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RESUMO 

Neste estudo analisamos o IBOVESPA, indice da Bolsa de Valores de S. Paulo, usando tecnicas da teoria de 

sistemas dinamicos e processes estocasticos. Discutimos o expoente de Lyapunov, a dimensao de correlagao, 

a complexidade de Lempel-Ziv, o expoente de Hurst e a estatistica BDS. Comparamos este estudo com outras 

series temporals incluindo pregos de a?6es e sistemas deterministicos. Concluimos que o IBOVESPA e um 

processo estocastico linear que exibe o fenomeno de persistencia, isto e, possui memoria de longo prazo. As 

agoes sao descritas por processos estocasticos nao-lineares tornando dificil sua simulagao com modelos 

deterministicos, tais como as arquiteturas usuais de redes neurais. 

Palavras-chave: deterministico, estocastico, reconstrugoes no espago de fase, complexidade. 

ABSTRACT 

In this study we analyse a Brazilian stock index called IBOVESPA using techniques from dynamical systems 

theory and stochastic processes. We discuss the Lyapunov exponent, the correlation dimension, the Lempel- 

Ziv complexity, the Hurst exponent and the BDS statistics. We compare this study with other time series 

including stock prices and deterministic systems. We conclude that the IBOVESPA is a linear stochastic 

process that exhibits the phenomenon of persistence, that is, it has long term memory. The stocks are described 

by nonlinear stochastic processes making it impossible to be simulated with deterministic models such as the 

usual neural networks architectures. 
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1 Introduction 

Dynamical systems theory and stochastic processes are the two prominent tools used to 

investigate the behaviour of complex time evolution in the physical sciences. These methods 

are being increasingly employed in systems obtained from economic and financial time series. 

One of the main points in such studies is to determine the type of evolution mechanism that 

generated the motion. Such an understanding is important in order to determine the most ad- 

equate set of tools in the modelling, and eventual prediction, of the series. (Weigend and 

Gershenfeld, 1994) In many problems of interest the explicit mechanism that generated the mo- 

tion, whether deterministic or stochastic, is unknown. This situation is common in the financial 

and economic systems together with the fact that they lack sufficient amounts of data for the 

full use of some of the tools proposed herein. In spite of these shortcomings the methods here 

analysed can be used to obtain valuable insights into the problem when proper care is exer- 

cised. 

Here we adopt an exploratory approach to the problem of understanding and classifying 

the behaviour of a financial time series describing the IBOVESPA, the main Brazilian stock 

market index. This index, together with other Brazilian stocks, were analysed in Denisard, 

Brundo and Francisco (2000) using the BDS statistics. It was found that although some form 

of nonlinearity could be detected for the most important stock indices, no trace of it was 

present in the IBOVESPA. In the present study we analyse the IBOVESPA further using some 

diagnostic parameters that will help to determine the nature of its generating mechanism. We 

compare these results with that of other systems, as for example chaotic models, and conclude 

that fundamental differences exist between the several modes of evolution. 

This paper is organised as follows. The Lyapunov exponent is presented in §2 in the con- 

text of dynamical systems theory and it is stressed that this parameter is not adequate to distin- 

guish between chaoticity and stochasticity, although it is an important measure of unpredictability 

in deterministic systems. Next we discuss the limitations of the correlation sum in §3, together 

with the reconstruction of the phase space. We also introduce the concept of correlation di- 

mension and discuss its bearing on the classification of stochastic and deterministic behaviour. 

In order to substantiate the conclusion of the previous paragraph, we analyse the system using 

another parameter, the Lempel-Ziv complexity in §4, which endorses the random character of 

the index. The Hurst exponent is presented in §5 and its use in determining the persistence, or 

anti persistence, is discussed. We choose R/S analysis as the method for computing the Hurst 

exponent although other alternatives exist. Finally, the BDS statistics is briefly mentioned in §6. 

