Adhesive systems modified with antimicrobial agents: a literature review
DOI:
https://doi.org/10.11606/issn.2357-8041.clrd.2020.164731Keywords:
Dental caries, Dental-Bonding Agents, Anti-Bacterial AgentsAbstract
Secondary caries is the primary cause of restoration failure. Thus, the development of adhesives with antimicrobial action is an advantageous option for their inhibition. However, this effect must be proven, as well as that the additional benefit does not interfere with material mechanical properties or biocompatibility. We analyzed adhesives with antimicrobial action by microbiological tests, bond strength, degree of conversion, and cytotoxicity. We analyzed 32 studies with commercially available antimicrobial adhesives (Clearfil™ SE Protect Bond/ MDPB, Gluma 2Bond/ glutaraldehyde, Peak Universal Bond/chlorhexidine), and experimental materials or commercial adhesives modified with antimicrobial agents, including materials with quaternary ammonium methacrylate (QAM) [dimethylaminododecyl methacrylate (DMADDM) and dimethylaminohexadecyl methacrylate (DMAHDM)], nanoparticles [silver (NAg), titanium dioxide (TiO2), zinc oxide (ZnO)], silver or zinc doped bioactive active glass (BAG), titanium, copper iodide, and compounds such as triclosan, quercetin, grape seed extract, among others. The use of antimicrobial agents is a favorable perspective for the functionalization of adhesive systems to inhibit secondary caries. However, more clinical studies need to prove the efficacy of these materials.
Downloads
References
Zhang K, Wang S, Zhou X, Xu HH, Weir MD, Ge Y, et al. Effect of antibacterial dental adhesive on multispecies biofilms formation. J Dent Res. 2015;94(4):622-9. doi: https://doi.org/10.1177/0022034515571416
Zhang N, Melo MA, Chen C, Liu J, Weir MD, Bai Y, et al. Development of a multifunctional adhesive system for prevention of root caries and secondary caries. Dent Mater. 2015;31(9):1119-31. doi: https://doi.org/10.1016/j.dental.2015.06.010
Li F, Wang P, Weir MD, Fouad AF, Xu HH. Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model. Acta Biomater. 2014;10(6):2804-13. doi: https://doi.org/10.1016/j.actbio.2014.02.033
Han Q, Li B, Zhou X, Ge Y, Wang S, Li M, et al. Anti-caries effects of dental adhesives containing quaternary ammonium methacrylates with different chain lengths. Materials (Basel). 2017;10(6):643. doi: https://doi.org/10.3390/ma10060643
Genari B, Leitune VCB, Jornada DS, Camassola M, Arthur RA, Pohlmann AR, et al. Antimicrobial effect and physicochemical properties of an adhesive system containing nanocapsules. Dent Mater. 2017;33(6):735-42. doi: https://doi.org/10.1016/j.dental.2017.04.001
Yang H, Li K, Yan H, Liu S, Wang Y, Huang C. High-performance therapeutic quercetin-doped adhesive for adhesivedentin interfaces. Sci Rep. 2017;7(1):8189. doi: https://doi.org/10.1038/s41598-017-08633-3
Wu T, Li B, Zhou X, Hu Y, Zhang H, Huang Y, et al. Evaluation of novel anticaries adhesive in a secondary caries animal model. Caries Res. 2018;52(1-2):14-21. doi: https://doi.org/10.1159/000481832
Yu HH, Zhang L, Yu F, Li F, Liu ZY, Chen JH. Epigallocatechin-3-gallate and epigallocatechin-3-O-(3-O-methyl)-gallate enhance the bonding stability of an etch-and-rinse adhesive to dentin. Materials (Basel). 2017;10(2):183. doi: https://doi.org/10.3390/ma10020183
Geraldeli S, Soares EF, Alvarez AJ, Farivar T, Shields RC, Sinhoreti MAC, et al. A new arginine-based dental adhesive system: formulation, mechanical and anti-caries properties. J Dent. 2017;63:72-80. doi: https://doi.org/10.1016/j.jdent.2017.05.024
Zhou W, Niu LN, Huang L, Fang M, Chang G, Shen LJ, et al. Improved secondary caries resistance via augmented pressure displacement of antibacterial adhesive. Sci Rep. 2016;6:22269. doi: https://doi.org/10.1038/srep22269
Centenaro CC, Rostirolla FV, Leitune VC, Parolo CF, Ogliari FA, Samuel SM, et al. Influence of addition of 2-[3-(2Hbenzotriazol-2-YL)- 4-hydroxyphenyl] ethyl methacrylate to an experimental adhesive system. Acta Odontol Latinoam. 2015;28(1):72-8. doi: https://doi.org/10.1590/S1852-48342015000100010
André CB, Gomes BPFA, Duque TM, Rosalen PL, Chan DCN, Ambrosano GMB, et al. Antimicrobial activity, effects on Streptococcus mutans biofilm and interfacial bonding of adhesive systems with and without antibacterial agent. Int J Adhes. 2017;72:123-9. doi: https://doi.org/10.1016/j.ijadhadh.2016.10.011
Pashley DH, Tay FR, Breschi L, Tjäderhane L, Carvalho RM, Carrilho M, et al. State of the art etch-and-rinse adhesives. Dent Mater. 2011;27(1):1-16. doi: https://doi.org/10.1016/j.dental.2010.10.016
Ozer F, Blatz MB. Self-etch and etch-and-rinse adhesive systems in clinical dentistry. Compend Contin Educ Dent. 2013;34(1):12-4.
