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Resumo 

O objetivo deste artigo e analisar o uso das distribuigoes Hiperbolicas Generalizadas (GH) para modelar a 

taxa de cambio Dolar/Real de forma a obter medidas mais precisas de VaR (Value at Risk). Depois da esti- 

magao dos parametros da GH, varias distancias foram calculadas para verificar a qualidade do ajuste da 

distribuigao Normal e da familia de distribuigoes GH aos dados empiricos. As distribuigoes GH tern 

mostrado serem mais adequadas para a modelagem da taxa de cambio Dolar/Real, ja que elas produzem 

distancias menores, especialmente nas caudas. Adicionalmente, varias metodologias de calculo do VaR fo- 

ram comparadas usando o teste de Kupiec: Simulagao Historica, RiskMetrics®, Normal incondicional, 

GH, Normal Inversa Gaussiana (NIG) e Hiperbolica, bem como modelos GARCH usando Normal, GH, 

Hiperbolica e NIG. A distribuigao GH e suas subclasses mostraram melhores resultados do que a Normal 

incondicional. O uso de um modelo GARCH para fazer previsoes da volatilidade mostrou tambem re- 

sultados satisfatorios. Dois metodos de estimagao foram usados: Maxima Verossimilhanga e Minimizagao 

de FOF; porem, ambos produziram resultados similares. Dado que a Maxima Verossimilhanga se mostrou 

ser a mais rapida, recomenda-se este metodo. Finalmente, recomenda-se o uso de uma familia de dis- 

tribuigoes GH reescalada por uma volatilidade GARCH e estimada por Maxima Verossimilhanga. 

Palavras-chave: valor em risco, distribuigoes hiperbolicas generalizadas, backtesting. 

Abstract 

The goal of this paper is to analyze the use of the Generalized Hyperbolic (GH) Distributions to model 

the US Dollar/Brazilian Real exchange rate in a way to produce more accurate VaR (Value at Risk) meas- 

urements. After the GH parameters estimation, several distances were calculated to verify the fitting qual- 

ity of Normal distribution and GH distribution family to empirical data. The GH Distributions had 

shown to be more adequate for modeling the US Dollar/Brazilian Real exchange rate, since they produced 

smaller distances, especially in tails. Additionally, several methodologies for VaR calculation were com- 

pared using the Kupiec test: Historical Simulation, RiskMetrics®, unconditional Normal, GH, Normal 

Inverse Gaussian (NIG) and Hyperbolic, and GARCH models using Normal, GH, Hyperbolic and NIG. 

The GH Distribution and its subclasses showed better results than unconditional Normal. The use of a 

GARCH model for volatility forecasting produced satisfactory results, being the main factor of success. 

Two estimation methods were used: Maximum Log-Likelihood and Minimization of the FOF distance; 

but both produced similar results. As the Maximum Log-Likelihood showed to be faster we recommend 

this method. Overall, our recommendation the use of a GH family distribution re-scaled by a GARCH 

volatility and estimated by Maximum Log-Likelihood. 
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26 Analyzing the use of generalized hyperbolic distributions to value at risk calculations 

1 Introduction 

The importance of the risk management is increasing in the recent years, and became one of 

the major concerns of financial and non-financial institutions. The risk management can be divi- 

ded is several areas: market, credit, liquidity and operational. This paper will focus on the Market 

Risk, that is specially important in emerging countries, where the volatility of the markets are extre- 

mely high. 

This paper aims to model the US Dollar/Brazilian Real exchange rate using the Generalized 

Hyperbolic (GH) Distribution, with focus on risk measurement. This distribution has been shown 

more adequate than the Normal Distribution to model financial assets (see, for example, Eberlein 

e Prause, 2000) because of two characteristics: fat tails and asymmetry. The purpose of this paper is 

to use GH distribution to generate more accurate VaR (Value at Risk) measurements to this ex- 

change rate than those that use a Normal distribution. 

The parameters estimation of the GH to the Dollar/ Real exchange rate data will be done by 

maximum log-likelihood and also minimizing the distance proposed by Farias, Ornelas and Fajar- 

do (2002), that we will refer as FOF distance. This distance, similar to the Anderson-Darling dis- 

tance, gives special importance to the tails of the distribution, being more adequate if the objective 

is VaR calculation. 

