive performance and EDTs could
be a more promising prediction tool for larger samples.
Keywords:
Acute respiratory distress syndrome
Acute pancreatitis
Machine learning
Prediction model
).

cepted 25 April 2023

r España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
Introduction

Acute Pancreatitis (AP) is a common inflammatory disorder that can
lead to Systemic Inflammatory Response Syndrome (SIRS), local and sys-
temic complications, and life-threatening organ injury or Multiple Organ
Failure (MOF). Although most patients (80%) develop a mild episode of
AP with a good prognosis, about 20% develop moderately severe or
severe AP (MSAP or SAP) with local complications and transient or
persistent organ failure.1
Acute Respiratory Distress Syndrome (ARDS) is a syndrome of
inflammatory pulmonary edema that causes hypoxia and is associated
with increased permeability of the lung epithelium2 and vascular endo-
thelium that occurs in approximately 30% of patients with SAP.3 The
lung is often damaged initially during AP, and ARDS is a common com-
plication. Respiratory failure is the most common type of organ failure
(92%) during the early and late phases of AP with a 37%mortality rate.4

The main cause of the high fatality rate may be related to the lack of pre-
dicting early organ failure and the management strategy. However,
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ARDS is somewhat preventable, and clinical outcomes may improve
after appropriate interventions during the early phase of ARDS.5 There-
fore, it is important to identify patients with AP early who are at high
risk for developing ARDS. A more accurate and convenient early predic-
tive tool is needed to help physicians identify and prevent progression to
ARDS.

Applications of Artificial Intelligence (AI), such as Machine Learning
(ML), have become more practical in the field of disease outcome predic-
tion with continuous improvements in computer science. ML is an
emerging field and has widely infiltrated clinical medical studies. Nota-
bly, ML analysis relies on different deep iterative algorithms to integrate
candidate variables, so highly accurate predictions can be obtained.

This study developed ARDS risk prediction models for patients with
AP in the early stage from a larger set of clinical parameters. All of the
models were tested in an independent cohort of AP patients. The ability
to accurately risk stratifies may facilitate more timely interventions that
are conducive to high-risk ARDS management via early identification.

Methods

Participants

The authors performed a retrospective observational study of AP
patients based on the STROBE checklist. Our cases were from patients
who were admitted to the Xuanwu Hospital of Capital Medical Univer-
sity from January 2017 to August 2022. The hospital has an independent
acute pancreatitis therapy center, including a gastroenterology intensive
care unit. The inclusion criteria were age ≥18 years and a confirmed
diagnosis of AP. The exclusion criteria were more than 24h after onset
of symptoms, history of AP attacks, AP with chronic obstructive pulmo-
nary disease, AP with malignant tumors, AP with chronic heart failure
or kidney disease, AP and pregnant, or AP with HIV/AIDS or another
immune-deficiency disorder. All patients received standard medical
treatment to manage AP according to international guidelines.

The AP diagnostic criteria were set up according to the revised
Atlanta classification of acute pancreatitis 2012.6 At least two of the fol-
lowing three criteria had to be satisfied for the AP diagnosis: abdominal
pain, increased serum levels of Amylase (AMY) and/or Lipase (LPS) to at
least three times the normal upper limit, and image findings of AP in
abdominal ultrasonic and/or a Computed Tomography (CT) scan.
Hypertriglyceridemia associated with AP was defined as levels of trigly-
cerides ≥ 11.3 mmoL/L (1000 mg/dL) or ≥5.65 mmoL/L (500 mg/dL)
accompanied by milky serum.6

The ARDS diagnosis was made according to the Berlin definition as
acute hypoxemia, a decrease in the PaO2/FiO2 index <300 mmHg, and
bilateral lung infiltration in an X-Ray/CT scan that was not totally illu-
minated by fluid overload or cardiac failure.7 Arterial blood gas analysis
was performed for patients as well as when a patient developed dyspnea
during hospitalization.