Melo MA, Orrego S, Weir MD, Xu HH, Arola DD. Designing multiagent dental materials for enhanced resistance to biofilm damage at the bonded interface. ACS Appl Mater Interfaces. 2016;8(18):11779-87. doi: https://doi.org/10.1021/acsami.6b01923
Chen C, Weir MD, Cheng L, Lin NJ, Lin-Gibson S, Chow LC, et al. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles. Dent Mater. 2014;30(8):891-901. doi: https://doi.org/10.1016/j.dental.2014.05.025
ALGhanem A, Fernandes G, Visser M, Dziak R, Renné WG, Sabatini C. Biocompatibility and bond degradation of poly acrylic acid coated copper iodide-adhesives. Dent Mater. 2017;33(9):e336-47. doi: https://doi.org/10.1016/j.dental.2017.06.010
Su M, Yao S, Gu L, Huang Z, Mai S. Antibacterial effect and bond strength of a modified dental adhesive containing the peptide nisin. Peptides. 2018;99:189-94. doi: https://doi.org/10.1016/j.peptides.2017
Wang S, Zhang K, Zhou X, Xu N, Xu HH, Weir MD, et al. Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm. Int J Mol Sci. 2014;15(7):12791-806. doi: https://doi.org/10.3390/ijms150712791
Pupo YM, Farago PV, Nadal JM, Simão LC, Esmerino LA, Gomes OM, et al. Effect of a novel quaternary ammonium methacrylate polymer (QAMP) on adhesion and antibacterial properties of dental adhesives. Int J Mol Sci. 2014;15(5):8998-9015. doi: https://doi.org/10.3390/ijms15058998
Lukomska-Szymanska M, Konieczka M, Zarzycka B, Lapinska B, Grzegorczyk J, Sokolowski J. Antibacterial activity of commercial dentine bonding systems against E. faecalis: flow cytometry study. Materials (Basel). 2017;10(5):481. doi: https://doi.org/10.3390/ma10050481
Wang L, Xie X, Weir MD, Fouad AF, Zhao L, Xu HH. Effect of bioactive dental adhesive on periodontal and endodontic pathogens. J Mater Sci Mater Med. 2016;27(11):168. doi: https://doi.org/10.1007/s10856-016-5778-2
Passariello C, Sannino G, Petti S, Gigola P. Intensity and duration of in-vitro antibacterial activity of different adhesives used in orthodontics. Eur J Oral Sci. 2014;122(2):154-60. doi: https://doi.org/10.1111/eos.12120
Reddy AK, Kambalyal PB, Patil SR, Vankhre M, Khan MY, Kumar TR. Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive. J Orthod Sci. 2016;5(4):127-31. doi: https://doi.org/10.4103/2278-0203.192115
Cai X, Han B, Liu Y, Tian F, Liang F, Wang X. Chlorhexidineloaded amorphous calcium phosphate nanoparticles for inhibiting degradation and inducing mineralization of type I collagen. ACS Appl Mater Interfaces. 2017;9(15):12949-58. doi: https://doi.org/10.1021/acsami.6b14956.