After the parameters estimation, several kinds of distances will be calculated between empiri- 

cal and theoretical estimated distributions. Then, significance tests will verify the hypothesis that 

empirical distribution is equal to theoretical distribution. Finally, the VaR will be calculated for the 

Dollar/Real exchange rate in the considered period, and also a backtest will be performed to verify 

models effectiveness. 

The paper is structured as follows: on the next section, a short overview of GH will be presen- 

ted; on section three, the data used will be described; on section four the parameters estimation will 

be done together with a description of the several distances used and significance tests; on section 

five, VaR will be calculated along with Backtest, using several methodologies; and section six con- 

cludes the paper. 

2 Value at risk and generalized hyperbolic distributions 

Several methodologies can be used to estimate the market risk measures. The choice will de- 

pend on several aspects, such as the kind of portfolio and resources available to implement the risk 

management system. The main three methodologies are: Parametric, Historical Simulation and 

Monte-Carlo Simulation. This paper focuses on the parametric approach. 

The Parametric approach assumes that the returns follow a certain probability distribution, 

and then the parameters of the distribution (for example, the volatility) are estimated. Using the 

probability distribution function and the parameters, the risk measures can be calculated. The most 

common and used risk measure is the Value at Risk (VaR) that is based on a quantile of the distri- 

bution: 

P[R<-VaR{a)] = \-a (2.1) 

where R are the returns and 

CX \s the significance level with which the VaR is being calculated. 
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Usually, the estimation of parametric VaR assumes that financial assets follow a Normal dis- 

tribution. Unfortunately, this is not the most adequate distribution to model financial assets. Ryd- 

berg (1997) enumerates several stylized facts from financial data that a distribution must show. 

Among them are the fat tails and negative asymmetry. 

The fat tails are related to the fact that real world distributions, in general, have fatter tails 

than the Normal distribution. This means that the probability of exaggerated returns, positive or 

negative, are more common in real world data than in Normal distributions. 

Another stylized fact is that real world distributions, in special shares, have a slight negative 

asymmetry. A possible explanation for this fact is that agents react more vigorously to negative in- 

formation than to positive information. 

Barndorff-Nielsen (1977) presented a model to represent the distribution of sand particles size 

using the so-called Generalized Hyperbolic distributions (GH). Eberlein and Keller (1995) intro- 

duced the Hyperbolic distributions (a subclass of the GH) in finance, to try to represent stylized 

facts that the Normal and other distributions could not represent using German data. 

The following density defines the Generalized Hyperbolic: 

GHa,(3,6,11) = a(A,a,/3,(5)((52 +(x-/i)2)(A_1/2)/2 x (2.2) 

Kx_in (q^+U-M)2) 

where: 

Kx is the modified Bessel function and 

a{A,a, P,S) - 
1 [a2 - p2) 

|/l/2 

'a2 - p2) 

The parameters are real numbers with the following restrictions (see Prause, 1999): 

S>0, \/3\<a if A > 0 

6>0, \/3\<a if A = 0 

6>0, \/3\<a if A < 0 

The parameter 5 is a scale factor, compared to the <j of a Normal distribution by Eberlein 

(2000), and p is a location parameter. The parameters a and (3 determine the distribution shape 

and X defines the subclasses of GH and is directly related to tail fatness (Barndorf-Nielsen and 

Blaesild, 1981). The function a{.) is introduced to guarantee that the cumulative density totals one. 

There are other parametrizations created to obtain a scale- and location- invariance. Appendix I 

describes three of them. These parametrizations are important when one needs to change a para- 

meter, while maintaining the shape of the distribution. 

The GH has several subclasses, among them the Hyperbolic and the Normal Inverse Gaussi- 

an (NIG). Setting A = -1/2, we get the NIG, and with A = 1 we get the Hyperbolic distribution. 

Gaussian is a limiting distribution of GH, when 5 -> oo -> and 5/a ->a2 

The GH distributions and its subclasses have been used to calculate VaR by several papers. 

