

Revista do Instituto de Geociências - USP Geol. USP, Sér. cient., São Paulo, v. 17, n. 3, p. 49-66, Setembro 2017

Idades U-Pb de zircão detrítico da sequência metassedimentar superior na região do Greenstone Belt de Guarinos, Goiás

U-Pb detrital zircon ages of the upper metasedimentary sequences in the region of the Guarinos Greenstone Belt, Goiás, Brazil

Alex Joaquim Choupina Andrade Silva¹, Luiz Sérgio Amarante Simões¹

¹Programa de Pós-Graduação em Geociências e Meio Ambiente, Departamento de Petrologia e Metalogenia, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- UNESP, Avenida 24 A, 1.515, CEP 13506-900, Rio Claro, SP, BR (jqchoupina@hotmail.com; lsimoes@rc.unesp.br)

Recebido em 20 de setembro de 2016; aceito em 28 de abril de 2017

Resumo

Na porção norte do Bloco Arqueano de Goiás ocorrem dois *greenstone belts* (Guarinos e Pilar de Goiás) cobertos por uma sequência metassedimentar, atribuída por diversos autores ao Grupo Araxá e por outros ao Grupo Serra da Mesa/Serra Dourada e, ainda, referida por alguns simplesmente como uma Sequência Mesoproterozoica. Embora ocorram semelhanças litoestratigráficas entre os grupos Araxá e Serra da Mesa, trabalhos mais recentes têm mostrado que a evolução dessas bacias e as suas idades de sedimentação possuem peculiaridades que as diferenciam entre si. Este trabalho apresenta dados geocronológicos U-Pb em zircão detríticos obtidos pelo método ablação a laser (LA-MC-ICP-MS) em amostras de quartzitos dessa sequência metassedimentar. O zircão mais jovem encontrado apresenta idade de 1405 ± 10 Ma, marcando o limite máximo de deposição e indicando área-fonte com rochas do Mesoproterozoico. As amostras apresentam maior frequência de cristais paleoproterozoicos, entre 1796 e 2472 Ma, e populações mais antigas, de idade mesoneoarqueana, entre 2672 e 3112 Ma. Enquanto os detritos paleoproterozoicos a arqueanos podem ser provenientes das rochas que constituem o Bloco Arqueano de Goiás, a fonte para o conjunto mesoproterozoico é duvidosa; talvez esteja relacionada a rochas da Província Estanífera de Goiás, ou equivalentes.

Palavras-chave: Proveniência; U-Pb em zircão detrítico; Greenstone Belt de Guarinos.

Abstract

At the north portion of the Archean Block of Goiás occur two greenstone belts (Guarinos and Pilar de Goiás) covered by a younger metasedimentary sequence, attributed by different authors to the Araxá Group and by other to the Serra da Mesa/Serra Dourada and, by other writers, simply as Mesoproterozoic Sequence. Although there are lithostratigraphic similarities between the Araxá and Serra da Mesa groups, most recent studies have shown that the evolution of basins and their sedimentation ages have peculiarities that differentiate one from the other. This work presents geochronological data of U-Pb on detrital zircon grains obtained by laser ablation method (LA-MC-ICP-MS) in quartzite samples. The youngest zircon has the age of 1405 ± 10 Ma, marking the maximum depositional age and indicating source area. The samples have a higher frequency of Paleoproterozoic zircons, between 1796 and 2472 Ma and the oldest populations of mesoneoarchean age between 2672 and 3112 Ma. Whereas the Paleoproterozoic to Archean zircons can be derived from the rocks that form the Archean Block of Goiás, the mesoproterozoic source is still uncertain, perhaps this source can be related to the Goiás Tin Province rocks.

Keywords: Provenance; U-Pb on detrital zircon; Guarinos Greenstone Belt.

INTRODUÇÃO

Na porção centro norte do Bloco Arqueano-Paleoproterozoico de Goiás (Pimentel et al., 2000b) (Figura 1) as faixas *greenstone belts* paleoproterozoicas (Jost et al., 2010, 2012) de Guarinos e Pilar de Goiás são limitadas pelo tonalito do Complexo Caiamar a oeste e por ortognaisses do Bloco Moquém (Danni e Ribeiro, 1978; Jost et al., 1994) de idade U-Pb SHRIMP em zircão de 2,75 Ga (Queiroz et al., 2008). Esse conjunto é coberto por rochas metassedimentares e psamopelíticas de posição estratigráfica duvidosa.

Vários autores (Guimarães e Dutra, 1964; Barbosa et al., 1969; Hasui e Almeida, 1970) consideraram os derrames ultrabásicos e básicos das regiões de Crixás, Guarinos e Pilar de Goiás como a base do Grupo Araxá. O trabalho de Ribeiro Filho et al. (1978) destaca as diferenças entre as rochas vulcano-sedimentares de Crixás-Pilar de Goiás e os xistos do Grupo Araxá. Danni e Ribeiro (1978) interpretam que as rochas vulcano-sedimentares seriam greenstone belts ao caracterizarem a litoestratigrafia e o arcabouço estrutural das regiões de Pilar de Goiás e de Guarinos. Esses e outros autores (Sabóia, 1979; Correia Filho e Sá, 1980; Castro e Magalhães, 1984), considerando as diferenças na sucessão litológica, os ambientes deposicionais e a discordância tectônica, subdividiram as unidades litoestratrigráficas mencionadas anteriormente em rochas supracrustais, pertencentes ao Greenstone Belt de Guarinos (GBG), e metassedimentares do topo, atribuídas ao Grupo Araxá. A última denominação também é utilizada para rochas que ocorrem mais a sul e que atualmente são entendidas como uma sequência vulcano-sedimentar relacionada ao Arco Magmático de Goiás (Pimentel et al., 2000a; Laux et al., 2005). Entretanto, Marini et al. (1977) intepretam essas rochas metassedimentares de nível superior como equivalentes ao Grupo Serra da Mesa devido ao pacote de metamorfitos que envolve os granitos Serra da Mesa, Serra Dourada e Serra do Encosto. Posteriormente, Fuck e Marini (1979, 1981) propuseram a denominação de Grupo Serra da Mesa para os litotipos metassedimentares do segmento setentrional da Faixa Brasília, abandonando o termo Grupo Araxá para tais ocorrências. Esses autores ressaltam a dificuldade dessa separação em vista dos escassos conhecimentos estratigráficos, razão pela qual comparações e correlações são prejudicadas.

