Motor synergies research in physical therapy: advantages of the uncontrolled manifold approach

Authors

  • Daniela Virgínia Vaz Universidade Federal de Minas Gerais; Escola de Educação Física, Fisioterapia e Terapia Ocupacional; Department of Physical Therapy

DOI:

https://doi.org/10.1590/1809-2950/12646024012017

Keywords:

Motor Skills, Physical Therapy Modalities, Review

Abstract

Movement is central to physical therapy identity and practice. Advances in the science of movement control, motor learning and development are thus inextricably tied to professional development and clinical activity. This paper aims to describe a prominent approach to motor control with potential to greatly advance the understanding of movement dysfunction: the uncontrolled manifold (UCM). An argument is formulated for incorporating this method of data analysis in rehabilitation research. It is a narrative review of the relevant literature. Research in physical therapy could greatly benefit from investigating synergies with the theory and methods of UCM. Research should seek connections between functioning in daily life tasks and the assembling of synergies to stabilize different performance variables, the UCM variability measures, the synergy strength indexes, and the anticipatory synergy adjustments. Changes in these synergy variables should also be quantified after rehabilitation interventions. UCM can offer one solid science-based approach to inform clinical decisions on whether synergies have to be broken, rebalanced, created, or reinforced in patients with movement dysfunction.

Downloads

Download data is not yet available.

References

American Physical Therapy Association. Vision statement

for the physical therapy profession [Internet]. Alexandria:

American Physical Therapy Association; 2013. [access on

Mar. 07, 2017]. Available from: http://www.apta.org/Vision/

American Physical Therapy Association. Guiding principles

to achieve the vision [Internet]. Alexandria: American

Physical Therapy Association; 2013. [access on Mar. 07, 2017].

Available from: http://www.apta.org/Vision/

English Oxford Living Dictionaries [Internet]. Oxford: Oxford

University Press; c2017. Synergy. [access on Mar. 07, 2017]. Available

from: https://en.oxforddictionaries.com/definition/synergy

Latash ML. Synergy. Oxford: Oxford University Press; 2008.

Brunnström S. Movement therapy in hemiplegia: a

neurophysiological approach. New York: Harper & Row, 1970.

Bobath B. Adult hemiplegia: evaluation and treatment. 3ª ed.

Oxford: Butterworth-Heinemann; 1990.

Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The

post stroke hemiplegic patient: 1. a method for evaluation of

physical performance. Scand J Rehabil Med. 1975;7(1):13-31.

Giszter S, Patil V, Hart C. Primitives, premotor drives,

and pattern generation: a combined computational and

neuroethological perspective. Prog Brain Res. 2007;165:323-

doi: 10.1016/S0079-6123(06)65020-6.

Tresch MC, Saltiel P, d’Avella A, Bizzi E. Coordination and

localization in spinal motor systems. Brain Res Brain Res Rev.

;40(1-3):66-79.

Tresch MC, Jarc A. The case for and against muscle synergies.

Curr Opin Neurobiol. 2009;19(6):601-7.

Dipietro L, Krebs HI, Fasoli SE, Volpe BT, Stein J, Bever C,

Hogan N. Changing motor synergies in chronic stroke. J

Neurophysiol. 2007;98(2):757-68.

Sahrmann S. Diagnosis and treatment of movement

impairment syndromes. Maryland Heights: Mosby; 2002.

Bernstein NA. On dexterity and its development. In: Latash

ML, Turvey MT. Dexterity and its development. New Jersey:

Lawrence Erlbaum Associates; 1996. p. 3-246.

Turvey MT. Coordination. Am Psychol. 1990;45(8):938-53.

d’Avella A, Saltiel P, Bizzi E. Combinations of muscle synergies

in the construction of a natural motor behavior. Nat Neurosci.

;6(3):300-8. doi: 10.1038/nn1010.

Damiano D. Muscle synergies: input or output variables for

neural control? Dev Med Child Neurol. 2015;57(12):1091-2. doi:

1111/dmcn.12843.

Latash ML, Anson JG. Synergies in health and disease:

relations to adaptive changes in motor coordination. Phys

Ther. 2006;86(8):1151-60.

