Elasticidade de P e D na indústria brasileira e transbordamentos: uma abordagem de fatores comuns não observados
DOI:
https://doi.org/10.11606/1980-5330/ea190655Palavras-chave:
elasticidade de P&D, fatores comuns não observados, transbordamento de conhecimento, produtividade total dos fatoresResumo
Este trabalho apresenta estimativas para a elasticidade de P&D na indústria brasileira, com dados de grupos industriais das indústrias extrativa e de transformação brasileiras para 2003-2017. Utiliza-se o estimador augmented mean group (AMG) de Eberhardt e Bond (2009), que controla a presença de fatores comuns correlacionados e potencialmente não estacionários. A estimativa produzida pelo estimador AMG para elasticidade de P&D foi de 0,014, porém não significante estatisticamente. Foram calculadas medidas de produtividade total dos fatores (PTF) para os grupos de setores segundo a intensidade tecnológica, as quais apresentam comportamento cíclico heterogêneo segundo o nível de intensidade tecnológica dos setores industriais.
Downloads
Referências
AGHION, Philippe; HOWITT, Peter. A model of growth through creative destruction. Cambridge, MA: National Bureau of Economic Research, 1990.
ALVES, Patrick; SILVA, Alexandre Messa. Estimativa do estoque de capital das empresas industriais brasileiras. Brasília: Instituto de Pesquisa Econômica Aplicada (Ipea), 2008. (Texto para Discussão n.1325).
ARAÚJO, Bruno César; CAVALCANTE, Luiz Ricardo; ALVES, Patrick. Variáveis proxy para os gastos empresariais em inovação com base no pessoal ocupado técnico-científico disponível na Relação Anual de Informações Sociais (RAIS). Radar: Tecnologia, Produção e Comércio Exterior, Instituto de Pesquisa Econômica Aplicada (Ipea), 2009.
ARROW, Kenneth. Economic Welfare and the Allocation of Resources for Invention. In: NATIONAL BUREAU OF ECONOMIC RESEARCH. The Rate and Direction of Inventive Activity: Economic and Social Factors. Princeton, NJ: Princeton University Press, 1962. p. 609–626.
BAI, Jushan. Panel data models with interactive fixed effects. Econometrica, v. 77, n. 4, p. 1229–1279, 2009.
BLUNDELL, Richard; BOND, Stephen. GMM estimation with persistent panel data: an application to production functions. Econometric Reviews, v. 19, n. 3, p. 321–340, 2000.
BLUNDELL, Richard; BOND, Stephen. Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, v. 87, n. 1, p. 115–143, 1998.
BREUSCH, Trevor S.; PAGAN, Adrian R. The Lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, v. 47, n. 1, p. 239–253, 1980.
CAVALCANTE, Luiz Ricardo. Classificações tecnológicas: uma sistematização. Brasília: Instituto de Pesquisa Econômica Aplicada (Ipea), 2014. (Nota Técnica Diset, n. 17).
CAVALCANTE, Luiz Ricardo; JACINTO, Paulo de Andrade; NEGRI, Fernanda de. P&D, Inovação e produtividade na indústria brasileira. Produtividade no Brasil, p. 43, 2015.
CHUDIK, Alexander; PESARAN, M. Hashem. Large panel data models with cross-sectional dependence: a survey. Dallas, TX: Federal Reserve Bank of Dallas, 2013. (Working Paper No. 153).
CHUDIK, Alexander; PESARAN, M. Hashem; TOSETTI, Elisa. Weak and strong cross-section dependence and estimation of large panels. UK: Oxford University Press Oxford, 2011.
COAKLEY, Jerry; FUERTES, Ana-Maria; SMITH, Ron. Unobserved heterogeneity in panel time series models. Computational Statistics & Data Analysis, v. 50, n. 9, p. 2361–2380, 2006.
COHEN, Wesley M.; LEVINTHAL, Daniel A. Innovation and learning: the two faces of R & D. The Economic Journal, v. 99, n. 397, p. 569–596, 1989.
DOSI, Giovanni; NELSON, Richard R. An introduction to evolutionary theories in economics. Journal of Evolutionary Economics, v. 4, n. 3, p. 153–172, 1994.
DUGUET, Emmanuel. Innovation height, spillovers and TFP growth at the firm level: Evidence from French manufacturing. Economics of Innovation and New technology, v. 15, n. 4-5, p. 415–442, 2006.
EBERHARDT, Markus; BOND, Stephen. Cross-section dependence in nonstationary panel models: a novel estimator. Munich: University Library of Munich, 2009. (MPRA Paper 17692).
EBERHARDT, Markus; HELMERS, Christian; STRAUSS, Hubert. Do Spillovers Matter When Estimating Private Returns to R&D? Review of Economics and Statistics, v. 95, n. 2, p. 436–448, 2013.
EBERHARDT, Markus; TEAL, Francis. Econometrics for grumblers: a new look at the literature on cross-country growth empirics. Journal of Economic Surveys, v. 25, n. 1, p. 109–155, 2011.
EBERHARDT, Markus; TEAL, Francis. Modeling technology and technological change in manufacturing: how do countries differ? Munich: University Library of Munich, 2008. (MPRA Paper 10690).