Bauer (2000) used a symmetric Hyperbolic distribution to perform VaR calculations, and used data 
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f0™Q^e™an St0
1
cks fnd intemational stock indexes (DAX, Dow Jones and Nikkei) from 1987 

' 15 r^Sy,tS s oweci that the model with Hyperbolic distribution outperformed a model 

(EWMA)0™3 ^st:r^ut^on a volatility given by an Exponential Weighting Moving Average 

Eberlein, Keller and Prause (1998) also use the Hyperbolic distribution for VaR calculati- 

ons o erman Stocks. They found that the loss function derived from the hyperbolic model is 

in accordance with the empirically observed one. Another study Eberlein and Prause (2000) used 

several types of Generalized Hyperbolic distribution to linear portfolios of German stocks. Results 

were compared with the Historical Simulation, Multivariate Normal and a Normal distribution 

with an I-GARCH model to the volatility. Also, Fajardo and Farias (2004) uses the Generalized 

Hyperbolic and two subclasses (NIG and Hyperbolic) distribution to calculate the VaR of Brazilian 

Stocks, finding that the Normal distribution under or over estimate the VaR depending on the con- 

fidence level, with the GH and its subclasses having a better fit. 

Although GH does a better job than Normal distribution, it is worth nothing that the only 

GH subclass that is closed under convolutions is the NIG, and therefore if we choose any other 

subclass we will demand more computational effort to estimate the distribution of a ^-day return 

or a return of a portfolio, since the sum of two GH distributions is not necessarily another GH. 

Therefore, the Normal distribution and Historical simulation approaches do a simpler job, de- 

manding less computational effort. 

For the n-day return, it is suggested to multiply the characteristic functions in order to obtain 

the characteristic function of the n-day return (under the assumption of independent increments), 

and then we must apply the inverse Fourier transformation to recover the n-day distribution. For 

the return of a portfolio using GH distributions, Prause (1999) proposes several approaches. We 

suggest the approach where the shape of the GH is estimated using a longer time period (more 

than one year) and then an up-to-date covariance matrix is used. Therefore, we have to choose a 

subclass of the GH, and a long-term estimate of the parameters. The use of a long-term shape pa- 

rameter incorporates a high possibility of extreme events, even if no crash in the preceding 252 tra- 

ding days have occurred. 

3 Data description 

The data used on this paper consists of US Dollar/Brazilian Real exchange rate from Reuters. 

The quote considered for calculations was simple average of bid and ask daily close, from 1/13/ 

1999 to 08/29/2002. The initial date was chosen because it was free float exchange rate regime be- 

ginning in Brazil. Before that, there was a band system, where the Central Bank used to do buy 

and sell auctions to keep exchange rate inside the band. The behavior can be seen in Figure 1. So, 

in this paper, we considered only the free float regime. 

Returns used were logarithmic, according to the following formula:1 

R. = Ln 
[Bidt + Askt) 

{Bidt_x -f AyA:^) 
(3.1) 

1 The use of the bid and ask instead of the last trade price is due to the fact that sometimes the last trade is done some minutes 
berore the end of trading. Then, we may have a last trade price higher than the ask close price or lower than the bid close price 
which makes no sense. K ' 
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Where Rt is the return from day t, Bidt is close bid price from day t, As\t is close ask price from 

day t, and Ln is neperian logarithmic. 

Figure 1 - Return of US dollar/Brazilian real exchange rate 
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In Table 1 we have main information on the sample. 

Table 1 — Sample return data 

Sample Data 

Return Average 0.00100 

Return Standard Deviation 0.01310 

Asymmetry 0.23560 

Kurtosis 21.2117 

Maximum Return 0.1075 

Minimum Return -0.1041 

Number of Observations 945 
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30 Analyzing the use of generalized hyperbolic distributions to value at risk calculations 

4 Parameter estimation and distance analysis 

A frequent problem in statistic and finance is to measure the goodness-of-fit of a theoretical 

distribution to real world data. To measure how close, or how far, is an empirical distribution from 

a theoretical distribution, several distances have been proposed. Among them, we can cite three: 

the Kolmogorov distance; Kuiper distance and the Anderson-Darling distance. 

