Effect of gaseous hydrochloric acid on human and bovine enamel
DOI:
https://doi.org/10.11606/issn.2357-8041.clrd.2020.171222Keywords:
Dental Enamel, Gastric Acid, Gastroesophageal Reflux DiseaseAbstract
Objective: To evaluate the action of gaseous hydrochloric acid on human and bovine enamel and compare the demineralization pattern of these substrates exposed to the gaseous erosive agent. Methods: Eight bovine enamel and eight human enamel specimens were obtained (4 × 4 × 2 mm), half surface was protected with composite resin and the other half was exposed to gaseous hydrochloric acid (gHCl), pH 2 at 37 °C, for 3 min, 8 times a day, for 12 days, and in intervals the specimens were maintained in artificial saliva. The specimens were analyzed according to wear profile, surface roughness and microhardness (before and after acid exposition). Data were statistically analyzed by one-way ANOVA. Results: Data showed no significant difference between bovine and human enamel for all properties analyzed – microhardness (98.1 ± 5.2, 96.9 ± 4.8), wear profile (11.5 ± 2.8, 11.4 ± 3.6) and roughness (2.6 ± 0.3, 3.3 ± 0.3), respectively. In images, we observed that gHCl could cause enamel erosion in both groups. Conclusion: Gaseous hydrochloric acid causes similar enamel erosion on bovine and humans.
Downloads
References
Bor S. Reflux esophagitis, functional and non-functional. Best Pract Res Clin Gastroenterol. 2019;40-41:101649. doi: https://doi.org/10.1016/j.bpg.2019.101649.
Richter JE, Rubenstein JH. Presentation and epidemiology of gastroesophageal reflux disease. Gastroenterol. 2018;154(2):267-76. doi: https://doi.org/10.1053/j.gastro.2017.07.045.
Sandhu DS, Fass R. Current trends in the management of gastroesophageal reflux disease. Gut Liver. 2018;12(1):7-16. doi: https://doi.org/10.5009/gnl16615.
Schoeman MN, Tippett MDM, Akkermans LMA, Dent J, Holloway RH. Mechanisms of gastroesophageal reflux in ambulant healthy human subjects. Gastroenterol. 1995;108(1):83-91. doi: https://doi.org/10.1016/0016-5085(95)90011-X.
Penagini R, Schoeman M, Dent J, Tippett M, Holloway R. Motor events underlying gastro‐oesophageal reflux in ambulant patients with reflux oesophagitis. Neurogastroenterol Motil. 1996;8(2):131-41. doi: https://doi.org/10.1111/j.1365-2982.1996.tb00253.x.
Kaye MD. Postprandial gastro-oesophageal reflux in healthy people. Gut. 1977;18(9):709-12. doi: https://doi.org/10.1136/gut.18.9.709.
Masclee AAM, De Best ACAM, De Graaf R, Cluysenaer OJJ, Jansen JBMJ. Ambulatory 24-hour pH-metry in the diagnosis of gastroesophageal reflux disease: determination of criteria and relation to endoscopy. Scand J Gastroenterol. 1990;25(3):225-30. doi: https://doi.org/10.1080/00365521.1990.12067095.
Dent J, Holloway R, Toouli J, Dodds W. Mechanisms of lower oesophageal sphincter incompetence in patients with symptomatic gastrooesophageal reflux. Gut. 1988;29(8):1020-8. doi: https://doi.org/10.1136/gut.29.8.1020.
Sifrim D, Blondeau K. Technology insight: the role of impedance testing for esophageal disorders. Nat Clin Pract Gastroenterol Hepatol. 2006;3(4):210-9. doi: https://doi.org/10.1038/ncpgasthep0446.
Sifrim D, Silny J, Holloway R, Janssens J. Patterns of gas and liquid reflux during transient lower oesophageal sphincter relaxation: a study using intraluminal electrical impedance. Gut. 1999;44(1):47-54. doi: https://doi.org/10.1136/gut.44.1.47.
