Revista do Instituto de Geociências - USP Geol. USP, Sér. cient., São Paulo, v. 16, n. 3, p. 89-103, Setembro 2016

Modelo de alojamento do Plúton Cupira, Província Borborema (NE Brasil)

Emplacement model for the Cupira Pluton, Borborema Province (NE Brazil)

Tiago Siqueira de Miranda¹, Gorki Mariano² e Paulo de Barros Correia²

¹Universidade Federal de Pernambuco – UFPE, Centro de Tecnologia e Geociências, Programa de Pós-graduação em Geociências, Avenida da Arquitetura, s/n, Cidade Universitária, CEP 50740-550, Recife, PE, Brasil (tiago.smiranda@ufpe.br) ²Universidade Federal de Pernambuco – UFPE, Centro de Tecnologia e Geociências, Departamento de Geologia, Recife, PE, Brasil (gm@ufpe.br; paulobc@ufpe.br)

Recebido em 8 de abril de 2015; aceito em 25 de maio de 2016

Resumo

O Plúton Cupira está localizado no Domínio Sul da Província Borborema, possui área aflorante de aproximadamente 300 km² e forma ovalada com leve alongamento na direção E-W. Com objetivo de determinar o modelo de alojamento do plúton e os alinhamentos magnético-estruturais, foi realizada a integração inédita de estudos de anisotropia de suscetibilidade magnética (ASM) e magnetometria. Os dados de ASM mostram que a susceptibilidade total apresenta variação de 0,105x10⁻³ SI a 34,618x10⁻³ SI, indicando caráter ferromagnético. O grau de anisotropia varia de 1,06 a 1,272 e apresenta correlação positiva com a susceptibilidade total. O parâmetro de forma varia de -0,802 a 0,897, com preponderância de elipsoides oblatos sobre prolatos, refletindo trama magnética planar. A maioria das lineações magnéticas possuem direção NE-SW, com caimentos suaves a fortes para NE e para SW. A foliação magnéticas e magmáticas essencialmente concêntricas, com mergulhos fortes para o centro do plúton, associadas à lineações com caimento forte, sugerindo ser a zona de alimentação magnética. Os alinhamentos magnéticos reforçam as direções estruturais evidenciadas pela ASM. Estes dados favorecem a proposição de modelo de alojamento do Plúton Cupira a partir de uma zona de alimentação magnética central, com fluxo do magma distribuído de forma concêntrica, com geometria de intrusão similar a um lopólito.

Palavras-chave: Anisotropia de Susceptibilidade Magnética (ASM); Foliação magnética; Lineação magnética; Magnetometria; Província Borborema.

Abstract

The Cupira pluton, located in the southern domain of the Borborema province in the Garanhuns subdomain, crops out for approximately 300 km². It is oval in shape and is slightly elongated in the E-W direction. In order to establish an emplacement model and to obtain structural-magnetic alignments, an integration of Anisotropy of Magnetic Susceptibility (AMS) and magnetometry data was carried out. AMS data show that total susceptibility ranges from 0.105x10⁻³ SI to 34.618x10⁻³ SI, indicating a ferromagnetic character. The degree of anisotropy varies from 1.06 to 1.272, with positive correlation with the total susceptibility. The shape parameter varies from -0.802 to 0.897, with predominance of oblate over prolate ellipsoids, reflecting a dominantly planar magnetic fabric. The magnetic lineations are distributed mainly in the NE-SW direction, with gentle to strong plunges to NE and SW. The magnetic foliation trends vary from NE to NNE, with moderate to strong dips (30° to 86°). The central portion of the pluton has concentric inward dipping foliations associated with strongly plunging lineations, suggesting a central magmatic conduct. The magnetic alignments corroborate with the structural trends obtained by AMS. These data favor the proposition of an emplacement model for the Cupira Puton from a central magmatic conduct, with magma flow distributed in a concentric form, characterizing it as a lopolith.

Keywords: Anisotropy of Magnetic Susceptibility (AMS); Magnetic foliation; Magnetic lineation; Magnetometry; Borborema Province.

INTRODUÇÃO

A Anisotropia de Susceptibilidade Magnética (ASM) tem sido empregada para obter informação dos alinhamentos dos grãos minerais, mesmo para rochas que são consideradas visualmente isotrópicas (Tarling e Hrouda, 1993; Borradaile e Henry, 1997; Bouchez, 1997). Na presença de um campo magnético, todas as substâncias naturais são magnetizáveis, embora com intensidades e orientações diferentes. Existem três tipos principais de comportamento magnético: Diamagnetismo, Paramagnetismo e Ferromagnetismo (Tarling e Hrouda, 1993). A suscetibilidade (K), medida em unidades adimensionais, é definida como a razão entre a magnetização do material (M) e o campo magnético aplicado (H): $\mathbf{K} = \mathbf{M}/\mathbf{H}$ (Tarling e Hrouda, 1993; Borradaile e Henry, 1997; Bouchez, 1997; Neves, 2012).

