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H I G H L I G H T S

� Pancreatic Adenocarcinoma (PAAD) exhibits a universally poor prognosis.
� Tumor Immune Microenvironment (TIME) affected the development of tumor.
� Immune Checkpoint-Related Genes (ICRGs) were associated with TIME formation.
� ICRGs were associated with the prognosis of PAAD.
� ICRGs may serve as novel clinical biomarkers and therapeutic targets.
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A B S T R A C T

Background: To comprehensively analyze the clinical significance of Immune Checkpoint-Related Genes (ICRGs)
in Pancreatic Adenocarcinoma (PAAD).
Method: PAAD tissues and normal pancreatic tissues were obtained from The Cancer Genome Atlas (TCGA) and
Genotype-Tissue Expression (GTEx) databases, and 283 ICRGs were integrated by the Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Reactome datasets. Unsupervised clustering was used to obtain potential ICRGs-
based PAAD subtypes. Wilcoxon test was performed to screen Differentially Expressed ICRGs (DEICRGs), while
cox regression analyses were utilized to identify prognosis-related ICRGs and clinicopathological factors, and con-
struct the corresponding models. The Tumor Immune Microenvironment (TIME) was evaluated. Moreover, the
authors performed enrichment analysis, Gene Set Enrichment Analysis (GSEA), and transcription factor regulatory
networks to realize underlying mechanisms.
Results: Three ICRGs-based PAAD subtypes were identified, and they were associated with three ESTIMATE
scores, a Tumor Microenvironment (TMB) score, 14 therapeutic immune checkpoints, and infiltration levels
of seven immune cells. On top of that, the authors constructed two signatures based on DEICRGs to predict
the Overall Survival (OS) (Area Under the ROC Curve [AUC: 0.741∼0.778]) and Progression-Free Survival
(PFS) (AUC: 0.746∼0.831) of patients. Two nomograms were established by combining clinical variables
and signatures. In addition, the authors found higher infiltration of naïve B cells and CD8+ T-cells in low-
risk PAAD patients, and higher infiltration of suppressive immune cells and cancer-related signaling path-
ways in high-risk PAAD patients.
Conclusion: The present study suggested that ICRGs were associated with TIME formation and prognosis of PAAD
patients, which may serve as novel clinical biomarkers and therapeutic targets.
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Introduction

Pancreatic Adenocarcinoma (PAAD) exhibits a universally poor
prognosis, which causes almost as many deaths (466000) as
incidences (496000) in 185 countries in 2020.1 Given the steadily
increasing rate of this disease,2 it is estimated that PAAD will over-
take breast cancer as the third leading tumor-related fatal disease by
2025. Due to the lack of early satisfactory screening methods and
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atypical symptoms in patients with localized PAAD in the early
stage, most patients are diagnosed with an advanced stage upon
detection, with only a 6 %‒8 % 5-year survival rate.3-5 Therefore,
there is an urgent demand to find reliable tumor biomarkers that
can identify this disease at the early phase and assist in further
appropriate therapy.

As for the current therapeutic options, surgical resection com-
bined with chemotherapy and radiotherapy improves the prognostic
outcomes of patients with localized PAAD, but the efficacy remains
disappointing for advanced patients with distant metastasis.6

Increasing evidence indicates that immune checkpoint blockade is
one of the most promising therapies for cancer.7 Immune check-
points are some inhibitory pathways, which have major effects on
maintaining self-tolerance and regulating the immune response of
peripheral tissues to reduce tissue damage.8 In the Tumor Immune
Microenvironment (TIME), by activating multiple immune check-
points, tumor cells can evade immune surveillance, grow further,
and even invade distant sites.9 Immune Checkpoint Inhibitors (ICIs)
can intercept co-inhibitory signaling pathways in TIME, and facili-
tate immune cell activation-mediated tumor cell clearance, which
has been shown to be effective in many tumors, including lung can-
cer, bladder cancer, and melanoma.10-13 However, due to the unique
immunosuppressive TIME of PAAD, single-agent ICI treatments have
generally not been satisfactory,14 which is also related to the fact
that there are relatively few ICIs available for treating PAAD. Given
that the increasing number of immune checkpoints has been identi-
fied, it is crucial to clarify the clinical significance of immune check-
points in PAAD, explore suitable targeted ICIs, and propose
appropriate strategies to aid immunotherapy against PAAD.