All parameters discussed are calculated for the IBOVESPA and their values compared with 

those of the well known Lorenz attractor and with a selection of stocks. We conclude with 

some remarks on the results obtained. 
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2 Unpredictable deterministic systems 

The evolution of systems which exhibit complex behaviour are described either by deter- 

ministic or stochastic propagation in time. Amongst the deterministic modes of evolution those 

systems known as chaotic will be the focus of our study The trajectories are generated by a 

well defined mechanism, such as differential equations or some nonlinear mapping. This is com- 

pletely different from a stochastic process where trajectories are generated by random vari- 

ables defined a priori. For example, the geometric Brownian motion, which models the price 

trajectories for the calculation of contingent claims in the Black-Scholes theory, are built from 

the start with gaussian random processes and independent increments. Chaotic systems on their 

turn are described by trajectories highly sensitive to minute fluctuations in the specification of 

their initial conditions. This unstable behaviour will ultimately lead to unpredictable dynamics 

since such fluctuations are unavoidable in practice and also in computer simulations. More spe- 

cifically, trajectories of chaotic systems diverge exponentially in phase space at a rate known 

as the Lyapunov exponent. A positive exponent indicates that a deterministic system will be 

unpredictable, that is, the time horizon for which predictions can be made is restricted to a 

certain characteristic interval. Beyond this horizon only statistical estimates can be made and in 

this sense there is some resemblance with stochastic process, although a chaotic system has an 

attractor with well defined geometry and dimension, features never found in stochastic proc- 

esses. The attractor is a confined region of phase space where trajectories will be trapped. A 

chaotic attractor exhibits both confinement and local divergence of orbits. The coexistence of 

such apparently paradoxical behaviour is possible because families of orbits bend on each other 

in such a way as to satisfy these requirements and resulting in the fractal dimensionality ob- 

served in many attractors. 

Rigorous treatments of Lyapunov exponents in terms of eigenvalues and eigenvectors of in- 

finite products of matrices can be found in the literature. (Mane, 1983; Eckmann and Ruelle, 

1985) In general one will find up to n distinct exponents in 77-dimensional spaces and the im- 

portant task in applications is to find the maximal exponent. The numerical implementation con- 

tained in Wolf et al. (1985) can be used with the proviso that this method assumes that the 

system is deterministic and it will not in general provide correct results for stochastic processes. 

A code which circumvents the difficulties with this algorithm is presented in Kantz and Schreiber 

(1999). For simulation purposes the numerical orbit will always align during evolution in a di- 

rection which produces the largest exponent. If this exponent is positive the system is called 

chaotic, if not we have determinism without chaos and this possibility is uninteresting in our 

study. A one-dimensional example which shows clearly how to estimate the time horizon for 

predictability using the Lyapunov exponent is given in Shaw (1980). For higher dimensional 

systems the sum of all positive exponents needs to be used. (Schuster, 1988) 
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3 Phase space reconstruction and correlation dimension 

The main procedure used in this section is a method that allows the construction of phase 

space trajectories of a system using just one of its observable component. This approach is 

useful even when the evolution mechanism is unknown. For example, the price of an asset may 

be described by an unknown dynamics in terms of variables not immediately assessed or iden- 

tifiable. Under some conditions, using the method discussed herein, one can determine the 

number of variables that generated the motion by considering just the price series or the series 

corresponding to a single component of the system. When trajectories of dynamical systems 

are evolved to the future, they tend to accumulate near attractors. The method also provides, 

in some cases, a way to obtain the fractal dimension of the attractor. (Mane, 1981; Takens, 

1981) Two main limitations for the application of the method occur when there is excessive 

presence of noise and when large amounts of data is not available. We will not discuss here 

how to filter the data but refer to Kostelich and Screiber (1993) and Davies (1997). A critical 

issue is the amount of data required for meaningful determination of parameters and an inequal- 

ity giving an upper bound for the dimension calculation will be discussed. 

Observations on ^-dimensional trajectories constitute a sequence of numbers defined on 

points on these orbits. Suppose that the only information about the system is a series of data 

values a{f) representing some measured empirical observation which may correspond to indi- 

ces, price returns, exchange rates, etc. The time index depend on the problem at hand and can 

be minute, day, week, etc. Choose a time delay1 T and consider an A-dimensional model of 

phase-space with trajectories defined by points a" (/) = (a(/+7), a(/+27),..., a{t+NT)). In- 

creasing t implies in the evolution of the TV-dimensional orbit d1 (/) and this provides an image 

of the attractor. The crucial parameter to be determined is the minimum dimension /?, called 

embedding dimension, of the space where this process occurs. The method for the determina- 

tion of n from the TV-dimensional space requires the consideration of the correlation sum C{r). 