Data collection

The data included clinical characteristics and laboratory findings,
and patients were admitted in ≤24h. Demographic and clinical features,
including age, gender, Body Mass Index (BMI), etiology (hypertriglyceri-
demia, biliary, alcohol, and other), Heart Rate (HR), Respiratory Rate
(RR), body Temperature (T), and history of hypertension, diabetes, and
Non-Alcoholic Fatty Liver Disease (NAFLD) were recorded. The 42 labo-
ratory parameters obtained at admission are shown in Table 1.

Statistics

Continuous variables are presented as a median and interquartile
range for skewed distributions or as mean ± standard deviation for the
variables with a normal distribution, while categorical variables are pre-
sented as frequencies and proportions. Student’s t-test or the
2

nonparametric Mann-Whitney test was applied to compare the ARDS
and non-ARDS groups. Pearson’s Chi-Square or Fisher’s exact test was
used for the categorical data. Statistical analyses were performed using
SPSS 23.0 software (SPSS Inc., Chicago, IL, USA). A two-sided p-value <
0.05 was considered significant.

Development of the ML models

The missing values in the original data were multiple interpolated
using the bagImpute method based on the bagged tree model. The com-
plete data were randomly distributed into the training and testing
cohorts at a 4:1 ratio. The training cohort was applied to develop the
model with ML algorithms, and variables were inputted that had signifi-
cant differences (p<0.05) in the univariate analysis between AP patients
with or without ARDS to predict the risk for ARDS. Four ML algorithms
were selected, including Support Vector Machine (SVM), Ensembles of
Decision Trees (EDTs), Bayesian Classifier (BC), and the nomogram algo-
rithm. These algorithms were applied using Matlab 2014 (MathWorks,
Natick, MA, USA). Internal validation was accomplished with five-fold
cross-validation of the training set in each ML model after selecting the
optimal feature subset. Because five-fold was used for the validation set,
the above process was repeated 10 times.

Evaluation and testing of the ML models

The final Receiver Operating Characteristics (ROC) curve, the aver-
age Area Under the Curve (AUC), accuracy, precision, recall, True Nega-
tive Rate (TNR), F1 score, Negative Predictive Value (NPV), and False
Discovery Rate (FDR) was utilized to evaluate and compare the predic-
tive performance of the models. The four ML models trained on the opti-
mal feature subsets were tested with an independent test set.

Results

Baseline demographic and clinical characteristics

In all, 497 patients with AP were initially identified and 37 were
excluded according to the exclusion criteria. Ultimately, 460 patients
were included in the study (Fig. 1). The characteristics of the patients
with and without ARDS are summarized in Table 1. ARDS occurred in
83 of the 460 patients (18.04%). In all, 368 patients were included in
the training cohort and 92 in the testing cohort. ARDS occurred in 66
patients (17.93%) in the training cohort and 17 (18.48%) in the testing
cohort. Hypertriglyceridemia (45.22%) was the most common cause of
AP.

Thirty-one parameters differed significantly between patients with
and without ARDS (Table 1). A significant difference was observed in
the etiology of hypertriglyceridemia between the two groups. No differ-
ences in gender, age, or history of hypertension, diabetes, or NAFLD
were observed between the two groups.

Feature selection and development of the ML models

The features that were significantly different between the two groups
were used for feature selection using the random forest algorithm and
the Recursive Feature Elimination (RFE) strategy to determine an opti-
mal subset of features that effectively predicted the risk for ARDS in
patients with AP (Supplementary Fig. 1). As some features had strong
internal correlations, the authors tested all feature correlations and
retained the features with the strongest correlations using the target var-
iable ARDS (Supplementary Fig. 2). Ultimately, the best eight features
(Fig. 2) were identified as the optimal subset of features. These were
entered into the ML models. To build a probabilistic model of the objec-
tive function and to select the most promising set of hyperparameters to
evaluate, the authors optimized the ML models using a Bayesian hyper-
parameter optimizer (Supplementary Fig. 3).