Therefore, this study was conducted to evaluate the prognostic and
clinical value of Immune Checkpoint-Related Genes (ICRGs) and explore
underlying related molecular subtypes. On the clinical side, the authors
screened patients suitable for ICI treatments and constructed signatures
and nomograms for the prediction of the Overall Survival (OS) and Pro-
gression-Free Survival (PFS) of PAAD. On the mechanistic side, the
authors explored the relationship between ICRGs and various TIME fea-
tures in PAAD patients and constructed two ICRGs-Transcription Factors
(TFs) regulatory networks.

Materials and methods

This present research is an observational study and follows the
STROBE Statement. The ethical approval is not applicable, because
the Cancer Genome Atlas (TCGA) and ICGC belong to public data-
bases, the patients involved in the database have obtained ethical
approval, users can download relevant data for free for research and
publish relevant articles, and this study is based on open-source
data, and the Suzhou Hospital of Anhui Medical University do not
require research using publicly available data to be submitted for
review to their ethics committee, so there are no ethical issues and
other conflicts of interest.

Data collection

RNA-Sequencing (RNA-Seq) data and clinical information of 178
PADD patients were obtained from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov), and the RNA-Seq
data of 165 normal pancreatic tissues was downloaded from the
Genotype Tissue Expression (GTEx) database. Fragments per Kilo-
base Per Million (FPKM) values of the RNA-Seq data presented
above were normalized to log2 (FPKM+1), and the authors per-
formed batch effect correction for the two datasets. After excluding
one patient with no survival information, the authors included 177
PAAD patients and 165 normal tissues for further study. Moreover,
a total of 283 ICRGs were obtained from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database (https://www.kegg.jp/) and
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the Reactome pathway database (https://www.reactome.org/) (Sup-
plementary Table 1). Finally, 129 candidate ICRGs expressed in both
databases were screened.

Unsupervised clustering for identifying ICRGs-based molecular subtypes in
PAAD patients

Based on the 129 candidate ICRGs, the K-means clustering algorithm
was used to classify 177 patients with PAAD. The optimal number of
clusters was identified by the elbow method and the gap statistic. Princi-
pal Component Analysis (PCA) was conducted to verify the distribution
differences among subtypes. Subsequently, in order to probe the associa-
tion between the ICRGs expression levels and PAAD prognosis, a log-
rank test was conducted to assess the OS and PFS in different subtypes.
Additionally, Kaplan-Meier (KM) survival curves were drawn to illus-
trate the differences.

To further investigate the underlying mechanisms between different
PAAD subtypes, the authors compared the TIME scores and the infiltra-
tion levels of 22 immune cells with ESTIMATE and CIBERSORT algo-
rithms. Furthermore, the Tumor Mutation Burden (TMB) score and the
expression of 15 therapeutic immune checkpoints in different subtypes
were assessed using the Kruskal-Wallis test.

Establishment of two DEICRGs-based signatures for prognosis evaluation

Differentially Expressed ICRGs (DEICRGs) between PAAD and
normal pancreatic tissues were screened by the Wilcoxon test, and a
False Discovery Rate (FDR) < 0.05 was regarded as statistical signifi-
cance.

To further explore the prognostic value of DEICRGs, the authors con-
ducted univariate cox regression to screen significant OS- and PFS-
related DEICRGs. Then, genes with p < 0.05 were incorporated into the
LASSO analysis to prevent over-fitting. Furthermore, according to the
smallest Akaike Information Criterion (AIC) value,15 OS- and PFS-
related DEICRGs determined by LASSO analysis were included in the
multivariate cox analysis to obtain the corresponding optimal model,
respectively. Finally, by combining the coefficients and the expression
of selected genes, risk score was determined, and the formula was as fol-
lows: Risk score � ∑n

i βi � Gi.
In the above formula, ‘βi’ represents the regression coefficient of

each prognostic DEICRG identified by the multivariate cox regression
analysis, and ‘Gi’ shows the expression level of the selected prognostic
DEICRG.