Latash ML, Zatsiorsky V. Biomechanics and motor control:

defining central concepts. San Diego: Academic Press; 2015.

Latash ML, Scholz JP, Schöner G. Toward a new theory of

motor synergies. Motor Control. 2007;11(3):276-308.

Torres-Oviedo G, Ting LH. Muscle synergies characterizing

human postural responses. J Neurophysiol. 2007;98(4):2144-56.

Latash ML, Huang X. Neural control of movement stability:

lessons from studies of neurological patients. Neuroscience.

;301:39-48. doi: 10.1016/j.neuroscience.2015.05.075.

Latash ML. The bliss (not the problem) of motor abundance

(not redundancy). Exp Brain Res. 2012;217(1):1-5. doi: 10.1007/

s00221-012-3000-4.

Scholz JP, Schöner G. The uncontrolled manifold concept:

identifying control variables for a functional task. Exp Brain

Res. 1999;126(3):289-306.

Fisioter Pesqui. 2017;24(1):2-8

Greve C, Zijlstra W, Hortobágyi T, Bongers RM. Not all is lost:

old adults retain flexibility in motor behaviour during sitto-stand. PloS One. 2013;8(10):e77760. doi: 10.1371/journal.

pone.0077760.

Latash ML, Anson JG. What are “normal movements” in

atypical populations? Behav Brain Sci. 1996;19(1):55-68. doi:

1017/S0140525X00041467.

Holt KG, Obusek JP, Fonseca ST. Constraints on disordered

locomotion: a dynamical systems perspective on spastic

cerebral palsy. Hum Mov Sci. 1996;15(2):177-202. doi:

1016/0167-9457(95)00043-7.

Fonseca ST, Holt KG, Fetters L, Saltzman E. Dynamic resources

used in ambulation by children with spastic hemiplegic

cerebral palsy: relationship to kinematics, energetics, and

asymmetries. Phys Ther. 2004;84(4):344-54.

Mattos DJ, Latash ML, Park E, Kuhl J, Scholz JP. Unpredictable

elbow joint perturbation during reaching results in multijoint

motor equivalence. J Neurophysiol. 2011;106(3):1424-36. doi:

1152/jn.00163.2011.

Singh T, Varadhan SK, Zatsiorsky VM, Latash ML. Fatigue and

motor redundancy: adaptive increase in finger force variance

in multi-finger tasks. J Neurophysiol. 2010;103(6):2990-

doi: 10.1152/jn.00077.2010.

Zhang W, Scholz JP, Zatsiorsky VM, Latash ML. What do

synergies do? Effects of secondary constraints on multidigit

synergies in accurate force-production tasks. J Neurophysiol.

;99(2):500-13.

Zhou T, Wu YH, Bartsch A, Cuadra C, Zatsiorsky VM, Latash ML.

Anticipatory synergy adjustments: preparing a quick action

in an unknown direction. Exp Brain Res. 2013;226(4):565-73.

doi: 10.1007/s00221-013-3469-5.

Jo HJ, Mattos D, Lucassen EB, Huang X, Latash ML. Changes

in multidigit synergies and their feed-forward adjustments

in multiple sclerosis. J Motor Behav. 2016; 1-11. doi:

1080/00222895.2016.1169986.

Falaki A, Huang X, Lewis MM, Latash ML. Dopaminergic

modulation of multi-muscle synergies in postural tasks

performed by patients with Parkinson’s disease. J Electromyogr

Kinesiol. 2017;33:20-6. doi: 10.1016/j.jelekin.2017.01.002.

Lewis MM, Lee EY, Jo HJ, Du G, Park J, Flynn MR, et al. Synergy

as a new and sensitive marker of basal ganglia dysfunction:

a study of asymptomatic welders. Neurotoxicology.

;56:76-85.

Downloads

Published

2017-04-04

Issue

Section

Original Research

How to Cite

Motor synergies research in physical therapy: advantages of the uncontrolled manifold approach. (2017). Fisioterapia E Pesquisa, 24(1), 2-8. https://doi.org/10.1590/1809-2950/12646024012017