Shuttle walk teste incremental realizado no corredor e na esteira: eles são intercambiáveis?
are they interchangeable?
DOI:
https://doi.org/10.1590/1809-2950/17008125042018Palavras-chave:
Teste de Esforço, Exercício, Caminhada, Consumo de OxigênioResumo
Comparou-se o desempenho no shuttle walk teste incremental realizado no corredor (SWTI-C) e na esteira (SWTI-E) em indivíduos saudáveis e comparar as respostas fisiológicas durante as sessões de treinamento aeróbio com as velocidades estimadas em ambos os testes. Trata-se de um estudo transversal com cinquenta e cinco participantes saudáveis. Os participantes foram randomizados para realizar os testes com 24 horas de intervalo. As sessões de treinamento foram realizadas na esteira com 75% da velocidade obtida no SWTI-C e no SWTI-E. As avaliações incluíram a distância da caminhada, consumo de oxigênio (VO2 ), produção de dióxido de carbono (VCO2 ), frequência cardíaca (FC) e ventilação (VE). Houve uma diferença significante entre as distâncias caminhadas (SWTI-E: 823,9 ± 165,2 m e SWTI-C: 685,4 ± 141,4 m), mas respostas fisiológicas semelhantes para o VO2 (28,6 ± 6,6 vs. 29,0 ± 7,3 ml-1.kg-1. min-1), VCO2 (1,9 ± 0,7 vs. 1,9 ± 0,5 1), HR (158,3 ± 17,8 vs. 158,6 ± 17,7 bpm) e VE (41,5 ± 10,4 vs. 43,7 ± 12,9 1). As velocidades estimadas foram diferentes para as sessões de treinamento (5,5 ± 0,5xkm/h e 4,9 ± 0,3 km/h), assim como o VO2 , VCO2 , VE e FC. Concluiu-se que em adultos jovens saudáveis, SWTI realizados no corredor e na esteira não são intercambiáveis. Uma vez que o SWTI-E determinou uma menor velocidade, a intensidade do treinamento baseada neste teste pode subestimar as respostas de um paciente ao treinamento aeróbio.
Downloads
Referências
Parreira VF, Janaudis-Ferreira T, Evans RA, Mathur S, Goldstein
RS, Brooks D. Measurement properties of the incremental shuttle
walk test: a systematic review. Chest. 2014;145(6):1357-69.
doi:10.1378/chest.13-2071
Holland AE, Spruit MA, Singh SJ. How to carry out a field
walking test in chronic respiratory disease. Breathe (Sheff).
;11(2):128-39. doi:10.1183/20734735.021314
Probst VS, Hernandes NA, Teixeira DC, Felcar JM,
Mesquita RB, Gonçalves CG, et al. Reference values for the
incremental shuttle walking test. Respir Med. 2012;106:243-8.
doi:10.1016/j.rmed.2011.07.023
Lee AL, Hill CJ, Cecins N, Jenkins S, McDonald CF, Burge AT,
et al. The short and long term effects of exercise training in
non-cystic fibrosis bronchiectasis: a randomised controlled
trial. Respir Res. 2014;15:44. doi:10.1186/1465-9921-15-44
De Almeida FG, Victor EG, Rizzo JA. Hallway versus treadmill
-minute-walk tests in patients with chronic obstructive
pulmonary disease. Respir Care. 2009;54(12):1712-6.
Stevens D, Elpern E, Sharma K, Szidon P, Ankin M. Comparison of
hallway and treadmill six-minute walk tests. Am J Respir Crit Care
Med. 1999;160(5Pt1):1540-3. doi:10.1164/ajrccm.160.5.9808139
Revill SM, Morgan MD, Singh SJ, Williams J, Hardman AE. The
endurance shuttle walk: a new field test for the assessment of
endurance capacity in chronic obstructive pulmonary disease.
Thorax. 1999;54(3):213-22. doi:10.1136/thx.54.3.213.
Fukuchi CA, Fukuchi RK, Duarte M. A public dataset of
overground and treadmill walking kinematics and kinetics in
healthy individuals. Peer J. 2018;6:e4640. doi:10.7717/peerj.4640.
Woolf-May K, Ferrett D. Metabolic equivalents during the 10-m
shuttle walking test for post-myocardial infarction patients.
Br J Sports Med. 2008;42(1):36-41.
Almodhy M, Beneke R, Cardoso F, Taylor MJ, Sandercock GR.
Pilot investigation of the oxygen demands and metabolic
cost of incremental shuttle walking and treadmill walking in
patients with cardiovascular disease. BMJ. 2014;16(4):e005216.
doi:10.1136/bmjopen-2014-005216
Moloney ED, Clayton N, Mukherjee DK, Gallagher CG, Egan JJ.