In this research, the authors developed OS- and PFS-related signa-
tures to comprehensively evaluate the prognosis of PAAD. According to
the median value of the risk score, all PAAD patients were classified into
two groups: a high-risk group and a low-risk group. To assess the perfor-
mance of the signatures, the authors performed a log-rank test and
drawn KM survival curves to compare the different survival statuses
between the groups. Then, the authors generated receiver operating
characteristic (ROC) curves and calculated Area Under the ROC Curve
(AUC) values for 1-, 2-, and 3-years.

Underlying mechanisms and immune features between high- and low-risk
groups

The Wilcoxon test suggested that genes with FDR < 0.05 and |log2
fold change (log2FC)| > 1 were considered as Differentially Expressed
Genes (DEGs) between high- and low-risk groups, and heat-maps were
drawn to demonstrate this. To explore the underlying mechanisms and
functions between different risk groups, Gene Ontology (GO) functional
annotation and KEGG pathway enrichment analyses were presented,
respectively. Meanwhile, Gene set Enrichment Analysis (GSEA) was
used to reveal the different potential biological processes between high-
and low-risk groups. Moreover, same as before, immune infiltration
analysis was conducted to elucidate the infiltration levels of 22 immune
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cells between high- and low-risk groups using the Wilcoxon test, and
the expression levels of 15 therapeutic immune checkpoints were also
evaluated.

Mutation state of hub genes and infiltration level of six immune cells

16 independent prognostic DEICRGs were included in this analysis,
including 4 in OS-related signature, 10 in PFS-related signature, and 2
overlapping genes. The potential relationships between the mutational
status of 16 hub genes and the level of six representative immune cells
in TIME were investigated and visualized in the TIMER website
(https://cistrome.shinyapps.io/timer).

Construction of ICRGs-transcription factors (TFs) regulatory networks

The Transcription Factor (TF) set and corresponding information
were obtained from the Cistrome Cancer (http://cistrome.org/Cistrome
Cancer/). Differentially Expressed TFs (DETFs) were determined by
matching 274 TFs to DEGs in PAAD and normal pancreas tissues. On top
of that, univariate cox analysis was performed to reveal OS- and PFS-
related DETFs. Then, Pearson correlation analysis was implemented to
measure the correlation between DETFs and DEICRGs, and the results
with r > 0.4 and p < 0.01 were considered to be reliable. Finally, the
above robust DEICRs-DETFs pairs were incorporated to construct two
immune-related regulatory networks, and Cytoscape was utilized to illu-
minate the results.

Comparison of prognostic values of different factors and construction of
clinical-ICRGs nomograms

Univariate and multivariate cox regression analyses were con-
ducted to evaluate the prognostic values of two DEICRGs-based sig-
natures and other clinicopathologic characteristics of patients with
Fig. 1. The workflo
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PAAD, thereby selecting independent prognostic factors. Addition-
ally, time-dependent ROC curves and corresponding AUC values for
1-, 2- and 3-years were carried out to compare the predictive accu-
racy of each factor. To more accurately and comprehensively assess
the prognosis of PAAD patients, clinical-ICRGs nomograms were
applied to visualize the OS and PFS. According to the independent
prognostic factors acquired by multivariate analysis, two clinical-
ICRGs nomograms were developed for predicting the PAAD OS and
PFS. Meanwhile, the Concordance index (C-index) was calculated,
and the calibration plot was drawn to estimate the performance of
the two nomograms.
Statistical analysis

In this study, all statistical analyses and figures were accomplished
with SPSS 21.0 and R software (version 4.0.2). p-value < 0.05 was con-
sidered statistically significant. The batch effect correction between data
was performed using “limma” package. Univariate and multivariate cox
analyses were conducted by the “survival” package, and LASSO analysis
was generated using “glmnet” package. “Survminer” and “survivalROC”
packages were implemented to draw KM survival curves and time-
dependent ROC curves. Heat-map and volcano maps were drawn with
“pheatmap” package, and the nomogram and the calibration curve were
visualized by the “rms”, “regplot”, and “survival” packages.
Results

Overview of characteristics of PAAD patients

The present study was performed to evaluate the prognostic and clin-
ical value of ICRGs and explore underlying related molecular subtypes
(Fig. 1). The clinicopathologic characteristics of PAAD patients are
described in Supplementary Table 2. The average age was
w of this study.
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Fig. 2. Identification and verification of ICRGs-based PAAD subtypes. (A‒C) Unsupervised clustering divided PAAD patients into three clusters. (D) PCA demon-
strated distant heterogeneity among the three PAAD subtypes. (E‒F) K-M survival analysis of OS and PFS status of PAAD patients in three subtypes. PAAD, Pancreatic
adenocarcinoma; ICRGs, Immune Checkpoint-Related Genes; PCA, Principal Component Analysis; OS, Overall Survival; PFS, Progression-Free Survival.
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64.68 ± 0.81 years old, and the proportion of man (54.8 %) and female
(45.2 %) cases were similar. The median OS time of patients with PAAD
was 1.663 years (95 % CI 1.418‒1.908), and the median PFS time was
1.332 years (95 % CI 1.111‒1.552).