The function C{r) is defined as the normalised average number of pairs of points inside TV- 

dimensional spheres of radius r along the trajectory of the system. (Grassberger and Procaccia, 

1983; Abarbanel et al, 1993). The main point here is to identify a scaling region in the loga- 

rithmic plots of r by C{r) for several values of TV and r where an unambiguous slope is clearly 

visible (see Kantz and Schreiber, 1999). At each increment of TV we note that the slope of the 

linear part of the plot tends to increase until a certain maximal stabilisation value is reached. 

1 There are well defined methods to choose this delay (see Abarbanel). For example, T could be chosen as the time 

necessary for the autocorrelation to decay to 1/e of its initial value. In our case, since data are scarce, it is a common 

procedure to choose the delay as one unit of time. 
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The first for which the slope saturates and stops increasing is the embedding dimension n of 

the system, and the corresponding slope is the fractal dimension of the attractor, in this case 

called the correlation dimension. Another approach to determine the embedding dimension is 

the notion of false nearest neighbours as discussed in Kennel, Brown and Abarbanel (1992). A 

distinction between deterministic chaotic evolution and stochastic processes is that the embed- 

ding dimension for stochastic evolution always increases and this motion will never be confined 

to lower dimensional spaces. 

In this discussion, and in what follows, the delay is taken to be 7=1, although the method of 

mutual information suggested in Abarbanel etal. (1993) should have been used. We do not have 

enough data for discarding points and our conclusions will be corroborated by the use of the 

Lempel-Ziv complexity which does not require embeddings. The Lorenz attractor is a prototype 

for chaotic deterministic behaviour and its computed maximal Lyapunov exponent is /I =2.16.2 

The same method applied to the IBOVESPA logarithmic returns between May 2, 1994 and 

July 27, 1999, a series comprised of 1292 valid records, would also give a positive exponent 

/I =0,63. Two remarks need to be made concerning the value of this exponent. Firstly, it should 

be stressed that we have considered the exponent over the whole period. However the Brazil- 

ian stock market can have large local variations, sometimes in a few days, and this is not ap- 

parent in a long-term average of 1292 records. For practical uses of this concept we recom- 

mend the calculation of the local Lyapunov exponent, for example computed weekly, a tech- 

nique called short time average which has successfully been applied in fluid turbulence (Tavakol 

and Tworkowski, 1988) and chaotic cosmological models. (Burd, Buric and Ellis, 1990) 

Secondly, the algorithm by Wolf et al cannot be recommended as the sole criterion for 

chaoticity since it does not provide any indication that a deterministic mechanism is operating 

in the dynamics.3 In other words, although the index system has a positive Lyapunov exponent 

we cannot infer it is chaotic based on just this information since chaos is a manifestation of a 

deterministic process. More has to be explored to arrive at a classification of deterministic or 

nondeterministic system. In the easier case of the Lorenz attractor its correlation dimension is 

2.03 with an embedding dimension 3 because increasing Abeyond this value the correlation 

dimension does not alter significantly from that value. If nothing else was known about the 

2 See Wolf et al. (1985) for the constant parameters used for the Lorenz attractor. There are other possible choices, giving 

different exponents. 

3 The algorithm presented in Wolf et al (1985) assumes determinism, but this is what we are trying to assess (see Kantz 

and Schreiber, 1999). 
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Lorenz system these results strongly suggest that its generating mechanism is deterministic. As 

regards the financial index, if we successively increase N from 2 to 5 the correlation function 

increases, respectively, as 2.06, 3.06, 3.76 and 4.46. This is an indication that there is no satu- 

ration of the slope and no definite fractal dimension can be inferred. This is an indication that 

the index is not deterministic. Further insights will be provided by the Lempel-Ziv complexity 

in the next section; below we present additional discussion on the determination of the correla- 

tion dimension. 