O Plúton Cupira (PC), membro da associação calcialcalina de alto potássio, trata-se de um granito (l.s.) localizado no domínio Sul da Província Borborema (Figura 1). Devido à existência local de apenas foliações magmáticas no PC, foi utilizada a técnica de ASM para obtenção das foliações e lineações magnéticas (Borradaile e Henry, 1997; Neves et al., 2005; Mariano et al., 2009; Davis et al., 2010; Borradaile e Jackson, 2010). Associado à ASM, foi realizado no PC o levantamento magnetométrico, tratando-se de uma aplicação inédita destas ferramentas no modelamento de corpos ígneos. Esta integração de ferramentas geofísicas permitiu a comparação deste plúton com outros corpos ígneos da associação calcialcalina de alto potássio localizados a sul e norte da zona de cisalhamento Pernambuco Leste (ZCPE). É importante ressaltar que ZCPE é considerada por alguns autores como limite entre terrenos tectônicos distintos

Figura 1. Mapa de localização do Plúton Cupira (PC) dentro do contexto tectônico da Província Borborema. ZCPE = Zona de Cisalhamento Pernambuco; DZT = Domínio da Zona Transversal; e DS = Domínio Sul.

(Ferreira et al., 1998; Santos e Medeiros, 1999). Desta forma, a comparação entre corpos ígneos semelhantes a N e S da ZCPE pode contribuir de forma significativa para a melhor compreensão da evolução geológica da Província Borborema.

CONTEXTO GEOLÓGICO

A área de estudo está inserida na Província Borborema, a sul da ZCPE, no Domínio Sul e dentro do Subdomínio Garanhuns (Oliveira, 2008). O PC faz parte da associação calcialcalina de alto potássio, que representa um dos mais abundantes magmatismos de idade Brasiliana (Pan-Africana) (Mariano et al., 1996). Batólitos desta associação estão distribuídos em toda a PB, intrudindo ortognaisses, gnaisses migmatizados e metassedimentos diversos, independente de limites propostos como terrenos tectono-estratigráficos. Esta associação é caracterizada pela ocorrência de quartzo monzonitos a granitos grossos a porfiríticos em coexistência com quartzo dioritos e dioritos. Feições de campo, tais como: a) enxames de enclaves de composição diorítica, sugerindo diques sin-plutônicos desmembrados; b) zonas híbridas, caracterizadas pela associação entre dioritos e granitos; c) diques tardios de diorito cortando as rochas graníticas; d) porcões dioríticas com áreas aflorantes variáveis; e e) diques e veios de granito grosso a porfirítico cortando rochas de composição diorítica, sugerem a recorrência do magmatismo diorítico durante a cristalização dos granitos (Mariano et al., 1996).

O PC é um corpo intrusivo sienogranítico a monzogranítico grosso a porfirítico, com fenocristais de K-feldspatos variando de 2 a 5 cm, associado com enclaves e bolsões de hornblenda biotita quartzo-dioritos (Figuras 2 e 3). De acordo com o estudo petrográfico, foi vista em seções delgadas a ocorrência de magnetita associada à fácies quartzo-diorito (Figura 4). O PC possui foliações magmáticas incipientes e estruturas de fluxo magmático na sua porção central. Nas bordas do PC as foliações magmáticas ocorrem bem marcadas, enquanto a lineação magmática é de dificil obtenção (Figura 2). A trama magmática do PC apresenta um padrão concêntrico das foliações na borda do corpo, com mergulhos moderados a fortes (43° a 83°) e *trend* preferencial WNW-SSE (Figura 5).

MATERIAS E MÉTODOS

Anisotropia de Susceptibilidade Magnética (ASM)

No PC, 36 estações de amostragem deram origem a uma malha com densidade de um ponto a cada 1000 m (Figura 6). De acordo com a metodologia aplicada por Archanjo et al. (2002), Neves et al. (2005), Mariano et al. (2009) e Davis et al. (2010), neste estudo foram coletados em cada estação de dois a três testemunhos cilíndricos com comprimento entre

Figura 2. Fácies graníticas do Plúton Cupira. (A) Sienogranito grosso a porfirítico com foliação magmática incipiente na região central do Plúton Cupira; e (B) Ocorrência de foliação bem marcada na borda do PC.

Figura 3. Fotomicrografia da fácies biotita sienogranito com ocorrência de biotita alterando-se para clorita e epidoto. (A) Polarizadores cruzados; (B) Polarizadores paralelos. Bio = biotita; CI = clorita; Epi = epidoto; e PI= plagioclásio. Escala = 1,25 mm.

Figura 4. Fotomicrografia da fácies biotita quartzo-diorito, mostrando a evidência de titanita sobrecrescendo a magnetita (A) Polarizadores paralelos; (B) Polarizadores cruzados. Ti = titanita; Bio = biotita; Op = opacos (magnetita). Escala= 1,25 mm.

Figura 5. Mapa geológico-estrutural e estereograma dos pólos dos planos da foliação magmática do Plúton Cupira. Número de medidas = 29.

Figura 6. Mapa de localização das estações de ASM no Plúton Cupira.

5 e 10 cm, 2,5 cm de diâmetro, distando 10 a 20 cm entre si. Após a perfuração, cada testemunho foi orientado antes de sua remoção com o auxílio de um dispositivo para este fim e da bússola geológica. Em laboratório, cada cilindro (testemunho) foi cortado com serra diamantada e dividido em três espécimes com 22 mm de altura (tamanho padrão para medição de ASM), que foram polidos em suas extremidades e orientados individualmente. A medição de ASM foi feita num total de 165 espécimes no Laboratório de Geofísica Helmo Rand (Departamento de Geologia, UFPE), utilizando-se o susceptibilímetro Kappabridge KLY-3, cuja sensibilidade é superior a 10-⁸ SI, que induz campos magnéticos de baixa intensidade (3,8x10⁻⁴ T; 920 Hz) na amostra. Na leitura de ASM, cada amostra é colocada em quinze posições diferentes e simétricas, nas quais são realizadas medidas. Em seguida, são feitas correções de erro, visando obter um erro percentual final nas medições abaixo de 0,1%. O tratamento dos dados foi feito utilizando os programas que acompanham o Kappabridge, de autoria da AGICO. Dentre os programas mais importantes, o SUSAM controla o equipamento para se fazer as medidas; o ASTA faz a projeção estereográfica (Figura 7) das direções de anisotropia magnética e o PLOT constrói gráficos importantes para interpretação dos dados. A base de dados de ASM está na Tabela 1.