Van Wijk MP, Sifrim D, Rommel N, Benninga MA, Davidson GP, Omari TI. Characterization of intraluminal impedance patterns associated with gas reflux in healthy volunteers. Neurogastroenterol Motil. 2009;21(8):825-e55. doi: https://doi.org/10.1111/j.1365-2982.2009.01289.x.
Emerenziani S, Sifrim D, Habib FI, Ribolsi M, Guarino MPL, Rizzi M, et al. Presence of gas in the refluxate enhances reflux perception in non-erosive patients with physiological acid exposure of the oesophagus. Gut. 2008;57(4):443-7. doi: https://doi.org/10.1136/gut.2007.130104.
Foroutan M, Zojaji H, Ehsani M, Darvishi M. Advances in the Diagnosis of GERD Using the Esophageal pH Monitoring, Gastro-Esophageal Impedance-pH Monitoring, And Pitfalls. Open Access Maced J Med Sci. 2018;6(10):1934-40. 2018. doi: https://doi.org/10.3889/oamjms.2018.410.
Pohl D, Tutuian R. Reflux monitoring: pH-metry, Bilitec and oesophageal impedance measurements. Best Pract Res Clin Gastroenterol. 2009;23(3):299-311. doi: https://doi.org/10.1016/j.bpg.2009.04.003.
Sifrim D, Holloway R, Silny J, Xin Z, Tack J, Lerut A, et al. Acid, nonacid, and gas reflux in patients with gastroesophageal reflux disease during ambulatory 24-hour pH-impedance recordings. Gastroenterol. 2001;120(7):1588-98. doi: https://doi.org/10.1053/gast.2001.24841.
Tutuian R, Vela MF, Hill EG, Mainie I, Agrawal A, Castell DO. Characteristics of symptomatic reflux episodes on acid suppressive therapy. Am J Gastroenterol. 2008;103(5):1090-6. doi: https://doi.org/10.1111/j.1572-0241.2008.01791.x.
Koukias N, Woodland P, Yazaki E, Sifrim D. Supragastric belching: prevalence and association with gastroesophageal reflux disease and esophageal hypomotility. J Neurogastroenterol Motil. 2015;21(3):398. doi: https://doi.org/10.5056/jnm15002.
Lee B, Lee SH, Jang D, Chung K, Hwang J-H, Jang S, et al. Belching during gastroscopy and its association with gastroesophageal reflux disease. Dis Esophagus. 2016;29(4):342-9. doi: https://doi.org/10.1111/dote.12326.
Ong AM-L, Chua LT-T, Khor CJ-L, Asokkumar R, Wang Y-T. Diaphragmatic breathing reduces belching and proton pump inhibitor refractory gastroesophageal reflux symptoms. Clin Gastroenterol Hepatol. 2018;16(3):407-16. e2. doi: https://doi.org/10.1016/j.cgh.2017.10.038.
Shimazu R, Yamamoto M, Minesaki A, Kuratomi Y. Dental and oropharyngeal lesions in rats with chronic acid reflux esophagitis. Auris Nasus Larynx. 2018;45(3):522-6. doi: https://doi.org/10.1016/j.anl.2017.08.011.
Kim TH, Lee KJ, Yeo M, Kim DK, Cho SW. Pepsin detection in the sputum/saliva for the diagnosis of gastroesophageal reflux disease in patients with clinically suspected atypical gastroesophageal reflux disease symptoms. Digestion. 2008;77(3-4):201-6. doi: https://doi.org/10.1159/000143795.
Clarrett DM, Hachem C. Gastroesophageal Reflux Disease (GERD). Mo Med. 2018;115(3):214-8.
Oliveira GC, Tereza GPG, Boteon AP, Ferrairo BM, Gonçalves PSP, Silva TC, et al. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges. PloS One. 2017;12(8):e0182347. doi: https://doi.org/10.1371/journal.pone.0182347.