A critical issue in all analyses of an unknown dynamics is that the number of data points 

may impose severe restrictions on the upper limit for the values of A we can use. For example 

in this case we can not go beyond 5. An inequality (Eckmann and Ruelle, 1992; see also the 

discussion in Stefanovska, Strle and Kroselj, 1997) sets an upper limit on A beyond which no 

conclusions can be drawn from a time series. The fractal dimension is related to the number of 

points M and the relative size p of the data (the range for which logarithmic graph of C(r) is 

approximately a straight line divided by the spread of the data in phase-space). The inequality 

is given by Dmax < 2 (logM) / log (1/p). In the case oflBOVESPA, with p «1/10, we have 

that Dmax < 6. Any calculation which violates this bound is completely meaningless, and even 6 

dimensional embeddings should be avoided. This is the reason why we have limited our calcu- 

lations to 5. Actually, with limited amounts of data it is impossible to distinguish between high 

dimensional chaos and stochastic processes. In spite of this, within the limited amount of data 

at our disposal, the index seems to behave as a stochastic process. This phenomenon also hap- 

pens when we compute the correlation dimension of the stocks of Vale do Rio Doce (mining 

company) and Telebras (telephone company). In conclusion, as far as our application of this 

criterion is concerned, with the data available, the stocks and the index analysed appear to 

have been generated by a stochastic process. 

4 Lempel-Ziv complexity 

Our analysis suggested that the index IBOVESPA and other stocks can be considered as 

generated by a stochastic process and not by a deterministic mechanism. Since this conclusion 

cannot be considered definitive, we will include another measure of randomness in this discus- 

sion that provides further confirmation of that result. In this context one does not need to re- 

construct phase-space but interpret the data a(t) as a signal generated by some kind of source. 

This idea is ever present in communication theory where one wishes to determine the minimum 

alphabet required to code a source whose signal is to be sent through a noisy channel. Let us 

consider the length L(N) of the minimal program that reproduces a sequence with N symbols. 

The Lempel-Ziv algorithm is constructed by a special parsing which splits the sequence into 
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words of the shortest length and that has not appeared previously. For example, the sequence 

0011101001011011 is parsed as 0.01.1.10.100.101.1011. One can show that L(N)« N v (AO 

log (Nw(N) +1) where Nw(N) is the number of distinct words in a parsing and TV the size of 

the sequence. From this one can see that L{N) contains a measure of randomness where a 

source that produces a greater number of new words is more random than a source producing 

a more repetitive pattern. In analogy with dynamical evolution, those systems that are com- 

posed of well defined cycles is predictable while chaotic motion and stochastic processes are 

always producing new kinds of trajectories that never repeat themselves. The Lempel-Ziv com- 

plexity is defined as C = limsupjV_>ooL(AO/A/'. (Lempel and Ziv, 1976; Badii and Politi, 1997) A 

comparison between chaos and stochasticity can now be obtained. In the former case the 

Lempel-Ziv complexity is well below 1 while in the latter it is close to one. More specifically, if 

we consider an oscillatory system such as the well known van der Pol oscillator, then C=0.049. 

For the Lorenz attractor, C=0.181. The complexity for the index IBOVESPA is approximately 

C=1.06 thus confirming a higher level of randomness than in a chaotic or oscillatory regime. 

The stocks from Vale do Rio Doce and Telebras also present a high value for the complexity 

providing further evidence of their random character. 

5 R/S Analysis and Hurst exponent 

Here we discuss an important parameter that can be used for any system, chaotic or 

stochastic, gaussian or non gaussian. The Hurst exponent provides a measure of long term 

memory structures for series of data which can be either empirical or explicitly generated by 

some mechanism. In addition to randomness a given series might possess the tendency to main- 

tain or to revert its previous behaviour. We will quantify this idea using the methods of R/S 

analysis developed by Hurst. (Mandelbrot, 1988;Moody and Wu, 1996; Peters, 1994) Given 

a series of data a(t) we first compute its average on an interval of length A from /0, that is, 

m(N,t0) - N 1 The deviation from the mean in an interval of size t is just 

A(TV,/0,r) = S^o
T
+i(a(/)-m(A/r,/0)). Then one calculates the maximum and the minimum 

deviation for l<r<7V and defines the range as the difference between them; 