Lee SM, Kim IR, Park BS, Lee DJ, Ko CC, Son WS, et al. Remineralization property of an orthodontic primer containing a bioactive glass with silver and zinc. Materials (Basel). 2017;10(11):1253. doi: https://doi.org/10.3390/ma10111253
Oz AZ, Oz AA, Yazicioglu S. In vivo effect of antibacterial and fluoride-releasing adhesives on enamel demineralization around brackets: a micro-CT study. Angle Orthod. 2017;87(6):841-6. doi: https://doi.org/10.2319/060217-371.1
Nascimento PLMM, Meereis CTW, Maske TT, Ogliari FA, Cenci MS, Pfeifer CS, et al. Addition of ammonium-based methacrylates to an experimental dental adhesive for bonding metal brackets: carious lesion development and bond strength after cariogenic challenge. Am J Orthod Dentofacial Orthop. 2017;151(5):949-56. doi: https://doi.org/10.1016/j.ajodo.2016.10.028
Yu F, Dong Y, Yu HH, Lin PT, Zhang L, Sun X, et al. Antibacterial activity and bonding ability of an orthodontic adhesive containing the antibacterial monomer 2-methacryloxylethyl hexadecyl methyl ammonium bromide. Sci Rep. 2017;7:41787. doi: https://doi.org/10.1038/srep41787
Altmann AS, Collares FM, Leitune VC, Arthur RA, Takimi AS, Samuel SM. In vitro antibacterial and remineralizing effect of adhesive containing triazine and niobium pentoxide phosphate inverted glass. Clin Oral Investig. 2017;21(1):93-103. doi: https://doi.org/10.1007/s00784-016-1754-y
Schiroky PR, Leitune VCB, Garcia IM, Ogliari FA, Samuel SMW, Collares FM. Triazine compound as copolymerized antibacterial agent in adhesive resins. Braz Dent J. 2017;28(2):196-200. doi: https://doi.org/10.1590/0103-6440201701346
Sakaguchi RL, Powers JM. Craig materiais dentários restauradores. 13 ed. Rio de Janeiro: Elsevier; 2012. 416 p.
Anusavice KJ, Shen C, Rawls HR. Phillips materiais dentários. 12th ed. Rio de Janeiro: Elsevier; 2013. 592 p.
Monte Alto R, editor. Reabilitação estética anterior: o passo a passo da rotina clínica. Nova Odessa: Napoleão; 2018. 592 p.
Tjäderhane L, Nascimento FD, Breschi L, Mazzoni A, Tersariol IL, Geraldeli S, et al. Strategies to prevent hydrolytic degradation of the hybrid layer: a review. Dent Mater. 2013;29(10):999- 1011. doi: https://doi.org/10.1016/j.dental.2013.07.016
Tjäderhane L. Dentin bonding: can we make it last? Oper Dent. 2015;40(1):4-18. doi: https://doi.org/10.2341/14-095-BL
Matos AB, Trevelin LT, Silva BTF, Francisconi-dos-Rios LF, Siriani LK, Cardoso MV. Bonding efficiency and durability: current possibilities. Braz Oral Res. 2017;31(suppl 1):e57. doi: 10.1590/1807-3107BOR-2017.vol31.0057
Chen C, Niu LN, Xie H, Zhang ZY, Zhou LQ, Jiao K, et al. Bonding of universal adhesives to dentine: old wine in new bottles? J Dent. 2015;43(5):525-36. doi: https://doi.org/10.1016/j.jdent.2015.03.004
Degrazia FW, Leitune VC, Garcia IM, Arthur RA, Samuel SM, Collares FM. Effect of silver nanoparticles on the physicochemical and antimicrobial properties of an orthodontic adhesive. J Appl Oral Sci. 2016;24(4):404-10. doi: https://doi.org/10.1590/1678-775720160154
Cocco AR, Rosa WLO, Peralta SL, Maske TT, Silva AF, Hartwig CA, et al. New adhesive system based in metals cross-linking methacrylate. J Mech Behav Biomed Mater. 2018;77:519-26. doi: https://doi.org/10.1016/j.jmbbm.2017.10.010
Collares FM, Leitune VCB, Franken P, Parollo CF, Ogliari FA, Samuel SMW. Influence of addition of [2-(methacryloyloxy) ethyl]trimethylammonium chloride to an experimental adhesive. Braz Oral Res. 2017;31:31. doi: https://doi.org/10.1590/1807-3107BOR-2017.vol31.0031
Villat C, Attal JP, Brulat N, Decup F, Doméjean S, Dursun E, et al. One-step partial or complete caries removal and bonding with antibacterial or traditional self-etch adhesives: study protocol for a randomized controlled trial. Trials. 2016;17(1):404. doi: https://doi.org/10.1186/s13063-016-1484-0
Deng S, Chung KH, Chan D, Spiekerman C. Evaluation of bond strength and microleakage of a novel metal-titanate antibacterial agent. Oper Dent. 2016;41(3):E48-56. doi: https://doi.org/10.2341/14-257-L
André CB, Gomes BP, Duque TM, Stipp RN, Chan DC, Ambrosano GM, et al. Dentine bond strength and antimicrobial activity evaluation of adhesive systems. J Dent. 2015;43(4):466-75. doi: https://doi.org/10.1016/j.jdent.2015.01.004
Melo MA, Cheng L, Weir MD, Hsia RC, Rodrigues LK, Xu HH. Novel dental adhesive c ontaining a ntibacterial agents a nd calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater. 2013;101(4):620-9. doi: https://doi.org/10.1002/jbm.b.32864
Priyadarshini BM, Mitali K, Lu TB, Handral HK, Dubey N, Fawzy AS. PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface. Dent Mater. 2017;33(7):830-46. doi: https://doi.org/10.1016/j.dental.2017.04.015
Priyadarshini BM, Selvan ST, Lu TB, Xie H, Neo J, Fawzy AS. Chlorhexidine nanocapsule drug delivery approach to the resin-dentin interface. J Dent Res. 2016;95(9):1065-72. doi: https://doi.org/10.1177/0022034516656135
Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt KL. State of the art of self-etch adhesives. Dent Mater. 2011;27(1):17-28. doi: https://doi.org/10.1016/j.dental.2010.10.023
Perdigão J. Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent Mater. 2010;26(2):e24-37. doi: https://doi.org/10.1016/j.dental.2009.11.149.