Three ICRGs-based PAAD subtypes were significantly related to the prognosis
and TIME characteristics

The ICRGs profiling suggested that ICRGs were dramatically hetero-
geneous among patients with PAAD, and this uncovered that its intrinsic
characteristics were of great clinical relevance. According to the results
of unsupervised clustering (Fig. 2 A‒C), the authors identified three dis-
cernible PAAD subtypes. Three ICRGs-based PAAD subtypes were deter-
mined as follows (Fig. 2A): Cluster 1 (n = 38, 21.5 %), Cluster 2
(n = 98, 55.4 %) and Cluster 3 (n = 41, 23.1 %). Then, the result of
PCA based on full RNA-Seq data also demonstrated distant heterogene-
ity among the three PAAD subtypes (Fig. 2D). KM curves which per-
formed log-rank test indicated that PAAD patients with different
subtypes had significantly different OS (p = 0.0047) and PFS time
(p = 0.05), and patients with Cluster 2 presented the best prognosis
(Fig. 2 E‒F).

To further investigate the potential mechanism among patients
with different subtypes, the authors compared the TIME and TMB
scores. As seen in Figure 3 A‒C, the authors found Cluster 1 had the
lowest stromal, immune, and estimate scores, while patients with
4

Cluster 3 had the highest scores. Additionally, diametrically opposite
results were obtained from the TMB analysis; Cluster 1 had the
highest score; and Cluster 3 had the lowest score (Fig. 3D). More-
over, the authors evaluated the levels of 22 kinds of immune cells
to better understand the correlation between ICRGs and immune
infiltration. B-cells naïve, T-cells CD8, T-cells CD4 memory acti-
vated, NK cells activated, monocytes, macrophages M0, dendritic
cells resting, and mast cells activated were differentially expressed
among different PAAD subtypes (Fig. 3 E‒K). Furthermore, among
15 therapeutic immune checkpoints, the authors found 14 check-
points were distantly distributed across subtypes, including PD-1,
PDCD1LG2, BTLA, CTLA4, LAG3, CD276, CD27, ICOS, PVR, CD47,
VTCN1, HAVCR2, LGALS9 and PD-L1 (Fig. 3L). These results indi-
cated that ICRGs based PAAD subtypes presented discernible TIME
characteristics, which may help evaluate and guide ICIs therapy.

Developing two ICRGs-signatures for OS and PFS evaluation

Differential expression analysis revealed that 124 of 129 ICRGs were
differentially expressed in the PAAD and normal pancreatic tissues (Sup-
plementary Fig. 1), including 91 up-regulated DEICRGs and 33 down-
regulated DEICRGs (Supplementary Table 3). Further, univariate cox
regression analysis screened 35 OS-related DEICRGs (Supplementary
Table 4) and 38 PFS-related DEICRGs (Supplementary Table 5). Then,
LASSO analysis ulteriorly identified 14 candidate DEICRGs for OS and



Fig. 3. TIME characteristics, TMB, and immune cells among different PAAD subtypes. (A‒C) Comparison of three TIME scores between the three clusters. (D)
Comparison of the TMB score between the three clusters. (E‒K) The infiltration level of seven immune cells in different groups. (L) The expression level of 15 immune
checkpoints in three clusters. TIME, Tumor Immune Microenvironment; TMB, Tumor Mutation Burden.
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20 candidate DEICRGs for PFS. Finally, based on the smallest AIC value,
a six gene OS-related signature (Risk score = 0.46*STAT1+0.99*PAK2
+ 0.78*MAPK1-1.75* GRB2-0.74*PPP3CB-1.68*LAT) and a 12 gene
PFS-related signature (Risk score = 0.28*STAT1-1.33*EML4-0.97*FYN
+0.75*CSNK2A1-0.80*

TRAF6-0.67*MAP2K6+0.65*NRAS+1.01*PAK2+0.47*MAP2K3-
0.49*PAK3-0.89*PPP2R5B+0.53*EGF) were established. Interestingly,
two genes, STAT1 and PAK2, were common independent risk factors for
OS and PFS.