Rios D, Honório HM, Magalhães A, Delbem A, Machado MAAM, Silva SMB, et al. Effect of salivary stimulation on erosion of human and bovine enamel subjected or not to subsequent abrasion: an in situ/ex vivo study. Caries Res. 2006;40(3):218-23. doi: https://doi.org/10.1159/000092229.
Mellberg JR. Hard-tissue substrates for evaluation of cariogenic and anti-cariogenic activity in situ. J Dent Res. 1992;71(3 Suppl):913-9. doi: https://doi.org/10.1177/002203459207100s25.
Tanaka JLO, Medici Filho E, Salgado JAP, Salgado MAC, Moraes LC, Moraes MEL, et al. Comparative analysis of human and bovine teeth: radiographic density. Braz Oral Res. 2008;22(4):346-51. doi: https://doi.org/10.1590/s1806-83242008000400011.
Toro CVT, Faraoni JJ, Matos LLM, Palma-Dibb RG. Efficacy of different strategies to treat root dentin eroded by liquid or gaseous hydrochloric acid associated with brushing abrasion. Arch Oral Biol. 2018;89:65-9. doi: https://doi.org/10.1016/j.archoralbio.2018.02.005.
Clarke AT, Wirz AA, Manning JJ, Ballantyne SA, Alcorn DJ, McColl KE. Severe reflux disease is associated with an enlarged unbuffered proximal gastric acid pocket. Gut. 2008;57(3):292-7. doi: https://doi.org/10.1136/gut.2006.109421.
Schlueter N, Luka B. Erosive tooth wear–a review on global prevalence and on its prevalence in risk groups. Br Dent J. 2018;224(5):364-70. doi: https://doi.org/10.1038/sj.bdj.2018.167.
Bartlett DW, Coward PY. Comparison of the erosive potential of gastric juice and a carbonated drink in vitro. J Oral Rehabil. 2001;28(11):1045-7. doi: https://doi.org/10.1046/j.1365-2842.2001.00780.x.
Esteves-Oliveira M, Yu H, de Paula Eduardo C, Meister J, Lampert F, Attin T, et al. Screening of CO2 laser (10.6μm) parameters for prevention of enamel erosion. Photomed Laser Surg. 2012;30(6):331-8. doi: https://doi.org/10.1089/pho.2011.3175.
Wegehaupt FJ, Tauböck TT, Sener B, Attin T. Long-term protective effect of surface sealants against erosive wear by intrinsic and extrinsic acids. J Dent. 2012;40(5):416-22. doi: https://doi.org/10.1016/j.jdent.2012.02.003.
Bredenoord AJ, Weusten BL, Timmer R, Smout AJ. Characteristics of gastroesophageal reflux in symptomatic patients with and without excessive esophageal acid exposure. Am J Gastroenterol. 2006;101(11):2470-5. doi: https://doi.org/10.1111/j.1572-0241.2006.00945.x.
Ranjitkar S, Smales RJ, Kaidonis JA. Oral manifestations of gastroesophageal reflux disease. J Gastroenterol Hepatol. 2012;27(1):21-7. doi: https://doi.org/10.1111/j.1440-1746.2011.06945.x.
Ganesh M, Hertzberg A, Nurko S, Needleman H, Rosen R. Acid rather than non-acid reflux burden is a predictor of tooth erosion. J Pediatr Gastroenterol Nutr. 2016;62(2):309-13. doi: https://doi.org/10.1097/mpg.0000000000000927.
Farahmand F, Sabbaghian M, Ghodousi S, Seddighoraee N, Abbasi M. Gastroesophageal reflux disease and tooth erosion: a cross-sectional observational study. Gut Liver. 2013;7(3):278-81. doi: https://doi.org/10.5009/gnl.2013.7.3.278.
Wang G-R, Zhang H, Wang Z-G, Jiang G-S, Guo C-H. Relationship between dental erosion and respiratory symptoms in patients with gastro-oesophageal reflux disease. J Dent. 2010;38(11):892-8. doi: https://doi.org/10.1016/j.jdent.2010.08.001.