The Kolmogorov distance (see, for example, Massey, 1951) is defined as the greatest distance 

between empirical distribution and theoretical distribution, for all possible values: 

= max 
.X € ^ 

fEmp(
X)-fTa,(X) C4-1) 

where/Ernp is the empirical cumulative density function and fThco is the continuous and completely 

specified theoretical cumulative density function. 

/Empcan be defined by: 

fEmp W = (number of Xl s <x)/n 

where Xfs are the sample's elements and n is the sample number of elements. 

The Kuiper distance (see Kuiper, 1962) is similar to the Kolmogorov distance, but it considers 

the deviation direction, adding the greatest distances upwards and downwards: 

^Kui ~ max [fEmp (•x:) — frheo HiaX [ frheo ('*') — fEmp (;*:)} (4.2) 

The Anderson and Darling (1952) paper proposes a distance that would be viewed as Kolmo- 

gorov distance with weight. Weighting can be defined giving special importance to distribution 

tails, and so being especially relevant to VaR calculations. The formula of this distance with tail 

emphasis is: 

\fEmpiX)- fTe,Xx)\ 
D., = 

~ n/.. \ /1—(4.3) 
mciyv I ; — 
xeX ylfTe<,(x){l- fTeoix)) 

The AD distance is especially interesting to perform VaR calculations, since it is more sensiti- 

ve in tails than in distribution s middle range. 

Another interesting distance to VaR calculations is the FOF distance (see Farias, Ornelas and 

Fajardo, 2002). It uses AD distance weight function and worries with deviation's direction like Kui- 

per distance. So, it captures Kuiper and AD distances strengths. The FOF distance is the follo- 

wing: 

fEmp (X) - fleo W , fTeo(x) - fEmp{x) 
Dfof = max 7 = . + max 7 (4.4) 

For the distances mentioned previously we can verify data fitting quality through statistical 

significance tests. To do this we test the null hypothesis that empirical distribution is equal to theo- 

retical distribution. For the Kolmogorov and Kuiper distances, there is a formula to obtain the criti- 

cal values, but for the other distances it is necessary to use Monte Carlo Simulation to obtain the 

critical values. 
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Another important issue is GH parameters estimation. Blsesild and Sprensen (1992) use ma- 

ximum log-likelihood estimation to Hyperbolic distributions, and Fajardo e Farias (2004) also uses 

log-likelihood, but to estimate the general case of the GH. Prause (1999) proposed several estimati- 

on methods through minimization of the Anderson-Darling distance and minimization of certain 

percentiles. In this paper, we estimate the parameters through maximum log-likelihood and also 

through FOF distance minimization. 

Regarding minimum FOF estimation, distribution tails are focused, leaving less importance 

to middle range. This is reasonable if we want estimation for VaR calculations. 

We developed a program that uses maximum log-likelihood to estimate the GHD parameters, 

because Prause (1999) showed that this estimation method is the only one non-biased, among a 

large class of methods used in the literature. This method was also used by Blaesild and Sprensen 

(1992) in the Hyp software, in order to estimate only the multivariate hyperbolic subclass {X = I) 

parameters. The maximum log-likelihood parameters are those that maximize the following like- 

lihood function: 

(4.5) 

1=1 

This estimation consists in a numerical optimization procedure. We use the Downhill Sim- 

plex Method which makes no use of derivatives, developed by Nelder and Mead (1965), with some 

modifications (due to parameter restrictions). It is worth noting that Prause (1999) used a Bracke- 

ting Method. The Downhill Simplex Method requires starting values to begin optimization, in this 

case we followed Prause (1999) who used a symmetric distribution ((3 = 0) with a reasonable kur- 

tosis (^ ~ 0.7) to equalize the mean and variance of the GHD to those of the empirical probability 

distribution. This is done because when we use a symmetric distribution and fix the kurtosis, we 

reduce the computational effort. 