Table 1
Baseline characteristics of AP patients with or without ARDS.

Characteristics Non-ARDS (n = 377) ARDS (n = 83) Total (n = 460) p-value

Demographics
Male, n (%) 273 (72.41%) 57 (68.67%) 330 (71.74%) 0.493
Age, year 42.00 (35.00, 59.00) 45.00 (34.00, 60.00) 43.50 (35.00, 59.00) 0.537
BMI, kg/m2 26.44 (24.22, 29.58) 28.68 (24.96, 32.14) 26.67 (24.29, 30.12) 0.002
Hypertension, n (%) 137 (36.34%) 37 (44.58%) 174 (37.83%) 0.161
Diabetes mellitus, n (%) 162 (42.97%) 42 (50.60%) 204 (44.35%) 0.205
NAFLD, n (%) 234 (62.07%) 55 (66.27%) 289 (62.83%) 0.474
Etiology, n (%) 0.003
Hypertriglyceridemia 156 (41.38%) 52 (62.65%) 208 (45.22%) <0.001
Biliary 69 (18.30%) 14 (16.87%) 83 (18.04%) 0.758
Alcoholic 43 (11.41%) 4 (4.82%) 47 (10.22%) 0.073
Other 109 (28.91%) 13 (15.66%) 122 (26.52%) 0.013
Clinical signs
HR, beats/min 80.00 (70.00, 94.00) 100.00 (80.00, 116.00) 82.00 (72.00, 98.00) <0.001
RR, breaths/min 19.00 (17.00, 21.00) 24.00 (20.00, 27.00) 20.00 (17.00, 23.00) <0.001
Temperature, Celsius 36.50 (36.20, 36.90) 36.80 (36.40, 37.40) 36.60 (36.20, 37.00) <0.001
Routine blood test
WBC, ×109/L 9.74 (7.40, 12.28) 12.27 (9.58, 16.41) 10.25 (7.92, 13.22) <0.001
NEUT, ×109/L 7.78 (5.49, 10.44) 10.63 (8.32, 14.48) 8.20 (6.08, 11.09) <0.001
LYM, ×109/L 1.28 (0.95, 1.67) 1.05 (0.76, 1.28) 1.24 (0.91, 1.62) <0.001
NLR 5.90 (3.93, 8.99) 11.02 (7.21, 15.88) 5.55 (4.32, 10.29) <0.001
HCT, % 41.80 (38.50, 44.80) 43.40 (39.90, 46.80) 41.90 (38.60, 45.30) 0.005
PLT, ×109/L 218.00 (179.00, 262.00) 217.00 (165.00, 269.00) 218.00 (176.25, 264.75) 0.737
RDW, % 12.90 (12.40, 13.40) 13.00 (12.70, 13.60) 12.90 (12.40, 13.40) 0.054
MPV, fl 10.30 (9.80, 11.00) 10.70 (10.00, 11.30) 10.40 (9.80, 11.00) 0.003
Biochemical test
TB, µmoL/L 15.23 (11.37, 20.82) 15.27 (11.43, 21.10) 15.26 (11.38, 20.82) 0.963
DB, µmoL/L 4.53 (2.89, 6.97) 4.72 (2.73, 6.22) 4.55 (2.86, 6.93) 0.605
ALB, g/L 39.44 ± 4.35 36.72 ± 6.08 38.95 ± 4.82 <0.001
AGR 1.38 ± 0.31 1.23 ± 0.34 1.35 ± 0.32 <0.001
ALT, IU/L 23.00 (15.00, 38.00) 22.00 (15.00, 34.00) 22.00 (15.00, 38.00) 0.969