EBERHARDT, Markus; TEAL, Francis. Productivity Analysis in Global Manufacturing Production. Oxford: University of Oxford, 2010. (Department of Economics Discussion Paper Series No. 515).
FAGERBERG, Jan. Technology and international differences in growth rates. Journal of Economic Literature, v. 32, n. 3, p. 1147–1175, 1994.
GARCIA, Fernando. A evolução da produtividade total de fatores na economia brasileira: uma análise do período pós-Real. São Paulo: Fundação Getúlio Vargas, 2003.
GRILICHES, Zvi. Issues in assessing the contribution of research and development to productivity growth. Bell Journal of Economics, v. 10, n. 1, p. 92–116, 1979.
GRILICHES, Zvi. The search for R&D spillovers. Cambridge, MA: National Bureau of Economic Research, 1991. (Working Paper Series, w3768).
GROSSMAN, Gene M.; HELPMAN, Elhanan. Quality ladders and product cycles. The Quarterly Journal of Economics, v. 106, n. 2, p. 557–586, 1991.
GUNDAY, Gurhan et al. Effects of innovation types on firm performance. International Journal of Production Economics, v. 133, n. 2, p. 662–676, 2011.
GUSSO, D. Agentes da inovação: quem os forma, quem os emprega. In: GUSSO, D. Tecnologia, exportação e emprego. Brasília: Instituto de Pesquisa Econômica Aplicada (Ipea), 2006. p. 397–444.
HALL, Bronwyn H.; MAIRESSE, Jacques; MOHNEN, Pierre. Measuring the Returns to R&D. In: HALL, Bronwyn H.; ROSENBERG, Nathan. Handbook of the Economics of Innovation. Amsterdam: Elsevier, 2010. v. 2, p. 1033–1082.
HARBERGER, Arnold C. The Macroeconomics of Successful Development: What Are the Lessons?: Comment. NBER Macroeconomics Annual, v. 2, p. 255–258, 1987.
HIGON, Dolores Anon. The impact of R&D spillovers on UK manufacturing TFP: A dynamic panel approach. Research Policy, v. 36, n. 7, p. 964–979, 2007.
KING, Robert G.; PLOSSER, Charles I.; REBELO, Sergio T. Production, growth and business cycles: I. The basic neoclassical model. Journal of Monetary Economics, v. 21, n. 2-3, p. 195–232, 1988a.
KING, Robert G.; PLOSSER, Charles I.; REBELO, Sergio T. Production, growth and business cycles: II. New directions. Journal of Monetary Economics, v. 21, n. 2-3, p. 309–341, 1988b.
LUCINDA, Claudio; MEYER, Leandro. Quão imperfeita é a competição na indústria brasileira?: estimativas de mark up setorial entre 1996 e 2007. Estudos Econômicos (São Paulo), v. 43, n. 4, p. 687–710, 2013.
NELSON, Richard R. Modelling the connections in the cross section between technical progress and R&D intensity. The Rand Journal of Economics, p. 478–485, 1988.
NELSON, Richard R.; WINTER, Sidney G. An Evolutionary Theory of Economic Change. Cambridge, MA: Harvard University Press, 1985.
PESARAN, M. Hashem. A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, v. 22, n. 2, p. 265–312, 2007.
PESARAN, M. Hashem. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, v. 74, n. 4, p. 967–1012, 2006.
PESARAN, M. Hashem. General diagnostic tests for cross section dependence in panels. Cambridge: University of Cambridge, 2004. (Cambridge Working Papers in Economics 0435).
PESARAN, M. Hashem; SMITH, Ron. Estimating long-run relationships from dynamic heterogeneous panels. Journal of Econometrics, v. 68, n. 1, p. 79–113, 1995.
PESARAN, M. Hashem; TOSETTI, Elisa. Large panels with spatial correlations and common factors. Journal of Econometrics, v. 161, n. 2, p. 182–202, 2009.
ROMER, Paul M. Endogenous technological change. Journal of Political Economy, v. 98, 5, Part 2, s71–s102, 1990.
SOLOW, Robert M. Technical change and the aggregate production function. The Review of Economics and Statistics, p. 312–320, 1957.
STEINGRABER, Ronivaldo; GONÇALVES, F. de O. Inovação, instituições e capital social na produtividade total dos fatores da indústria brasileira em 2005. In: Inovação: estudos de jovens pesquisadores brasileiros. Organização: M. S. Salerno. São Paulo: Editora Papagaio, 2008. v. 2, p. 119–147.
VAN BEVEREN, Ilke. Total factor productivity estimation: A practical review. Journal of Economic Surveys, v. 26, n. 1, p. 98–128, 2012.
WIESER, Robert. Research and development productivity and spillovers: empirical evidence at the firm level. Journal of Economic Surveys, v. 19, n. 4, p. 587–621, 2005.
ZUCOLOTO, Graziela Ferrero et al. Lei do bem e produtividade das firmas industriais brasileiras. In: TURCHI, Lenita Maria; MORAIS, José Mauro de. Políticas de apoio à inovação tecnológica no Brasil: avanços recentes, limitações e propostas de ações. Brasília: Instituto de Pesquisa Econômica Aplicada (Ipea), 2017. p. 295–332.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Economia Aplicada

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.