In all numerical optimizations we have to define the tolerance of the search, and we decided 

to use 1 x 10'10 This tolerance was applied in absolute ways to the function evaluation and to the 

parameters sum variation. The numerical maximum likelihood estimation does not have a conver- 

gence analytical proof, but even using different starting values it has showed empirical convergen- 

ce. (Prause, 1999). The Minimum FOF estimation was implemented in a similar way. The 

algorithms were implemented using MatLab® software, to GH, NIG and Hyperbolic, and genera- 

tes the following parameters: 

Table 2 - Parameters estimated 

Distribution Estimation Method a P S E A 

GH Min FOF 34.185 -0.001774 0.001752 0.001502 0.000 

GH Max LogLikelih. 20.412 0.150185 0.006388 0.0006121 -0.727 

NIG Min FOF 15.638 -0.000729 0.005390 0.0012116 -0.500 

NIG Max LogLikelih. 32.770 3.413905 0.005270 0.0004294 -0.500 

Hyperbolic Min FOF 71.633 -0.294398 2.35E-307 -3.76E-05 1.000 

Hyperbolic Max LogLikelih. 132.448 0.121929 7.55E-09 3.85E-11 1.000 

Due to overparametrization, estimation of GH distribution by minimum FOF generated se- 

veral local optimums (that didn't happen with Hyperbolic and NIG). In order to avoid backtesting 
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32 Analyzing the use of generalized hyperbolic distributions to value at risk calculations 

problems, we presented the global optimum parameter estimation but didn't compare the results for 

Value at Risk purposes. 

After the parameters estimation, the distances were calculated together with the hypothesis 

tests, as presented in Table 3: 

Table 3 - Distances and significance tests 

Distribution Estimation 
Method 

Kolmogorov 

Distance 

P-value KS Kuiper 
Distance 

P-value 
Kuiper 

AD 
Distance 

FOF 
Distance 

Normal 0,133400 0 0,26200 0,00E+00 100429,91 103564,37 

GH Min FOF 0,037902 0,12949 0,07048 2,72E-03 0,09138 0,11655 

GH MaxLogl 0,031184 0,31242 0,06157 1,93E-02 0,06411 0,12487 

NIG Min FOF 0,036433 0,15941 0,05831 3,63E-02 0,07369 0,11744 

NIG MaxLogL 0,029895 0,36216 0,05859 3,44E-02 0,08168 0,14304 

Hyperbolic Min FOF 0,122651 7,14E-13 0,19270 4,43E-29 0,27241 0,44982 

Hyperbolic MaxLogL 0,073149 7.48E-05 0,08453 6,22E-05 16,84139 17,72214 

As can be seen in Table 3, the Normal distribution always has higher distances than the GH 

and its subclasses. Among GH family, the worst performance is from Hyperbolic. GH and NIG 

are the distributions that are closest to empirical distribution. 

We can also analyze the goodness-of-fit of distributions to real data through a visual inspection 

of graphs. Figure 2 shows the GH distributions estimated by maximum log-likelihood, with Nor- 

mal and Empirical distribution, and Figure 3 shows GH distributions estimated by minimum 

FOF, together with Normal and Empirical distribution. 

Figure 2 — Density x log-return — maximum loglikelihood estimation 
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As we can see on Figure 2, the Normal distribution presents a density, in middle range, lower 

than empirical. But NIG and GH are very close to the empirical, and also close to each other (the 

optimal X from the GH is -0.7 close to the -0.5 from NIG). On Figure 3, the distribution that see- 

ms to best approximate the empirical is the NIG. 

Figure 3 - Density x log-return - minimum fof estimation 
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5 VAR CALCULATION 

To verify the applicability of GH distributions to VaR calculations, a backtest was performed 

using several methodologies described later. To each methodology, parameters were estimated to 

the first 252 days from sample. After that VaR for Dollar active positions was calculated and a com- 

parison with actual return was made. The period of 252 days was then rolled one day until the last 

252 days of the sample were reached. Then, it was counted how many times effective return was 

outside VaR limits. With this data, the Kupiec (1995) test (see Appendix B for details), with the null 

hypothesis that the predicted and actual outliers are equal, was applied to verify which methodolo- 

gies calculated more effectively the VaR. 