AST, IU/L 24.00 (19.00, 32.00) 28.00 (20.00, 44.00) 24.00 (19.00, 33.25) 0.019
LDH, IU/L 201.00 (170.25, 243.75) 311.50 (222.75, 433.75) 209.50 (174.25, 264.00) <0.001
GGT, IU/L 43.00 (22.00, 82.50) 52.00 (31.00, 97.00) 44.00 (23.00, 85.00) 0.113
ALP, IU/L 70.00 (57.00, 84.50) 64.00 (53.00, 82.00) 69.00 (56.00, 84.00) 0.108
BUN, mmoL/L 4.10 (3.25, 5.23) 4.83 (3.53, 6.27) 4.21 (3.30, 5.38) 0.003
Cr, µmoL/L 60.00 (50.00, 70.00) 60.00 (49.00, 74.00) 60.00 (50.00, 70.00) 0.735
GLU, mmoL/L 7.31 (5.76, 11.25) 10.03 (7.42, 13.68) 7.90 (6.07, 11.93) <0.001
TG, mmoL/L 2.17 (0.93, 6.75) 5.34 (1.30, 20.61) 2.40 (0.98, 8.49) <0.001
Ca2+, mmoL/L 2.17 (2.08, 2.26) 2.07 (1.86, 2.21) 2.16 (2.05, 2.26) <0.001
K+, mmoL/L 3.92 (3.70, 4.15) 3.93 (3.64, 4.25) 3.92 (3.70, 4.16) 0.929
AMY, IU/L 151.00 (70.00, 419.00) 293.00 (144.00, 630.00) 176.00 (72.00, 444.00) <0.001
LPS, U/L 179.10 (84.15, 463.83) 378.00 (150.00, 684.95) 216.90 (89.00, 517.55) <0.001
Coagulogram
PT, seconds 13.40 (12.90, 14.00) 13.75 (13.10, 14.43) 13.50 (12.90, 14.03) 0.018
TT, seconds 15.20 (14.60, 16.00) 15.10 (14.40, 15.85) 15.20 (14.50, 15.90) 0.436
APTT, seconds 37.10 (33.80, 40.60) 37.95 (34.15, 40.90) 37.30 (33.80, 40.70) 0.578
INR 1.03 (0.98, 1.08) 1.05 (1.00, 1.12) 1.03 (0.98, 1.09) 0.059
FIB, g/L 4.59 (3.47, 5.95) 5.63 (4.10, 7.56) 4.66 (3.53, 6.21) <0.001
Dimer, µg/mL 0.91 (0.43, 1.95) 1.50 (0.64, 3.24) 0.99 (0.46, 2.16) <0.001
Inflammatory markers
CRP, mg/L 72.50 (18.40, 132.00) 238.00 (73.00, 348.00) 79.25 (21.65, 172.50) <0.001
IL-6, pg/mL 23.99 (10.29, 63.05) 106.10 (58.60, 238.23) 31.36 (11.61, 84.27) <0.001
PCT, ng/mL 0.07 (0.04, 0.18) 0.38 (0.15, 0.97) 0.09 (0.05, 0.26) <0.001
Arterial blood gases
PaO2, mmHg 79.10 (72.83, 87.00) 64.20 (60.70, 72.00) 77.10 (69.90, 85.90) <0.001
PaCO2, mmHg 38.60 (35.63, 41.20) 36.80 (33.30, 40.90) 38.30 (35.40, 41.10) 0.014
PaO2: FiO2 376.67 (346.79, 414.29) 305.71 (289.05, 342.86) 367.14 (332.86, 409.05) <0.001
SaO2, % 95.80 (94.50, 96.90) 92.50 (90.80, 94.90) 95.50 (93.80, 96.60) <0.001
LA, mmoL/L 1.50 (1.20, 2.00) 2.00 (1.50, 2.90) 1.60 (1.20, 2.10) <0.001