The median risk score was used to classify patients into the high-
and low-risk groups and KM survival curves showed that high-risk
PAAD patients had lower OS and PFS time (Fig. 4 A and D). In addi-
tion, OS and PFS survival status of patients with high- and low-risk
PAAD were visualized via scatter plots, as shown in Figure 4C and
F. Furthermore, the AUC values of time-dependent ROC were 0.741,
0.758, and 0.778 for OS, and 0.746, 0.831 and 0.831 for PFS (>
0.7), respectively (Fig. 4B and E). Thus, the above analyses sug-
gested that DEICRGs-based signatures possessed a stable and robust
predictive prognosis ability.

To examine whether the OS- and PFS-related signatures have
similar prognostic values in the different data sets, RNA-sequencing
of 260 PAAD patients obtained from the ICGC database (PACA-AU
5

and PACA-CA) (https://dcc.icgc.org/) was served as validation
cohort. The two datasets were merged with “limma” package, the
expressions of six OS-related and 12 PFS-related DEIRGs were
extracted from the validation cohort, and the corresponding risk
score of each patient was calculated. Based on the median risk
score, the authors found high-risk PAAD patients in the OS-related
signature and PFS-related signature both exhibited worse prognoses
(Supplementary Fig. 2A‒B).

Underlying mechanisms and TIME characteristics between high- and low-risk
groups

Nine hundred and twenty DEGs (Supplementary Table 6) and
492 DEGs (Supplementary Table 7) between high- and low-risk
groups were found in the OS-related signature and PFS-related sig-
nature (Supplementary Fig. 3A and B), respectively. The GO results
indicated that OS-related DEGs were enriched in chemical synaptic
transmission, regulation of membrane potential, presynapse, postsy-
napse, and cell body (Fig. 5A), PFS-related DEGs were enriched in
chemical synaptic transmission, presynapse, cell body, secretion by
cell, and regulation of ion transport (Fig. 5C). In addition, the top
five terms of KEGG analysis were neuroactive ligand-receptor

https://dcc.icgc.org/


Fig. 4. ICRGs-based prognostic signatures for OS and PFS. (A, D) Kaplan-Meier (K-M) survival analysis of OS and PFS between high- and low-risk groups. (B, E)
ROC curves of OS-related signature and PFS-related signature at 1-, 2- and 3-years. (C, F) Scatter plots of survival time and risk score for PAAD patients in different risk
groups. ICRGs, Immune Checkpoint-Related Genes; OS, Overall Survival; PFS, Progression-Free Survival; PAAD, Pancreatic Adenocarcinoma.
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interaction, circadian entrainment, cytokine-cytokine receptor inter-
action, hematopoietic cell lineage, and aldosterone synthesis and
secretion for OS (Fig. 5B), and dopaminergic synapse, insulin secre-
tion, neuroactive ligand-receptor interaction, calcium signaling path-
way, and synaptic vesicle cycle for PFS (Fig. 5D). Moreover, GSEA
identified that cancer markers were significantly higher in the high-
risk group, including protein secretion, glycolysis, MTORC1 signal-
ing, and mitotic spindle for OS (Fig. 5E‒H), and G2M checkpoint,
MYC targets, E2F targets, and MTORC1 signaling for PFS (Fig. 5I‒
L). From the perspective of immunology, the authors found patients
with low-risk PAAD in the OS-related signature had higher infiltra-
tion levels of B-cells naïve, CD8 T-cells, and T-cells regulatory, and
low infiltration levels of Macrophages M1 and CD4 memory cells
(Fig. 6A). Similarly, patients with high-risk PAAD in the PFS-related
signature presented higher infiltration levels of Macrophages M1,
plasma cells and follicular helper T-cells (Fig. 6C). Additionally,
PAAD patients in different risk groups also shown differences in cru-
cial immune checkpoints expression, which indicated the different
sensitivities to immunotherapies. Patients with low-risk PAAD pre-
sented markedly higher expression levels of BTLA, CD27, CTLA4,
and PD-1, and lower expression levels of CD47, PD-L1, CD276, and
VTCN1 (Fig. 6B, D).