The methodologies used were the following: 

• Historical Simulation: based on a moving window of the previous 252 days of actual returns; 

- Empirical 
■■ Normal 
- NIG 
- GH 
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• Riskmetrics®: uses a Normal distribution and a EWMA with decay factor equal to 0.94 to calcu- 

late variance; 

• Normal distribution with GARCH(1,1) volatility: uses a Normal distribution and a GARCH 

model to forecast the volatility; 

• Unconditional Normal — uses a Normal distribution with mean and standard deviation calcu- 

lated based on data from the previous 252 days; 

• Unconditional GH, NIG and Hyperbolic estimated by Maximum Log-likelihood - uses a GH 

family distribution with parameters calculated by Maximum Log-likelihood using data from the 

previous 252 days; 

• Unconditional NIG and Hyperbolic estimated by Minimum FOF — uses a GH family distribu- 

tion with parameters calculated by Minimum FOF using data from the previous 252 days; 

• GH, NIG and Hyperbolic estimated by Maximum Log-likelihood with a GARCH(1,1) volatil- 

ity — first, a GH family distribution with parameters calculated by Maximum Log-likelihood 

using data from the previous 252 days. Then, the a GARCH(1,1) model is used to provide a fore- 

cast of the volatility. Finally, the fitted distribution is re-scaled using the volatility given by the 

GARCH model; 

• NIG and Hyperbolic estimated by Minimum FOF with a GARCH(1,1) volatility — first, a GH 

family distribution with parameters calculated by Minimum FOF using data from the previous 

252 days. Then, the a GARCH(1,1) model is used to provide a forecast of the volatility. Finally, 

the fitted distribution is re-scaled using the volatility given by the GARCH model. 

The results are on Table 4. 

As we can see on Table 4, all methodologies passed the Kupiec test to 5% and 10% VaR with 

99% confidence level to the null hypothesis. But to 1% VaR only the GARCH models, Historical 

Simulation and unconditional NIGs and GH passed the test with confidence of 99%. We would 

say that the volatility given by a GARCH model is the most relevant factor for the success of the 

model. 

But the distribution used is also relevant. Although the Normal with GARCH model has pas- 

sed on the Kupiec test, it seems that the number of outliers given by this model is underestimated 

(0.87%, 3.17% and 7.36%, where the expected is 1%, 5% and 10%). The GH distributions and its 

subclasses with GARCH model gave the best results overall (in terms of outlier probability), no 

matter the estimation procedure. Although the unconditional hyperbolic distribution was rejected 

by the Kupiec of the 1%-VaR, the conditional Hyperbolic using GARCH had one of the best per- 

formances. Nevertheless, we could not point out specifically which is the best GH subclass - a lar- 

ger time series would be necessary for that. 

Regarding the estimation method, overall results are similar. As the Maximum Log-Like- 

lihood was faster in our implementation, we recommend this method, instead of minimizing the 

FOF distance. 
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Table 4 — Backtest results 