Tabela 1. Dados de ASM coletados no Plúton Cupira.

STA	Y	Х	Р	т	K 10-3	K1	K2	K3
LG-3	9043512	180263	1.100	0,376	14.383	56°/82Az	24°/214Az	22°/315Az
LG-4	9040834	180650	1.151	0,678	12.789	30°/77	19°/178	54°/295
LG-5	9038936	181901	1.186	0,117	9.014	77°/214	12°/18	3°/109
LG-6	9036840	182693	1.239	0,403	14.908	69°/180	20°/18	6°/286
LG-7	9035350	184463	1.122	0,288	34.618	43°/191	5°/96	47°/1
LG-8	9033556	185463	1.036	0,561	0,578	21°/61Az	53°/301Az	30°/164Az
LG-12	9041112	187809	1,1	0,291	6.914	41/289	49/101	4/195
LG-13	9039676	177745	1.168	0,238	10.597	4°/92Az	70°/352	20°/184
LG-14	9037354	177142	1.243	0,18	15.773	67°/208	23°/19	3°/111
LG-16	9035782	178678	1.169	0,604	12.303	67/238	20/29	10/122
LG-17	9033812	178575	1.104	0,509	13.112	29/90	30/341	46/215
LG-18	9033812	175080	1.169	-0,334	18.894	31°/320	8°/55	58°/158
LG-19	9042612	178691	1,11	0,52	12.546	49°/313	35°/96	19°/200
LG-20	9043434	177231	1.054	-0,011	12.060	53°/248	8°/349	36°/85
LG-21	9043614	175643	1.088	-0,044	13.170	57°/117	21°/243	25°/343
LG-22	9044956	175141	1.107	0,467	11.099	32°/76	48°/302	24°/183
LG-23	9043146	173823	1.173	-0,038	16.302	59°/200	31°/25	2°/294
LG-24	9040836	828625	1.124	0,358	3.322	7°/18	52°/117	37°/283
LG-28	9042482	181660	1,1	0,647	19.616	25/313	65/147	5°/45
LG-29	9042718	183470	1.083	0,211	12.766	19°/235	56°/355	27°/135
LG-31	9043494	186102	1,06	-0,669	0,258	46°/146	34°/11	24°/263
LG-34	9048498	174997	1.221	0,079	19.910	60°/55	29°/247	5°/154
LG-35	9047348	173816	1.164	-0,178	23.500	53°/351	12°/98	35°/197
LG-36	9045898	171744	1.214	-0,340	26.945	35°/298	9°/34	53°/136
LG-37	9040230	176693	1.114	0,867	0,105	47°/262	40°/57	13°/158
LG-38	9039416	174779	1.116	0,446	10.123	79°/174	7°/48	9°/317
LG-39	9038768	173361	1.107	0,452	8.210	35°/83	55°/256	3°/351
LG-40	9044100	828490	1.109	-0,091	3.432	11°/44	77°/248	5°/135
LG-41	9042302	828643	1.063	-0,802	15.950	13°/20	21°/285	65°/139
LG-42	9040058	170032	1.116	0,557	11.060	5°/318	1°/228	85°/131
LG-43	9048526	176732	1.272	0,591	27.310	29°/87	61°/277	4°/179
LG-44	9051152	180360	1.209	0,897	0,124	26°/3	62°/162	9°/269
LG-45	9045430	182023	1.112	-0,096	8.769	32°/78	6°/172	57°/272
LG-47	9034098	171391	1.232	0,563	7.562	3°/121	6°/30	83°/235
LG-48	9033248	828679	1.053	0,217	5.611	29°/262	10°/358	59°/106
LG-49	9040010	827120	1.221	0,224	18.927	13°/315	77°/127	2°/225

STA = Estação; Y = Latitude; X = Longitude; P = Grau de Anisotropia; T = Parâmetro de forma; K = Susceptibilidade magnética (10⁻³ SI); K1 = Lineação magnética; K1 e K2 = Foliação magnética; K3 = Pólo da foliação magnética.

Figura 7. Estereogramas (hemisfério inferior, rede Schmidt), mostrando os dados direcionais de ASM referente às estações LG 28, 29, 31, 34, 35 e 36. ■ - K1 (lineação magnética); ▲ - K2; • - K3 (pólo da foliação magnética).

Magnetometria

O levantamento magnetométrico foi realizado com o magnetômetro de campo total SM-5 NAVMAG (bombeamento ótico), com o qual foram feitas leituras em 102 estações espaçadas em 1 km (Figura 8). Em alguns casos de condições desfavoráveis para leitura magnética, o espaçamento foi de 2 km. A malha irregular foi construída, obedecendo-se o traçado das rodovias (BR 104 e PE 126) e algumas estradas secundárias. Nas fases posteriores do trabalho, onde se detectou alguma possível anomalia, o espaçamento foi reduzido a 500 metros para que a anomalia ficasse bem registrada. Foram estabelecidas seis bases para controle da variação diurna, tendo como base principal Cupira e como auxiliar as bases Lagoa dos Gatos, Cajueiro, Pedra de Fogo, São Jorge e Brejinho (Tabela 2).