The shuttle walk exercise test in idiopathic pulmonary fibrosis.
Resp Med. 2003;97(6):682-7. doi:10.1053/rmed.2003.1501
WHO Expert. Committee physical status: the use and
interpretation of anthropometry. World Health Organ Tech
Rep Ser. 1995;854:1-452.
Sociedade Brasileira de Pneumologia. Diretrizes para testes
da função pulmonar. J Pneumol. 2002;28(Supl.3):S44-S58.
Rufino R, Costa CH, Lopes AJ, Maiworm AI, Maynard K,
Silva LM, et al. Spirometry reference values in the Brazilian
population. Braz J Med Biol Res. 2017;50(3):e5700.
doi:10.1590/1414-431X20175700
da Silva CA, Helal L, da Silva RP, Belli KC, Umpierre D, Stein
R. Association of lower limb compression garments during
high-intensity exercise with performance and physiological
responses: a systematic review and meta-analysis. Sports Med.
;48:1859-73. doi: 10.1007/s40279-018-0927-z
Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester
C, et al. An official American Thoracic Society/European
Respiratory Society Statement: key concepts and advances
in pulmonary rehabilitation. Am J Respir Crit Care Med.
;188(8):e13-e64. doi: 10.1164/rccm.201309-1634ST
Janaudis-Ferreira T, Sundelin G, Wadell K. Comparison of the
-minute walk distance test performed on a non-motorised
treadmill and in a corridor in healthy elderly subjects.
Physiotherapy. 2010;96(3):234-9. doi:10.1016/j.physio.2009.11.015
Swerts PM, Mostert R, Wouters EF. Comparison of corridor and
treadmill walking in patients with severe chronic obstructive
pulmonary disease. Phys Ther. 1990;70(7):439-42.
Beaumont A, Cockcroft A, Guz A. A self paced treadmill walking
test for breathless patients. Thorax. 1985;40(6):459-64.
Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey
D, et al. An official European Respiratory Society/American
Thoracic Society technical standard: field walking tests in
chronic respiratory disease. Eur Respir J. 2014;44(6):1428-46.
doi:10.1183/09031936.00150314
Arellano CJ, Kram R. The energetic cost of maintaining
lateral balance during human running. J Appl Physiol.
;112(3):427-34. doi:10.1152/japplphysiol.00554.2011.
Ijmker T, Houdijk H, Lamoth CJ, Beek PJ, van der Woude LH.
Energy cost of balance control during walking decreases with
external stabilizer stiffness independent of walking speed. J
Biomech. 2013;46(13):2109-14. doi:10.1016/j.jbiomech.2013.07.005
Meyns P, Bruijn SM, Duysens J. The how and why of arm
swing during human walking. Gait Posture. 2013;38(4):555-62.
doi:10.1016/j.gaitpost.2013.02.006
Yentes JM, Denton W, McCamley J, Raffalt PC, Schmid KK. Effect
of parameter selection on entropy calculation for long walking
trials. Gait Posture. 2018;60:128-34. doi:10.1016/j.gaitpost.2017.11.023
Berling J, Foster C, Gibson M, Doberstein S, Porcari J. The effect
of handrail support on oxygen uptake during steady-state
treadmill exercise. J Cardiopulm Rehabil. 2006;26(6):391-4.
Hoffmann CL, Dougherty C, Abkarian HK, Fox M, Juris PM.
The reduction of metabolic cost while using handrail support
during inclined treadmill walking is dependent on the handrail
use instruction. Int J Exerc Sci. 2014;7(4):339-45.
Foster C, Crowe AJ, Daines E, Dumit M, Green MA, Lettau S, et al.
Predicting functional capacity during treadmill testing independent
of exercise protocol. Med Sci Sports Exerc. 1996;28(6):752-6.
McConnell T, Foster C, Conlin N, Thompson N. Prediction
of functional capacity during treadmill testing: effect of
handrail support. J Cardiopulm Rehabil. 1991;11:255-60.
doi:10.1249/00005768-198004001-00318
Berling J, Foster C, Gibson M, Doberstein S, Porcari J. The effect
of handrail support on oxygen uptake during steady state
treadmill exercise. J Cardiopulm Rehabil. 2006;26(6):391-4.
Wicks JR, Oldridge NB. How accurate is the prediction of
maximal oxygen uptake with treadmill testing? PLoS One.
;11:e0166608. doi:10.1371/journal.pone.0166608
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2018 Fisioterapia e Pesquisa
Este trabalho está licenciado sob uma licença Creative Commons Attribution-ShareAlike 4.0 International License.