Mutation state of hub genes and infiltration level of immune cells

In the present study, four OS-related ICRGs, 10 PFS-related ICRGs,
and two overlapping genes were included for mutation analysis. The
6

authors further investigated whether the copy number of crucial ICRGs
could have reasonable effects on the infiltration levels mediated by six
effector immune cells, and obtained results with significant correlation
(Supplementary Fig. 4 A‒P). For example, copy number purpose dele-
tion of MAPK1 led to reduced infiltration levels of immune cells (Supple-
mentary Fig. 4C). Additionally, both high and low copies of PPP3CB
resulted in the reduced expression of effector cells, which indicated that
suppressor gene mutation could increase the immune response and fur-
ther fight against cancer (Supplementary Fig. 4E). Generally, the close
association with immune cells illustrated that the two signatures were
relatively stable and robust.
Exploring the regulatory mechanism of ICRGs

Of the 247 TFs, 48 DETFs were determined by matching TFs to
DEGs, as shown in heat-map (Fig. 7A) and volcano plots (Fig. 7B)
(Supplementary Table 8). From the perspective of clinical outcome,
the authors found 12 DETFs had some associations with the OS of
PAAD patients (Fig. 7C), and 12 DETFs were associated with the
PFS of PAAD patients (Fig. 7D). Moreover, three DETFs, including
PPARG, SPDEF, and KLF5, were determined to co-express with 13
OS-related DEICRGs (Supplementary Table 9) and 15 PFS-related
DEICRGs (Supplementary Table 10). Finally, based on the above
results, two DEICRGs-DETFs networks were constructed to illustrate
the regulatory mechanism (Fig. 7 E and F).



Fig. 5. Functional annotations and GSEA between high- and low-risk groups. (A‒B) GO and KEGG analyses between different risk groups for OS. (C‒D) GO and
KEGG analyses between different risk groups for PFS. (E‒H) Four significant cancer hallmarkers were higher expressed in the high-risk group for OS. (I‒L) Four signifi-
cant cancer hallmarkers were higher expressed in the high-risk group for PFS.
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Comparison of the prognostic value of different factors and construction of
clinical-ICRGs nomograms

Univariate analysis showed that age, N-stage, margin status, and
ICRGs-based signature were OS-related variables (Fig. 8A), and
grade, N-stage, T-stage, margin status, and ICRGs-based signature
were PFS-related factors (Fig. 8F). On top of that, multivariate anal-
ysis determined that age, margin status, radiotherapy, and ICRGs-
based signature were independent factors for OS (Fig. 8B), and mar-
gin status and ICRGs-based signature for PFS (Fig. 8G), respectively.
The authors further compared the prognostic value of the ICRGs-
based signature with clinicopathological factors, suggesting that the
discrimination of signatures was better than that of all clinical varia-
bles at 12, 24, and 36 months for OS (Fig. 8 C‒E) and PFS (Fig. 8H‒
J), respectively. On the basis of the above independent factors, two
clinical-ICRGs nomograms were constructed to evaluate the OS
(Fig. 9A) and PFS (Fig. 10A) of PAAD patients. The C-index of
7

the nomogram was 0.708 (95 % CI 0.641‒0.775) for OS and
0.755 (95 % CI 0.704‒0.806) for PFS. Furthermore, the calibration
curves at 12, 24, and 36 months exhibited strong agreement
between predicted results and the actual outcomes (Fig. 9B‒D, and
Fig. 10B‒D).

Discussion

PAAD remains an aggressive and highly lethal disease with lim-
ited effective treatment tools. Novel targeted therapies and immu-
notherapeutic strategies are important treatment options in
addition to surgery and chemoradiotherapy, but recent clinical tri-
als have shown their very limited application in PAAD, which is
associated with the unique biological behavior and TIME.16 The
immunosuppressive microenvironment of PAAD is extremely het-
erogeneous, with the presence of a large number of unknow inhibi-
tory tight matrix components to be antagonized, resulting in its