A disposição espacial dessas bases facilitou consideravelmente o trabalho, pois, dependendo do local, a base mais próxima era utilizada, onde se faziam leituras periódicas com intervalo máximo de duas horas. Posteriormente, essas bases foram ligadas, tomando-se como referência as bases principais. Para a ligação das bases foi feita uma leitura na base principal,

uma leitura também na base auxiliar e finalmente em menos de uma hora, voltou-se à base principal para fechar a ligação. Dessa forma, ficaram estabelecidas as diferenças entre as bases principais e as bases auxiliares. Foram confeccionados gráficos das variações diurnas e a correção em cada estação consistiu na subtração dos valores obtidos nas bases dos valores obtidos na estação no mesmo instante. Com esse procedimento, os resultados finais obtidos são relativos e não absolutos (Correia et al., 2004). A partir destes dados, foi elaborado o mapa de intensidade de campo total, o qual foi posteriormente reduzido ao pólo. A correção do IGRF (International Geomagnetic Reference Field) não foi realizada, devido ao tamanho reduzido da área mapeada e ao pequeno intervalo de tempo trabalhado. A partir do mapa magnético de campo total, foram construídos os mapas de intensidade do campo magnético regional, residual, primeira derivada e sinal analítico, utilizando-se o programa Oasis Montaj da Geosoft. Os mapas regional e residual foram confeccionados com base nos filtros de freqüência contidos no mesmo programa. Foram utilizados vários filtros, mas o que apresentou melhor resposta foi o REGIONAL/RESIDUAL GUASSIANO, no

PLÚTON CUPIRA

Figura 8. Mapa de localização das estações de magnetometria na região do Plúton Cupira.

STA		р 2005 2005 2005 2005 2005 2005 2005 200	-	>	×	STA	-	ц	~	>	×	STA	-	L	~	>	×
		-	1	- 0000	< 1 1 1 1 1 1				1	- 107	< 100 T U T U			-	1	- 100	< 100000 T
BCUP	25695,25			9048680	1/4680	CUP 32	29,19992	22/92	-154,38	904/810	1/6180	CUP 63	25517,1	25/04	-186,90	9054664	1 /6682
CUP 01	25725,77	25695	30,77	9047840	174064	CUP 33	25725,48	25722	3,48	9048944	176934	CUP 64	25514,5	25704	-189,50	9052514	175673
CUP 02	25722,69	25695	27,69	9046800	173459	CUP 34	25629,6	25720	-90,40	9049096	178226	CUP 65	25618,83	25740,5	-121,67	9050544	175228
CUP 03	25457,75	25695	-237,25	9046276	172834	CUP 35	25548,24	25719	-170,76	9049140	179400	CUP 66	25581,06	25705	-123,94	9048898	173924
CUP 04	25553,91	25695	-141,09	9046016	171979	CUP 36	25626,41	25719	-92,59	9049370	180741	BPF	25793,25			9041228	183181
CUP 05	25690,39	25695	-4,61	9045844	170968	CUP 37	25602,16	25717	-114,84	9049546	181747	CUP 67	25493,9	25796	-302,10	9040296	184961
CUP 06	25536,5	25695	-158,50	9045490	170066	CUP 38	25502,93	25716	-213,07	9048864	182569	CUP 68	25500,22	25802	-301,78	9040789	186825
CUP 07	25635,22	25695	-59,78	9045134	829641	CUP 39	25480,29	25715	-234,71	9047598	182044	CUP 69	25509,54	25804	-294,46	9039698	188343
CUP 08	25422,59	25687	-264,41	9041708	179542	CUP 40	25355,54	25687	-331,46	9045662	175123	BCJ	25475,3			9038250	188924
CUP 09	25593,77	25686	-92,23	9041144	178813	CUP 41	25521,3	25679	-157,70	9046812	175607	CUP 70	25474,97	25799	-324,03	9038088	189021
CUP 10	24979,45	25684	-704,55	9040310	178124	CUP 42	25564,01	25678	-113,99	9046292	178262	CUP 71	25407,32	25810	-402,68	9036316	188130
CUP 11	25445,6	25683	-237,40	9039852	177475	CUP 43	25564,01	25677	-112,99	9046292	178262	CUP 72	25472,4	25815	-342,60	9035462	188674
CUP 12	25514,11	25682	-167,89	9040362	176730	CUP 44	25546,27	25676	-129,73	9045650	179083	CUP 73	25420,44	25815	-394,56	9033736	187588
CUP 13	26169,39	25680	489,39	9041490	176373	CUP 45	25554,18	25675	-120,82	9045132	179900	CUP 74	25539,56	25805	-265,44	9033812	189864
CUP 14	25496,45	25678	-181,55	9042144	175967	CUP 46	25560,67	25674	-113,33	9043608	180070	CUP 75	25510,71	25822	-311,29	9037376	189874
CUP 15	25435,94	25677	-241,06	9042990	175752	CUP 47	25452,42	25673	-220,58	9042866	180632	CUP 76	25566,3	25820	-253,70	9034666	190857
CUP 16	25504,14	25676	-171,86	9043716	175448	CUP 48	25542,76	25673	-130,24	9042174	181264	CUP 77	25469,8	25814	-344,20	9038798	187050
CUP 17	25620,4	25675	-54,60	9044690	175194	CUP 49	25529,22	25672	-142,78	9042678	181695	CUP 78	25458,6	25819	-360,40	9040054	185931
CUP 18	25580,53	25702	-121,47	9044236	828509	CUP 50	25623,42	25671	-47,58	9043082	182717	BSJ	25490,97			9037444	182806
CUP 19	25499,91	25703	-203,09	9043048	828511	CUP 51	24484,36	25671	-1186,64	9043534	182856	CUP 79	25464,88	25778	-313,12	9037502	182742
CUP 20	25483,88	25704	-220,12	9041986	828604	CUP 52	25527,63	25671	-143,37	9043880	183453	CUP 80	25383,55	25687	-303,45	9035800	183863
CUP 21	25464,08	25705	-240,92	9040886	828620	CUP 53	25503,06	25671	-167,94	9044452	183843	CUP 81	25388,71	25698	-309,29	9033858	183334
CUP 22	25472,04	25706	-233,96	9039702	828510	BLG	25538,51			9041772	180316	CUP 82	25544,83	25711	-166,17	9032034	182514
CUP 23	25521,43	25707	-185,57	9038262	828204	CUP 54	25498,67	25694	-195,33	9040242	181007	CUP 83	25512,62	25725	-212,38	9030032	182716
CUP 24	25499,68	25709	-209,32	9037598	827734	CUP 55	25101,74	25696	-594,26	9038946	181879	CUP 84	25505,5	25736	-230,5	9030266	184709
CUP 25	25515,27	25711	-195,73	9036420	827233	CUP 56	25480,47	25702	-221,53	9039336	177418	BBJ	25524,32			9030152	185251
CUP 26	25487,05	25712	-224,95	9035340	827177	CUP 57	25524,52	25703	-178,48	9037858	177230	CUP 85	25541,99	25735	-193,01	9031590	189168
CUP 27	25489,06	25714	-224,94	9033576	828125	CUP 58	25407,22	25705	-297,78	9036326	177361	CUP 86	25467,73	25737	-269,27	9033276	192129
CUP 28	25482,53	25715	-232,47	9032734	827763	CUP 59	25513,9	25712	-198,10	9035964	177881	CUP 87	25472,06	25745	-272,94	9029350	184604
CUP 29	25454,33	25715	-260,67	9031546	827401	CUP 60	25468,91	25720	-251,09	9039386	179028	CUP 88	25522,93	25749	-226,07	9027382	181019
CUP 30	25498,06	25718	-219,94	9029132	827336	CUP 61	25472,23	25708	-235,77	9038396	179686	CUP 89	25481,98	25751	-269,02	9028552	178399
CUP 31	25502,02	25719	-216,98	9028018	828097	CUP 62	25512,62	25707	-194,38	9036724	180151	CUP 90	25443,83	25752	-308,17	9030230	177298
STA = esta Brejinho; E	ação; L = Leitu 3SJ = Base S	ura; F = Fat ão Jorge.	or de correc	ção; Z = Valoı	r corrigido; `	Y = Latitude	; X = Longituc	de; BCUP =	: Base Cupir	a; BLG = Bas	se Lagoa do	s Gatos; BC	J = Base Caju	leiro; BPF =	= Base Pedr	a de Fogo; Bl	3J = Base