Target VaR Probability 1% 5% 10% 

Outliers Number 21 44 63 

Normal Outliers Probability 3,03% 6,35% 9,09% 

P-value Kupiec 1,51E-05 0,1171 0,4186 

Outliers Number 12 36 58 

Historical Outliers Probability 1,73% 5,20% 8,37% 

Simulation P-value Kupiec 0,0795 0,8151 0,1421 

Outliers Number 20 41 61 

RiskMetrics Outliers Probability 2,89% 5,92% 8,80% 

P-value Kupiec 4,85E-05 0,2815 0,2843 

Outliers Number 6 22 51 

GARCH Outliers Probability 0,87% 3,17% 7,36% 

P-value Kupiec 0,7163 0,0184 0,0155 

Outliers Number 13 45 74 

GH Outliers Probability 1,88% 6,49% 10,68% 

(Max LogLik.) P-value Kupiec 0,0380 0,084 0,5556 

Outliers Number 16 46 71 

Hyperbolic Outliers Probability 2,31% 6,64% 10,25% 

(Max LogLik.) P-value Kupiec 0,0031 0,059 0,8302 

Outliers Number 13 46 73 

NIG Outliers Probability 1,88% 6,64% 10,53% 

(Max LogLik.) P-value Kupiec 0,0380 0,0590 0,6420 

Outliers Number 15 45 70 

Hyperbolic Outliers Probability 2,16% 6,49% 10,10% 

(Min FOF) P-value Kupiec 0,0079 0,089 0,9597 

Outliers Number 11 44 72 

NIG Outliers Probability 1,59% 6,35% 10,39% 

(Min FOF) P-value Kupiec 0,1559 0,1236 0,7629 

GARCH Outliers Number 6 38 78 

GH Outliers Probability 0,87% 5,48% 11,26% 

(Max LogLik.) P-value Kupiec 0,7163 0,5651 0,2792 

GARCH Outliers Number 6 32 66 

Hyperbolic Outliers Probability 0,87% 4,62% 9,52% 

(Max LogLik.) P-value Kupiec 0,7163 0,6400 0,6739 

GARCH Outliers Number 6 37 75 

NIG Outliers Probability 0,87% 5,34% 10,82% 

(Max LogLik.) P-value Kupiec 0,7163 0,6852 0,4757 

GARCH Outliers Number 6 35 75 

Hyperbolic Outliers Probability 0,87% 5,05% 10,82% 

(Min FOF) P-value Kupiec 0,7163 0,9514 0,4757 

GARCH Outliers Number 6 46 89 

NIG Outliers Probability 0,87% 6,64% 12,84% 

(Min FOF) P-value Kupiec 0,7163 0,0590 0,0164 
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6 Conclusion 

The unconditional GH distributions showed to be more adequate than Normal for the US 

Dollar/Brazilian Real exchange rate modeling. That is evidenced by a distance analysis between 

empirical and theoretical distributions. On the backtesting, all methods were approved by the Ku- 

piec test for the 5% and 10% VaR. For the 1%-VaR, recommended by the Basel Committee, the 

Historical Simulation, unconditional NIG and GH, the all conditional distributions using GAR- 

CH were approved by Kupiec at 1% significance level. If we consider Kupiec at 5% confidence le- 

vel, only the GARCH models and Historical simulation are approved. Therefore, we recommend 

the use of a GH subclass distribution with a volatility given by GARCH model, when calculating 

the 1% VaR. 

Although it is the most used test, the Kupiec test is known as being a not very powerful test 

(e.g. it fails to reject the null hypothesis when it is actually false). Therefore, a suggestion for fur- 

ther research would be to implement other backtesting procedures such as the one proposed by 

Christorfessen (1998), that considers also the independence of the outliers, beside the proportion. 

Another suggestion for further research is to apply a GH family distribution with a GARCH 

process for other kinds of Brazilian assets, such as bonds, and also to portfolios. The application for 

portfolios is special relevant, as it simulates real world applications of Risk Managers. 

Finally, the same methodology may be extended to calculate other Risk Measures, such as the 

Expected Shortfall, since the VaR measure do not consider the size of tail losses. 
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Appendix A - Parameterizations of the generalized hyperbolic distribution 

There are in the literature several parameterizations for the GH that is scale- and location- 

invariants. Three of them are presented to follow: 

Further details and a proof of the invariance of these parameterizations can be viewed at lem- 

ma 1.5 of Prause (1999). 

Appendix B - The kupiec test 

The Kupiec (1995) test is the most used Backtesting for Value at Risk calculations. It is a test 

of the proportion of losses that exceeds VaR. The idea is to test whether the observed frequency of 

losses greater than VaR is consistent with the frequency predicted by the model. The null hypothe- 

sis is that the actual and predicted proportions of observations that exceed VaR are equal, i.e., the 

model is adequate. Under the null hypothesis, the number of losses beyond VaR follows a binomial 

distribution: 

where n is the sample size and/? is the expected probability, in this case the VaR significance level. 

The test statistic is given by: 

where x is the number of VaR exceptions. 

LR follows a chi-squared distribution with one degree of freedom. 

Although the Kupiec test is the most commonly used, it has been criticized for two reasons. 

First, it is reliable only with very large samples (Dowd, 2002). Second, it odes not verify for the in- 

dependence of the exceptions, so one period of high number of exceptions may counterbalance a 

period of low number, with the final result being close to the average number of exceptions. 
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Second parametrization: 

Third parametrization : ^ = (1 + CT1'2 = 

Fourth parametrization a = a5, P - Pd 

P{x\n,p)= n x 

x 