BMI, Body Mass Index; NAFLD, Non-Alcoholic Fatty Liver Disease; HR, Heart Rate; RR, Respiratory Rate; WBC,
White Blood Cell; NEUT, Neutrophil; LYM, Lymphocyte; NLR, Neutrophil-Lymphocyte Ratio; HCT, Hematocrit;
PLT, Platelet; RDW, Red blood cell Distribution Width; PDW, Platelet Distribution Width; MPV, Mean Platelet Vol-
ume; TB, Total Bilirubin; DB, Direct Bilirubin; ALB, Albumin; AGR, Albumin-Globulin Ratio; ALT, Alanine Amino-
transferase; AST, Aspartate Transaminase; LDH, Lactic Dehydrogenase; GGT, γ-Glutamyltransferase; ALP,
Alkaline Phosphatase; BUN, Blood Urea Nitrogen; Cr, Creatinine; GLU, Glucose; TG, Triglyceride; Ca2+, Calcium
ion; K+, Potassium ion; AMY, Amylase; LPS, Lipase; PT, Prothrombin time; TT, Thrombin Time; APTT, Activated
Partial Thromboplastin Time; INR, International Normalized Rratio; FIB, Fibrinogen; CRP, C-Reactive Protein; IL-
6, Interleukin-6; PCT, Procalcitonin; PaO2, Partial Pressure of Oxygen; PaCO2, Partial Pressure of Carbon Dioxide;
PaO2: FiO2, Partial Pressure of Oxygen/Fraction of inspiration Oxygen; SaO2, Arterial Oxygen Saturation; LA, Lac-
tic Acid.
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Fig. 1. Flow diagram of patient enrollment and cohort selection.
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Feature importance in the optimal feature subset

The authors quantified the importance of each feature in the optimal
feature subset using an RFE strategy in the random forest algorithm. As
shown in Fig. 2, PaO2 was the most important feature, followed by CRP,
NLR, Ca2+, WBC, PCT, LA, and AMY in order of importance in predic-
tiveness.
Fig. 2. Variable importance in the optimal feature subset, showing that PaO2 was the
Abbreviations: PaO2, Partial Pressure of Oxygen; CRP, C-Reactive Protein; NLR, Neutr
Procalcitonin; LA, Lactic Acid; AMY, Amylase.

4

ML model training and validation

The ROC curves of the four different models for predicting ARDS are
shown in Fig. 3. Fig. 4 shows the ROC curves of the models after the
five-fold cross-validation of the training set. The AUC values of the opti-
mal feature subset in the SVM, EDT, BC, and nomogram models were
0.91, 0.94, 0.87, and 0.91, respectively. The EDT algorithm achieved
most important feature, followed by CRP, NLR, Ca2+, WBC, PCT, LA, and AMY.
ophil-Lymphocyte Ratio; Ca2+, Calcium Ion; WBC, White Blood Cell Count; PCT,



Fig. 3. The ROC curves of different models in the training set, test set and all data. (A) SVM. (B) EDTs. (C) BC. (D) Nomogram.
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the highest AUC, accuracy, precision, recall, TNR, F1 score, and NPV
compared to the other three algorithms. Table 2 presents a set of
detailed metrics for the four models in the training dataset. Fig. 5 is a
nomogram of the visual results of logistic regression, indicating the asso-
ciation between the predictor variables and the occurrence of ARDS in
patients with AP.

Comparison of predictive performance among the four models

The authors generated four models to predict the early onset of ARDS
in AP patients after admission. Then, the authors evaluated the predictive
performance of each ML model trained using the optimal feature subset.
All detailed performance metrics obtained by the four models in the test-
ing set are shown in Table 3. The AUC values were 0.870 for SVM, 0.813
for EDTs, 0.891 for BC, and 0.874 for the nomogram. The ROC curve
obtained for each model in the testing set is shown in Fig. 3. The AUC
value demonstrated that the BC model achieved the best predictive effect
with the highest AUC of 0.891, recall of 0.563, and NPV of 0.909 com-
pared with other models. EDTs achieved good predictive performance
with the highest accuracy (0.891), precision (0.800), and F1 score
(0.615), but the lowest FDR (0.200) and the second-highest NPV (0.902).