Tabela 2. Base de dados do levantamento magnetométrico.

- 96 -

Miranda, T. S. et al.

qual se aplicou um comprimento de onda da ordem de 5 km, por apresentar melhor efeito na separação Regional/Residual.

RESULTADOS

ASM

Os estudos de ASM do PC mostraram que a magnitude da susceptibilidade total (K), onde K= $1/3(k_1 + k_2 + k_3)$, varia de 0,105x10⁻³ SI a 34,618x10⁻³ SI. De acordo com Bouchez (1997), o limite inferior de K no campo dos granitos ferromagnéticos é em torno de 10⁻⁵ SI. Portanto,

granito livre de magnetita ou "granito paramagnético" tem uma susceptibilidade cuja magnitude é geralmente inferior a 0,5x10⁻³ SI (Bouchez, 1997). Além disso, Rochette (1987) propôs o valor de 0,3x10⁻³ SI como o limite inferior para caracterizar a contribuição ferromagnética em granitos (*l.s.*). Todavia, há granitos, como por exemplo o Plúton Tourão - RN, onde a contribuição é essencialmente paramagnética e apresenta valores acima deste limite (Trindade et al., 1999). Considerando este intervalo, o PC apresenta um caráter predominantemente ferromagnético com K médio de 12,571x10⁻³ SI. Os valores mais altos de K concentram-se na porção norte e centro leste do corpo (Figura 9A). Nestas porções do PC, foi observada a ocorrência de magnetita

Figura 9. Dados de anisotropia de susceptibilidade magnética do Plúton Cupira. (A) Mapa de susceptibilidade magnética total; (B) Mapa do grau de anisotropia; (C) Mapa do parâmetro T; (D) Grau de anisotropia [P] versus susceptibilidade magnética total (Km); e E- Parâmetro de forma [T] versus grau de anisotropia [P].

como fase acessório, justificando as anomalias magnéticas encontradas (Figura 4). Desta forma, estes resultados sugerem o caráter ferromagnético.