Higo T, Mukaisho K, Ling Z-Q, Oue K, Chen K-H, Araki Y, et al. An animal model of intrinsic dental erosion caused by gastro-oesophageal reflux disease. Oral Dis. 2009;15(5):360-5. doi: https://doi.org/10.1111/j.1601-0825.2009.01561.x.
Zero D. In situ caries models. Adv Dent Res. 1995;9(3):214-30. doi: https://doi.org/10.1177/08959374950090030501.
Rueggeberg FA. Substrate for adhesion testing to tooth structure—Review of the literature: A report of the ASC MD156 Task Group on Test methods for the adhesion of restorative materials Accredited standards committee MD156 for dental materials and devices. Dent Mater. 1991;7(1):2-10. doi: https://doi.org/10.1016/0109-5641(91)90017-s.
Skene L. Ownership of human tissue and the law. Nat Rev Genet. 2002;3(2):145-8. doi: https://doi.org/10.1038/nrg725.
Steiger-Ronay V, Kuster IM, Wiedemeier DB, Attin T, Wegehaupt FJ. Erosive loss of tooth substance is dependent on enamel surface structure and presence of pellicle–an in vitro study. Arch Oral Biol. 2020;112:104686. doi: https://doi.org/10.1016/j.archoralbio.2020.104686.
Laurance-Young P, Bozec L, Gracia L, Rees G, Lippert F, Lynch R, et al. A review of the structure of human and bovine dental hard tissues and their physicochemical behaviour in relation to erosive challenge and remineralisation. J Dent. 2011;39(4):266-72. doi: https://doi.org/10.1016/j.jdent.2011.01.008.
Field J, German M, Waterhouse P. Using bearing area parameters to quantify early erosive tooth surface changes in enamel: A pilot study. J Dent. 2013;41(11):1060-7. doi: https://doi.org/10.1016/j.jdent.2013.08.015.
Derceli JR, Faraoni JJ, Pereira-da-Silva MA, Palma-Dibb RG. Analysis of the early stages and evolution of dental enamel erosion. Braz Dent J. 2016;27(3):313-7. doi: https://doi.org/10.1590/0103-6440201600667.
Hannig C, Hamkens A, Becker K, Attin R, Attin T. Erosive effects of different acids on bovine enamel: release of calcium and phosphate in vitro. Arch Oral Biol. 2005;50(6):541-52. doi: https://doi.org/10.1016/j.archoralbio.2004.11.002.
Houghton JW, Yong JT, Carpenter G, Bartlett D, Moazzez R, O’Toole S. Differences in the Natural Enamel Surface and Acquired Enamel Pellicle following Exposure to Citric or Hydrochloric Acid. Caries Res. 2020;54(2):122-9. doi: https://doi.org/10.1159/000504746.
Bertacci A, Lucchese A, Taddei P, Gherlone EF, Chersoni S. Enamel structural changes induced by hydrochloric and phosphoric acid treatment. J App Biomater Func. 2014;12(3):240-7. doi: https://doi.org/10.5301/jabfm.5000179.
Arnold WH, Haddad B, Schaper K, Hagemann K, Lippold C, Danesh G. Enamel surface alterations after repeated conditioning with HCl. Head Face Med. 2015;11(1):1-7. doi: https://doi.org/10.1186/s13005-015-0089-2.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Juliana dos Reis Derceli, Juliana Jendiroba Faraoni, Pâmella Coelho Dias, Laís Lopes Machado de Matos, Regina Guenka Palma-Dibb
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors are requested to send, together with the letter to the Editors, a term of responsibility. Thus, the works submitted for appreciation for publication must be accompanied by a document containing the signature of each of the authors, the model of which is presented as follows:
I/We, _________________________, author(s) of the work entitled_______________, now submitted for the appreciation of Clinical and Laboratorial Research in Dentistry, agree that the authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Date: ____/____/____Signature(s): _______________