Breschi L, Mazzoni A, Ruggeri A, Cadenaro M, Di Lenarda R, De Stefano Dorigo E. Dental adhesion review: aging and stability of the bonded interface. Dent Mater. 2008;24(1):90-101. doi: https://doi.org/10.1016/j.dental.2007.02.009
Rosa WL, Piva E, Silva AF. Bond strength of universal adhesives: a systematic review and meta-analysis. J Dent. 2015;43(7):765-76. doi: https://doi.org/10.1016/j.jdent.2015.04.003
Cheng L, Zhang K, Weir MD, Melo MA, Zhou X, Xu HH. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine (Lond). 2015;10(4):627-41. doi: https://doi.org/10.2217/nnm.14.191
Li F, Chen J, Chai Z, Zhang L, Xiao Y, Fang M, et al. Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J Dent. 2009;37(4):289-96. doi: https://doi.org/10.1016/j.jdent.2008.12.004
Padovani GC, Feitosa VP, Sauro S, Tay FR, Duran G, Paula AJ, et al. Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol. 2015;33(11):621-36. doi: https://doi.org/10.1016/j.tibtech.2015.09.005
Melo MA, Cheng L, Zhang K, Weir MD, Rodrigues LK, Xu HH. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent Mater. 2013;29(2):199-210. doi: https://doi.org/10.1016/j.dental.2012.10.005
Dutra-Correa M, Leite A, Cara S, Diniz IMA, Marques MM, Suffredini IB, et al. Antibacterial effects and cytotoxicity of an adhesive containing low concentration of silver nanoparticles. J Dent. 2018;77:66-71. doi: https://doi.org/10.1016/j.jdent.2018.07.010
Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater. 2003;19(6):449-57. doi: https://doi.org/10.1016/s0109-5641(02)00102-1
Imazato S, Tay FR, Kaneshiro AV, Takahashi Y, Ebisu S. An in vivo evaluation of bonding ability of comprehensive antibacterial adhesive system incorporating MDPB. Dental Materials. 2007;23(2):170-6. doi: https://doi.org/10.1016/j.dental.2006.01.005
Cocco AR, Maske TT, Lund RG, Moraes RR. The antibacterial and physicochemical properties of a one-step dental adhesive modified with potential antimicrobial agents. Int J Adhes. 2016;71:74-80. doi: https://doi.org/10.1016/j.ijadhadh.2016.08.012
Kim GE, Leme-Kraus AA, Phansalkar R, Viana G, Wu C, Chen SN, et al. Effect of Bioactive Primers on Bacterial-Induced Secondary Caries at the Tooth-Resin Interface. Oper Dent. 2017;42(2):196-202. doi: https://doi.org/10.2341/16-107-L
Bisco. All-Bond 2 Primer B: safety data sheet [Internet]. Schaumburg; 2018 [cited 2018 Jul 24]. Available from: https://bit.ly/3d9zQ8f
Daood U, Swee Heng C, Neo Chiew Lian J, Fawzy AS. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies. Int J Oral Sci. 2014;7(2):110-24. doi: https://doi.org/10.1038/ijos.2014.49
3M. 3M Unitek Transbond XT Light Cure Adhesive Kit (712-030, 712-035): safety data sheet [Internet]. Sant Paul; 2016 [cited 2018 Jul 24]. Available from: https://bit.ly/2M0m8ZF
Delaviz Y, Liu TW, Deonarain AR, Finer Y, Shokati B, Santerre P. Physical properties and cytotoxicity of antimicrobial dental resin adhesives containing dimethacrylate oligomers of Ciprofloxacin and Metronidazole. Dent Mater. 2019;35(2):229-43. doi: https://doi.org/10.1016/j.dental.2018.11.016
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Juliana Dias Aguiar, Michel Nicolau Youssef, Igor Studart Medeiros

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors are requested to send, together with the letter to the Editors, a term of responsibility. Thus, the works submitted for appreciation for publication must be accompanied by a document containing the signature of each of the authors, the model of which is presented as follows:
I/We, _________________________, author(s) of the work entitled_______________, now submitted for the appreciation of Clinical and Laboratorial Research in Dentistry, agree that the authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Date: ____/____/____Signature(s): _______________