O grau de anisotropia (P) é definido pela razão entre a susceptibilidade máxima e a susceptibilidade mínima (P= k_1/k_3). No PC o grau de anisotropia varia de 1,06 a 1,27 (Figura 9B). Os valores de P são relativamente baixos e corroboram ausência de deformação no estado sólido, observada nos trabalhos de campo e em estudos petrográficos. O gráfico da relação PxK (Figura 9D) mostra a concordância entre os maiores valores de K de P. Estes dados sugerem um mecanismo eficiente de alinhamento dos grãos de magnetita com o aumento na proporção modal deste mineral.

As formas dos elipsoides magnéticos representadas pelo parâmetro T (Figura 9C) variam de -0,802 a 0,897, sendo que os maiores valores de T seguem *trend* preferencial de alinhamento ENE/WSW e secundário NW/SE. Os elipsoides de ASM no PC vão desde oblatos (T>0) a prolatos (T<0) e apresentam média de 0,2427. Aproximadamente 72% dos valores de T são maiores que zero, ou seja, possuem predominância dos elipsoides oblatos (Figura 8E). Estes dados sugerem que o PC possui o domínio de uma de uma fábrica magnética planar. O *trend* preferencial de alinhamento dos elipsoides oblatos (NE/SW) reforça o esquema proposto para alojamento do plúton.

Dados direcionais

A análise da distribuição das foliações magnéticas (Figura 10) mostrou os seguintes *trends*:

- 1. NE-SW: *trend* principal de alinhamento, com aproximadamente 55% das foliações e possui mergulhos moderados a fortes, variando entre 25° a 88°;
- 2. NW-SE: *trend* com aproximadamente 22% das foliações, cujos mergulhos variam de fracos a fortes, entre 7° e 88°;
- 3. E-W: *trend* com cerca de 15% das foliações, cujos mergulhos variam de 43° a 87°.

Na porção central do corpo é observado um padrão essencialmente concêntrico de algumas foliações magnéticas, com mergulhos fortes para o interior do plúton. Este padrão concêntrico também pode ser visto na trama magmática (Figura 5). O comportamento das foliações (magnéticas e magmáticas) evidencia a localização de possível conduto magmático na região central do PC.

As lineações magnéticas têm um padrão consistente e similar ao da foliação. Os principais *trends* observados no mapa da Figura 11 foram:

 NE-SW: principal *trend* de alinhamento da lineações, com aproximadamente 30% das lineações. Esta população de linhas possui caimento de fraco a forte (7° a 77°), tanto para NE como para SW;

Figura 11. Mapa geológico-estrutural e estereogramas das lineações magnéticas do Plúton Cupira. Número de medidas = 36.

- NW-SE: trend com cerca de 28% das lineações, com caimentos tanto para NW como SE e plunges de 3° a 57°;
- E-W: *trend* com 25% das lineações com caimentos que variam de 4° a 47°, tanto para E como para W. Este padrão está concentrado predominantemente na porção central e N do PC.

Na porção central do corpo as lineações magnéticas mostram caimento forte, corroborando com o padrão das foliações, sugerindo uma zona de alimentação magmática. Nas bordas do PC as lineações possuem caimentos suaves a moderados.

Magnetometria

O mapa de intensidade de campo total magnético do PC mostra as anomalias magnéticas bipolares (Figura 12A). O intervalo dos isovalores encontrados no mapa de campo total magnético vai de -376,270 nT até -83,287 nT. Na Figura 12A é possível observar que as anomalias magnéticas seguem dois *trends* preferenciais. O primeiro *trend* tem orientação NNW-SSE e segundo E-W. Estas orientações foram correlacionadas com o mapa de suscetibilidade magnética total do PC, e foi constatada uma relação concordante com as anomalias observadas naquele mapa.

O mapa de campo total magnético reduzido ao pólo facilita a interpretação, pois as anomalias são monopolares. Na Figura 12B, pode-se observar no centro do PC a anomalia magnética de *trend* NNW-SSE, encurvada para direita. Há, também, um *trend* secundário E-W das anomalias centrais e do extremo NE.

Na tentativa de separar no mapa de campo total reduzido ao pólo as influências das anomalias profundas e rasas, confeccionou-se o mapa de intensidade de campo magnético regional (Figura 12C). O método utilizado foi o de Separação Regional/Residual Gaussiano, que utiliza filtros passa-bandas de comprimento ou número de ondas. Comparando-se o mapa de campo total magnético com o mapa regional, é notável que as anomalias da porção centro-sul do PC se repetem e com o mesmo *trend* NW-SE. Isto reforça à ideia da localização do conduto magmático nesta porção do plúton. No mapa de campo magnético regional, as anomalias centrais possuem *trend* secundário NE-SW e E-W.

O mapa de campo magnético residual é resultado da subtração entre o de campo total e o de campo regional, caracterizado por representar as anomalias mais superficiais. Neste sentido, as anomalias mostradas na Figura 12D são provenientes de estruturas mais superficiais do que aquelas mostradas na figura anterior. Essas anomalias aparecem em maior quantidade e se mostram mais individualizadas e mais alongadas na direção NNW-SSE. Este mapa, juntamente com o mapa reduzido ao pólo, foi o que melhor evidenciou o deslocamento das anomalias, tanto as anomalias centrais como na porção norte do plúton.

Figura 12. Mapas magnéticos do Plúton Cupira. (A) Mapa de campo total magnético; (B) Mapa de campo total reduzido ao pólo; (C) Mapa do campo regional; e (D) Mapa do campo residual magnético.