Discussion

ARDS is the triggering point in the development of MOF in patients
with AP, which is associated with high mortality.8 Therefore, it is
5

extremely important to predict the risk for ARDS early, which can help
prevent the development of ARDS and further deterioration of other
organs. However, there are no validated serum biomarkers or scoring
systems to predict ARDS in patients with AP. ML techniques are increas-
ingly recognized by medical professionals because of their extraordinary
ability to analyze information. Here, the authors developed and tested
four ML algorithms as convenient tools to predict ARDS complicated by
AP in the early phase. The authors performed correlation analysis on the
features and quantified the importance of each feature on the target vari-
able. A set of high-quality optimal features was obtained, and the predic-
tion models were constructed with the least number of features and the
lowest redundancy of feature information; hyperparameter optimization
was performed for each model.

Clinical data from a routine blood test, biochemistry, coagulogram,
inflammatory markers, and arterial blood gas analysis were collected to
develop the ML models. Although the four models all yielded satisfac-
tory predictive performance, the BC and EDTs models more accurately
predicted the risk for ARDS in patients with AP. BC had the best predic-
tive performance using the testing set. EDTs had the highest AUC value
and superior accuracy, specificity, and sensitivity in the training set.

In this study, a lower PaO2 and a lower Ca2+ level, as well as a higher
CRP, PCT, LA, NLR, WBC, and AMY at admission were correlated with a
higher risk of developing ARDS in patients with AP. Among them, PaO2

was the foremost feature.
Hypoxemia is not only a diagnostic criterion for ARDS, but the respi-

ratory symptoms it causes are the earliest clinical manifestations of AP.9



Fig. 4. The ROC curves of different models after five-fold cross-validation of the training set. (A) SVM. (B) EDTs. (C) BC. (D) Nomogram.

Table 2
Evaluation metrics of different models in training set.

AUC Accuracy Precision Recall TNR F1 Score NPV FDR

SVM 0.912 0.894 0.804 0.552 0.970 0.655 0.907 0.196
EDTs 0.940 0.997 1.00 0.985 1.00 0.992 0.997 0.00
BC 0.873 0.918 0.785 0.761 0.953 0.773 0.947 0.215
Nomogram 0.912 0.891 0.765 0.582 0.960 0.661 0.912 0.235
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Fig. 5. Early ARDS prediction nomogram in patients with AP.
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As no specific drug treatment exists for ARDS, good supportive care
reduces damage and improves the prognosis.10,11 Therefore, early diag-
nosis benefits patients. In this study, the arterial PaO2 in patients with
ARDS was 64.20 (60.70, 72.00) mmHg, which was significantly lower
than that of patients without ARDS with 79.10 (72.83, 87.00) mmHg,
suggesting that ARDS should be suspected in all AP patients once hypox-
emia and related symptoms appear.11

CRP was the second-most important feature for predicting ARDS in
our study and has been used to predict the severity of AP. This result
also confirms that inflammation is closely associated with ARDS in
patients with AP, which is consistent with the prevailing view that sys-
temic inflammatory response syndrome is the first stage of ARDS in AP
patients.12,13 The WBC count and NLR had early predictive value for the
severity of AP and persistent organ failure,14-16 and are also clinical
markers for predicting mortality and fatal complications in patients with
ARDS.17,18. The NLR served as the third-most important predictive fea-
ture in our models, similar to a previous study.19 PCT is associated with
MOF and ARDS in patients with SAP.20-22 The authors observed that
patients with a higher PCT at admission were more likely to develop
ARDS, consistent with previous findings.23 The significantly lower Ca2+

concentrations in patients with ARDS compared to those without ARDS
suggests that tissue necrosis triggers a systemic inflammatory response,
resulting in the release of inflammatory cells and mediators, which fur-
ther triggers ARDS. Here, LA and Ca2+ were the independent variables
in ARDS, indicating that these features should be monitored. Although
serum levels of AMY were not associated with AP severity, AMY levels
Table 3
Predictive performance of different models in testi