Fig. 6. TIME characteristics between high- and low-risk groups. (A) The infiltration level of five significant immune cells between high and low-risk groups for OS.
(B) The expression of six significant immune checkpoints for OS. (C) The infiltration level of three significant immune cells between high and low-risk groups for PFS.
(D) The expression of four significant immune checkpoints for PFS.
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difficult reprogramming.17,18 Breaking the physical barrier formed
by the extracellular matrix and inducing more effector immune
cells are two game-changing solutions.19 Therefore, this research
aimed to study the predictive and prognostic values of ICRGs for
immunotherapy, as well as their relationship with TIME, thereby
finding pivotal molecules that could activate the immunosuppres-
sive microenvironment. Three ICRGs-based subtypes, two molecular
signatures and nomograms were identified for clinical use. Func-
tional annotation, GESA, TIME, immune infiltration analysis, and
ICRG-TF networks were preformed to realize underlying mecha-
nisms.

The selection of early intervention and treatment options for PAAD is
primarily based on symptoms, AJCC stage, histological grade, and tumor
markers. Integrative analyses indicated that cancer genotyping based on
specific genes may be beneficial for identifying suitable patients for cor-
responding therapies and prognosis evaluation.20-22 Herein, the authors
implemented a machine learning method to determine three ICRGs-
based PAAD subtypes with distinct clinical characteristics. Three ICRGs-
based clusters as discrete entities showed significant OS and PFS
8

differences. PAAD patients with different subtypes demonstrated dis-
tinct TIME scores, with only a few presenting relatively high immune
scores, which was consistent with previous reports showing that the
cold microenvironment of PAAD was heterogeneous.3 TMB remains a
predictive biomarker for immunotherapy. Previous reports suggested
that TMB influenced the immune infiltration signatures, and high TMB
could appeal to effector cells to fight tumor cells,23,24 but this was not
the case in PAAD. More specifically, the authors found that the major
immune cells enriched in the PAAD subtype with higher TIME scores
were antitumor cells, including B-cells naïve, CD4 memory T-cells, and
CD8 T-cells. However, such PAAD patients did not present a better prog-
nosis, probably due to the presence of a large amount of suppressive
extracellular matrix encapsulating tumor cells in the TIME.25 In addi-
tion, ICRGs-based PAAD subtypes exhibit differential expression of cru-
cial therapeutic immune checkpoints, which may assist patients in
selecting ICI combination therapies. The identification of novel subtypes
of PAAD based on ICRGs not only enables accurate assessment of
patients’ prognosis but also assists doctors in formulating individualized
treatment plans and making corresponding adjustments. Different



Fig. 7. Two DEICRs-DETFs regulatory networks. (A‒B) Heatmap and volcano plot of 45 DETFs in PAAD and normal pancreas tissues. (C‒D) 12 OS-related
DETFs and 12 PFS-related DETFs were determined by the univariate cox analysis. (E, F) Regulatory network of OS (PFS) -related DEIRCGs and corresponding
DETFs.
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subtypes exhibit distinct levels of immune checkpoint expression and
infiltration of immune effector cells, which facilitates the understanding
of the immunosuppressive microenvironment in PAAD and the develop-
ment of new therapeutic targets.

ICRGs showed high predictive value of treatment response and
survival evaluation for many cancers. There is a lack of ICRGs-
related studies in PAAD. This study established two molecule signa-
tures as valid clinical tools. These two models demonstrated excel-
lent performance in evaluating OS and PFS, which was comparable
to existing similar studies.26-28 However, these models may be better
able to assess the efficacy of immunotherapy and patients’ out-
comes. Based on this, the ICRGs-clinical nomograms established
with traditional clinical features may have great potential for clini-
cal application. The key genes involved are mostly related to the
regulation of the immune microenvironment, and the activation and
inhibition of critical cancer biological signals. STAT1 and PAK2, two
overlapping genes in the two signatures caught the authors’ atten-
tion. STAT1 plays a critical role in immunologic self-tolerance and
innate immune function.29 Particularly, STAT1 has a close associa-
tion with the development of advanced tumors and the maintenance
of stem cells in terms of anti-tumor function.30,31 Varun et al.32

found that the inhibition of STAT1 activation partially down-regu-
lated PD-L1, which was frequently expressed in several tumors, and
associated with immune escape. The immune features results in this
research also showed the high-risk patients had higher expression
levels of PD-L1. Interestingly, the high expression of STAT1 led to
satisfying OS of ovarian cancer, rectum adenocarcinoma, and sar-
coma, whereas in several cancers including pancreatic cancer, and
9