DISCUSSÃO E CONCLUSÃO

O PC é um corpo intrusivo de composição sienogranítica a monzogranítica, com textura grossa a porfirítica. Trata-se de um membro da associação calcialcalina de alto potássio, caracterizado pela ocorrência de rochas graníticas descritas acima com enclaves e bolsões de hornblenda biotita quartzodioritos, desenvolvendo feições que sugerem coexistência e localmente mistura de magmas.

Os estudos de ASM no PC revelaram uma suscetibilidade magnética (K) controlada em sua maioria por minerais ferromagnéticos (magnetita), chegando a valores da ordem de 10⁻² SI. O grau de anisotropia (P) varia de 1,06 a 1,27, com anomalias apresentando *trends* NE-SW e NW-SE. O parâmetro de forma possui 72% dos valores positivos, evidenciando predomínio de fábrica planar. A correlação positiva entre os maiores valores de K de P sugere um mecanismo eficiente de alinhamento dos grãos de magnetita com o aumento na proporção modal deste mineral. O padrão da foliação magnética é concêntrico, com mergulhos fortes na porção central do corpo. As lineações magnéticas mostram também caimento forte (67° a 79°) na porção central do PC, sugerindo esta região como a zona de alimentação magmática. Os valores de P nesta região são baixos, caracterizando uma certa dispersão das lineações e foliações na zona de alimentação magmática.

A partir do deslocamento das anomalias nos mapas de campo magnético reduzido ao pólo (Figura 13A) e residual (Figura 13B), foi possível inferir no interior do PC zonas de cisalhamento sinistrais com direção NE-SW (R) e zonas de cisalhamento dextrais NW-SE (R'), que indicam deformação dúctil-rúptil de acordo com o par conjugado do modelo de Riedel (McClay, 1987). Evidências de campo não mostram deformação tectônica no PC, consequentemente os deslocamentos observados nas anomalias magnéticas também podem ser atribuídos à heterogeneidade composicional deste

Figura 13. Interpretação estrutural (zonas de cisalhamento) de acordo com os deslocamentos das anomalias magnéticas nos mapas de (A) campo total magnético reduzido ao pólo e (B) campo residual magnético do Plúton Cupira.

plúton. Nas áreas de ocorrência dessas anomalias, estudos petrográficos revelaram a presença de magnetita como uma fase acessória importante (Figura 4).

Anomalias da porção centro-sul do corpo com *trend* NW-SE ocorrem nos mapas de campo total magnético e de campo magnético regional. Estas observações associadas às estruturas magnéticas planares e lineares com forte mergulho e caimento, respectivamente, corroboram a ideia de que em profundidade o magma teria conduto magmático nesta porção do plúton.

Os resultados deste trabalho sugerem que o alojamento do PC se deu através de pulsos magmáticos que são favoráveis à proposição de: a) uma zona de alimentação magmática no centro do plúton, com fluxo do magma distribuído de forma concêntrica onde não houve deformação tectônica; b) zonas de cisalhamento transcorrente sinistrais NE-SW limitando as bordas do plúton e dentro deste e dextrais NW-SE restritas ao interior do corpo; c) regime compressivo N-S durante o posicionamento do corpo; e d) modelo de alojamento e deformação tectônica para o plúton.

O modelo de alojamento proposto para o PC foi dividido em três partes (Figura 14): 1. fase inicial de intrusão do plúton com zona de alimentação magmática no centro e bordas, limitada por zonas e cisalhamento sinistrais NE-SW; 2. regime compressivo de direção N-S, leve alongamento do corpo na direção ENE-WSW, desenvolvimento de zonas de cisalhamento sinistrais rúptil-dúctil NE-SW (R) e dextrais NW-SE (R') no interior do corpo, orientação magmática com predomínio na direção NW-SE e rotação anti-horária do plúton, e 3. estágio final de alojamento do plúton com maior alongamento na direção E-W, continuidade da compressão N-S e transcorrência sinistral NE-SW, caracterizando o regime transpressivo atuante no plúton. O regime com esforço transpressivo de compressão N-S

Figura 14. Modelo esquemático de alojamento e deformação tectônica para o Plúton Cupira. (1) Zona de alimentação magmática no centro do corpo; (2) Compressão N-S, alongamento E-W, transcorrência NE-SW sinistral, zonas de cisalhamento dúctil-rúptil sinistrais (R) e dextrais (R'), de acordo com par conjugado do modelo de Riedel (McClay, 1987); (3) Estágio final de alojamento do PC com sugestão de um ambiente transpressivo.

do PC é semelhante àqueles propostos para alojamento e deformação de plútons sin-transcorrentes na Província Borborema, tais como: Cachoeirinha, Cabanas e Caruaru-Arcoverde (Neves et al., 2006).

De acordo com os dados direcionais, foi observado na porção central do plúton um padrão essencialmente concêntrico da maior parte das foliações magmáticas e magnéticas que ocorrem com mergulhos fortes para o interior do plúton.

Figura 15. Modelo esquemático de alojamento, em perfil, do Plúton Cupira, com geometria de intrusão similar a um lopólito assimétrico.

Na mesma região, as lineações magnéticas mostram caimento forte, corroborando com o padrão das foliações, sugerindo uma zona de alimentação magmática na porção central do PC. Portanto, os dados obtidos neste trabalho sugerem que a forma final do corpo seja uma intrusão semelhante a um lopólito assimétrico (Figura 15) (Neves, 2012).

AGRADECIMENTOS

Gostaríamos de agradecer ao Programa de Pós-graduação em Geociências da Universidade Federal de Pernambuco (PPGEOC/UFPE) e ao Centro de Tecnologia e Geociências do Departamento de Geologia da Universidade Federal de Pernambuco (DGEO/CTG/UFPE); ao suporte financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), e à comissão editorial e aos revisores deste periódico, pelos comentários e sugestões que enriqueceram o texto final.