AUC Accuracy Precision R

SVM 0.870 0.870 0.750 0
EDTs 0.813 0.891 0.800 0
BC 0.891 0.859 0.600 0
Nomogram 0.874 0.870 0.750 0

7

at admission were a risk factor for predicting ARDS, similar to previous
results.24 However, further study on the relationship between these fac-
tors in patients with AP is warranted.

Hypertriglyceridemia-induced AP (HTG-AP) varies from 10% to 30%
in different countries25-27 and high TG levels are associated with the
severity and clinical prognosis of AP.28, 29 HTG-AP is increasing gradu-
ally, especially in China.30-33 In our study, hypertriglyceridemia
accounted for 45.22% of the etiology, consistent with the 40%−49%
reported in recent studies.19,23. In addition, the authors found that the
proportion of HTG-AP was significantly higher in the ARDS group than
in the group without ARDS, consistent with the results of pneumonia-ini-
tiated ARDS.34 This result may be due to the fat embolism syndrome
caused by high levels of free fatty acids in HTG-AP patients, which can
lead to pulmonary vascular endothelial damage and microcirculatory
disorder. No significant differences in age or comorbidities such as dia-
betes, hypertension, or NAFLD were detected between the two groups,
suggesting that, unlike pneumonia-initiated ARDS, age and comorbid-
ities cannot be used as predictors of ARDS caused by AP.

Two recent studies used nomograms to predict ARDS in AP with AUC
values of 0.821 and 0.814, respectively.19,23 The authors performed a
two-step feature selection strategy to filter the optimal subset of fea-
tures, followed by optimizing the parameters to develop the predictive
models. Compared to complex scoring systems (e.g., APACHE II), ML
models are convenient to determine prediction probability. ML has the
advantage of analyzing the nonlinear relationships between various
markers and ARDS over traditional statistical methods, which allows for
ng set.

ecall TNR F1 Score NPV FDR

.375 0.974 0.500 0.881 0.250

.500 0.974 0.615 0.902 0.200

.563 0.921 0.581 0.909 0.400

.375 0.974 0.500 0.881 0.250
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early prediction before significant changes in classical metrics occur.
Based on the prediction performance, the authors recommend the BC
algorithm with the highest AUC value of 0.891, indicating that it is
more robust in extrapolation. Second, the authors recommend the EDT
algorithm with superior evaluation metrics from the training set, indi-
cating its strongest fitting ability. The unbalanced distribution of the
original data may have directly affected the extrapolation ability of the
model. Therefore, the authors believe that BC provided the most accu-
rate prediction given the available data and that EDTs have greater
potential as sample size increases.

Several limitations of our study should be mentioned. First, our data
were derived from a single AP center and the number of cases was small.
Some differences in the performance of the ML models may occur when
applied to datasets from different institutions with different distribu-
tions of covariates. Second, the authors reported ARDS as a dichotomous
variable (presence or absence) rather than across time; thus, our results
cannot predict the development of ARDS. Third, the small sample size
prevented the evaluation of subgroups according to ARDS severity.
Finally, our study was retrospective and there may be patient selection
bias, which is an unavoidable limitation of such studies. Further multi-
center prospective studies with larger samples should be conducted to
verify our ARDS predictive models in patients with AP.

Conclusions

The authors developed and validated four models to predict ARDS
early in patients with AP based on the SVM, BC, EDTs, and a nomogram.
PaO2, CRP, PCT, LA, Ca2+, the NLR, WBC, and AMY were the optimal
subset of features. BC was the superior predictive model in the test set.
Additionally, EDTs could be promising for predicting large samples.
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