lung adenocarcinoma, the high expression of STAT1 was correlated
with poor OS.29,31 More importantly, previous investigation revealed
that STAT1 could protect T-cells from NK cell-mediated cytotoxic-
ity.33 Nevertheless, the overexpression of STAT1 had been reported
to inhibit T-cell expansion, indicating that targeting STAT1 could
enhance T-cell numbers.34 The p21-Activated Kinases (PAKs) are
members of the serine/threonine kinases family involved in cell
cycle regulation, neoplastic processes, and inflammation.35,36 PAK2
protein works as a cytokine and phosphorylates Bcl2−Associated
Death promoter (BAD) protein, causing inhibition of proapoptotic
signaling.37 Existing evidence described that PAK2 promoted the
growth and metastasis of pancreatic cancer.38 The authors specu-
lated that these two genes acted as important immune mediators in
the TIME of PAAD, and the molecular signatures based on them
may have great clinical translational vale.

Additionally, ICRGs-based molecular models also revealed the
immune microenvironment and specific molecular features associated
with different outcomes, making the model more interpretable and
applicable. Immune infiltration analysis was also conducted for the
high- and low-risk groups and it was observed that satisfactory prognosis
was associated with higher infiltration level of B-cells naïve, CD8 T-cells,
and T-cells regulatory (Tregs), and lower infiltration level of Macro-
phages M1 and plasma cells, which was in line with the previous study
that sufficient effector immune cells could synergistically exert anti-
tumor effects in a minority of patients.39,40 Based on the functional
annotation and GSEA of DEGs between different risk groups, the authors
found that patients with lower survival probability mainly enriched in
cancer-related biological processes, including MAPK signaling pathway,



Fig. 8. Identification and comparison of independent prognostic factors. (A, B) Univariate and multivariate cox analyses of the OS-related signature and clinical
variables. (C‒E) Comparison of AUC values between OS-related signature and all significant factors. (F‒G) Univariate and multivariate cox analyses of the OS-related
signature and clinical variables. (H‒J) Comparison of AUC values between PFS-related signature and all significant factors.
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Fig. 9. Establishing an ICRG-clinical nomogram to predict the OS of PAAD patients. (A) A nomogram combining the OS-related signature, radiotherapy, grade,
and age. (B‒D) The calibration curves of the nomogram at 1-, 2- and 3-years.

X. Chen and H. Zhang Clinics 79 (2024) 100481
RAS signaling pathway, glycolysis, Mtorc1 signaling, G2M checkpoint,
MYC targets, and E2F targets. Of course, these hallmark pathways can
also regulate immune evasion, and they are involved in a highly complex
network of relationships. Finally, two ICRGs-TFs regulatory networks
were developed to elucidate the transcriptional mechanism of ICRGs,
further understanding the expression of ICRGs and the molecular mecha-
nisms underlying PAAD, which provided new perspectives for studying
immunosuppressive microenvironment targets and resistance mecha-
nisms.

It is undeniable that some limitations still exist in this study.
Firstly, the present study was a retrospective analysis and had a
small sample size with unavoidable bias. Secondly, the current
11
findings of the present study only resulted from the bioinformatic
analysis, and there are not clinical and experimental trials to vali-
date the results. Thirdly, for the molecular subtypes and molecular
signatures established in this study, it is necessary to be confirmed
in a larger multi-center prospective study for the immunotherapy
efficacy prediction and prognosis assessment.

Conclusion

This study suggests that ICRGs were associated with TIME forma-
tion and prognosis of PAAD patients, which may serve as novel clin-
ical biomarkers and therapeutic targets. Three ICRGs-based



Fig. 10. Developing an ICRG-clinical nomogram to predict the PFS of PAAD patients. (A) A nomogram combining the PFS-related signature, radiotherapy, grade,
and age. (B‒D) The calibration curves of the nomogram at 1-, 2- and 3-years.

X. Chen and H. Zhang Clinics 79 (2024) 100481
subtypes, two molecular signatures, and nomograms were identified
for clinical use. Functional annotation, GESA, TIME, immune infiltra-
tion analysis, and ICRG-TF networks were preformed to realize
underlying mechanisms.
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