R(Nj0) = MaxTX(N,t0,r)-MinTX(N,t0,T). In order to compare phenomena with 

widely different scales Hurst reescaled this range using the standard deviation S{Nj0), ob- 

taining the reescaled range RS( N = R(N J0) / S(N calculating the reescaled range 

for contiguous intervals of size TV, for example, (^0 + M0 + TV); (/0 + TV +1, t0 + 2TV), etc. one 

obtains, for each TV, the average/^(TV). If a process is such that a scaling law 
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RS{N) = const xeHN 

can be found then we call it a Hurst process with Hurst exponent H. One can show that 0<H< 1, 

and three important cases arise. For gaussian processes, when//=l/2 the system is just the 

Brownian motion in continuous time and there are no correlation between past and future. 

When 1/2 there is long term correlation and the evolution falls into two categories. For 

H>l/2, the process is called persistent and there is a propensity to maintain past trends, that 

is, if the motion was increasing/decreasing it keeps increasing/decreasing. When H<l/2, the 

motion is antipersistent and there is propensity to invert past trend resulting in a motion with 

larger local variations than for persistent processes. In fact, when a Hurst process is plotted 

against time its fractal dimension4 is 2-H, showing that an antipersistent motion has a larger 

fractal dimension. A Brownian motion has fractal dimension 3/2. 

We used R/S analysis to compute the Hurst exponent for the index IBOVESPA. The result 

we obtained was approximately 0.615, showing that there is memory of past moves and this 

differs from models in which motion is uncorrelated. When applying these procedures to the 

Lorenz attractor one obtains //» 0.707 and in this case R/S analysis indicates a slight periodic 

tendency in this system. (De Grauwe, Dewachter and Embrechts, 1993) Persistence and 

antipersistence are phenomena that do not distinguish between determinism and stochasticity 

but they constitute an important diagnostic parameter leading to a better understanding of em- 

pirical data. 

6 BDS statistics 

The basis for this method is the correlation sum described above where it is used as a test 

statistic on a time series data. Formally, the BDS test has as its null that the data were gener- 

ated by a iid process, that is, by an independent and identically distributed stochastic process. 

(Brock, Dechert and Scheinkman, 1987; Brock, Dechert, Scheinkman and LeBaron, 1996) 

The BDS test does not specify an alternative hypothesis but a number of Monte Carlo experi- 

ments have been performed against a variety of alternatives. (Brock, Hsieh and LeBaron, 

1991) In our study we used the BDS statistic as a tool for the specification of models. After 

adjusting a linear model to the data we applied the BDS statistic on the residue. This proce- 

dure was implemented in Denisard, Brundo and Francisco (1999) using data from IBOVESPA, 

4 See Mandelbrot (1988) for a discussion of the various notions of fractal dimensions. 
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Vale do Rio Doce and Telebras with the following results. The null hypothesis was accepted 

for the index and rejected for the stocks Vale and Telebras. This means, as far as these studies 

are concerned, that the index is best described by a linear process while the stocks contain 

nonlinearities that might be worthwhile to model. 

7 Conclusions 

Our analysis of the index IBOVESPA has shown that its behaviour can be considered as 

that of a persistent linear stochastic processes not generated by a deterministic mechanism. As 

a consequence, if this index is used as the underlying for pricing derivative securities, then the 

most adequate model for the trajectories is not the geometric Brownian motion because such 

process is not persistent. In modelling the index one should avoid using traditional neural net- 

works paradigms or ARTMAin favour of its generalised fractal counterpart ARFIMA. In the 

case of stocks, the use of nonlinear stochastic process lead to well known difficulties in the 

choice of a suitable model. An alternative is to implement a neural network as a probability 

density estimator. (Weigend and Gershenfeld, 1994; Husmeier, 1999) We remark that some 

codes calculate a positive value for the maximal Lyapunov exponent of stochastic processes 

but this result can not be used to infer determinism. In our discussion the embedding dimension 

and the Lempel-Ziv complexity provided the main tools for the characterisation between de- 

terministic and stochastic modes of evolution. 
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