REFERÊNCIAS

Archanjo, C. J., Araújo, G. S., Launeau, P. (2002). Fabric of the Rio Ceará – Mirim mafic dike swarm (northeastern Brazil) determined by anisotropy of magnetic susceptibility and image analysis. *Journal of Geophysical Research*, 107(B3), 1-13. http://dx.doi.org/10.1029/2001JB000268.

Borradaile, G. J., Henry, B. (1997). Tectonic applications of magnetic susceptibility and its anisotropy. *Earth-Science Reviews*, 42(1-2), 49-93. http://dx.doi.org/10.1016/S0012-8252(96)00044-X.

Borradaile, G. J., Jackson, M. (2010). Structural geology, petofabrics and magnetic fabrics (AMS, AARM, AIRM). *Journal of Structural Geology*, 32(10), 1519-1551. http://dx.doi.org/10.1016/j.jsg.2009.09.006.

Bouchez, J. L. (1997). Granite is never isotropic: an introduction to AMS Studies of granitic rocks. In: J. L. Bouchez, D. H. W. Hutton, W. E. Stephens (Eds.), *Granite: from segregation of melt to emplacement fabrics*, 95-112. Dordrecht: Kluwer Academic Publishers. http://dx.doi. org/10.1007/978-94-017-1717-5_6.

Correia, P. B., Salgueiro, M. A., Motta, J. A. (2004). Estudos Magnetométricos da Ilha de São Jorge - Açores: correlações com a vulcanologia fissural e a neotectônica. *Estudos Geológicos*, 14, 44-53.

Davis, C. O., Neves, S. P., Trindade, R. I. F., Dall'Agnol, R., Mariano, G., Correia, P. B. (2010). Magnetic anisotropy of the Redenção granite, eastern Amazonian craton (Brazil): Implications for the emplacement of A-type plutons. *Tectonophysics*, 493(1-2), 27-41. http://dx.doi.org/10.1016/j. tecto.2010.07.018.

Ferreira, V. P., Sial, A. N., Jardim de Sá, E. F. (1998). Geochemical and isotopic signatures of Proterozoic granitoids in terranes of the Borborema structural province, northeastern Brazil. *Journal of South American Earth Sciences*, 11(5), 439-455. http://dx.doi.org/10.1016/S0895-9811(98)00027-3.

Mariano, G., Correia, P. B., Neves, S. P., Silva Filho, A. F. (2009). The high-K calc-alkaline Alagoinhas pluton: anisotropy of magnetic susceptibility, geochemistry, emplacement setting, and implications for the evolution of Borborema Province, NE Brazil. *International Geology Review*, 51(6), 502-519. http://dx.doi.org/10.1080/00206810902818594.

Mariano, G., Sial, A. N., Cruz, M. J. M., Conceição, H. (1996). The potassic calc-alkalic Itaporanga batholith, Northeastern Brazil: mineral chemistry and oxygen-isotope data. *International Geology Review*, 38(1), 74-86. http://dx.doi.org/10.1080/00206819709465325.

McClay, K. R. (1987). *The mapping of geological structures*. London: Geological Society.

Neves, S. P. (2012). *Granitos orogênicos: da geração dos magmas à intrusão e deformação*. Rio de Janeiro: Synergia.

Neves, S. P., Mariano, G., Beltrão, B. A., Correia, P. B. (2005). Emplacement and deformation of the Cachoeirinha pluton (Borborema province, NE Brazil) inferred through petrostructural studies: constraints on regional strain fields. *Journal of South American Earth Sciences*, 19(2), 127-141. http://dx.doi.org/10.1016/j.jsames.2005.04.004.

Neves, S. P., Mariano, G., Correia, P. B., Silva, J. M. R., Mariano, G. (2006). 70 m.y. of synorogenic plutonism in eastern Borborema Province (NE Brazil): temporal and kinematic constraints on the Brasiliano Orogeny. *Geodinamica Acta*, 19(3-4), 213-237. http://dx.doi.org/10.3166/ga.19.213-236. Oliveira, R. G. (2008). Arcabouço geofísico, isostasia e causas do magmatismo cenozóico da Província Borborema e de sua margem continental (Nordeste do Brasil). Tese (Doutorado). Natal: Pós-graduação em Geodinâmica e Geofísica, Universidade Federal do Rio Grande do Norte – UFRN.

Rochette, P. (1987). Magnetic susceptibility rock matrix related to magnetic fabric studies. *Journal of Structural Geology*, 9(8), 1015-1020. http://dx.doi.org/10.1016/0191-8141(87)90009-5.

Santos, E. J., Medeiros, V. C. (1999). Constraints from granitic plutonism on Proterozoic crustal growth of the zona transversal domain, Borborema province, NE Brazil. *Revista Brasileira de Geociencias*, 29, 73-84.

Tarling, D., Hrouda, F. (1993). *The magnetic anisotropy of rocks*. London: Chapman & Hall.

Trindade, R. I. F., Raposo, M. I. B., Ernesto, M., Siqueira, R. (1999). Magnetic susceptibility and partial anhysteretic remanence anisotropies in the magnetite-bearing granite pluton of Tourão, NE Brazil. *Tectonophysics*, 314(4), 443-468. http://dx.doi.org/10.1016/S0040-1951(99)00220-6.