Recentemente a Sequência Sedimentar Psamopelítica (SSP) foi interpretada como integrante da sequência pós-rifte, relacionada à tafrogênese estateriana e correlacionada à Formação Traíras do Grupo Araí e aos grupos Serra da Mesa e Serra Dourada (Lacerda Filho e Frasca, 2008; Marques, 2009; Moreira et al., 2008).

Atualmente, compõem o Grupo Serra da Mesa as rochas metassedimentares que se estendem da porção norte de Goiás até o estado do Tocantins na borda oriental do Bloco Arqueano-Paleoproterozoico de Goiás (Moreira et al., 2008). A diversidade de interpretações é devida à inexistência de dados geocronológicos para essas rochas na região do GBG e às incertezas da continuidade fisíca dessas unidades com outras, estratigraficamente melhor definidas, como é o caso dos grupos Serra da Mesa e Serra Dourada.

O presente trabalho visou apresentar dados geocronológicos de U-Pb em zircão detríticos que permitam confirmar a individualização dessas rochas na região do GBG e definir limites de idade para melhor caracterização estratigráfica dessas rochas no quadro geológico de Goiás.

CONTEXTO GEOLÓGICO

A área estudada (Figura 1) situa-se na porção centro-norte do Bloco Arqueano de Goiás (Pimentel et al., 2000b), constituído pelas faixas *greenstone belts* de Crixás, Guarinos, Pilar de Goiás, Faina e Serra de Santa Rita, bem como pelos complexos gnáissicos Uvá, Caiçara, Caiamar, Moquém e Hidrolina. O limite entre o Bloco Arqueano e o Arco Magmático de Goiás, neoproterozoico, a oeste, é marcado pela Zona de Cisalhamento Moiporá Novo Brasil (Pimentel et al., 1997). A norte, faz contato com o Arco Magmático de Mara Rosa por meio da Zona de Cisalhamento Mandinópolis (Jost e Fortes, 2001; Jost et al., 2012), enquanto nas porções sul, sudeste e leste, com uma estreita faixa de rochas metassedimentares da sequência pós-rifte (grupos Serra Dourada/Serra da Mesa) (Figura 1).

As rochas supracrustais do GBG, de idade paleoproterozoica (Jost et al., 2010, 2012), a oeste, estão em contato tectônico pela Falha Azul (Silva e Simões, 2013) com os terrenos granito-gnáissicos do Complexo Caiamar (Danni e Ribeiro, 1978) de idade U-Pb SHRIMP em zircão de 2,8 Ga (Queiroz et al., 2008), e a leste com o complexo granito-gnáissico do Bloco Moquém (idade neoarqueano, 2,7 Ga, Queiroz et al., 2008) por meio da Zona de Cisalhamento Carroça de direção NW-SE (Pulz, 1995). A sul, as supracrustais do GBG são sobrepostas em discordância por rochas metassedimentares da SSP atribuídas aos grupos Araxá (Danni e Ribeiro, 1978; Sabóia, 1979; Ribeiro Filho, 1981) e Serra Dourada (Moreira et al., 2008), sendo todo o conjunto metamorfizado em condições de fácies xisto verde, zona da granada (Danni e Ribeiro, 1978; Jost et al., 1995; Silva e Simões, 2013).

A estratigrafia do GBG proposta por Jost e Oliveira (1991) é constituída, da base para topo, pelas formações Serra do Cotovelo, Serra Azul, São Patricinho, Aimbé, Cabaçal (subdividida em três membros) e, no topo, Mata Preta (Jost et al., 2012). Essa ordenação considera que todo o pacote está invertido, como interpretado por Jost e Oliveira (1991). Entretanto, não se tem argumentos seguros que justifiquem o modelo de inversão estratigráfica, sendo também viável a hipótese de uma sequência normal (Silva e Simões, 2013).

Dentre as rochas supracrustais paleoproterozoicas do GBG, algumas apresentam dados geocronológicos de

Figura 1. Mapa geológico na porção centro-leste da Província Tocantins (Moreira et al., 2008) com retângulo da localização da área de estudo na borda do Bloco Arqueano de Goiás.

zircão detrítico, como as formações ferríferas bandadas da Formação Aimbé, fácies hematita e magnetita. Os cristais de zircão foram datados por meio de LA-ICP-MS, o que possibilitou a obtenção, respectivamente, de 2453 e 2232 Ma de idade (Jost et al., 2008). Os autores interpretam que ambas as fácies contendo muscovita com bário poderiam provir de cinzas vulcânicas, o que indica idade máxima de deposição do nível estratigráfico da Formação Aimbé em 2,2 Ga.

Os grãos de zircão detrítico das rochas metassedimentares da Formação São Patricinho também apresentaram idade de 2,4 Ga, indicando área-fonte com rochas máficas do Sideriano e, ainda, metarenito da Formação Mata Preta com idade máxima de deposição de 2,1 Ga, tendo ambas as análises sido realizadas por LA-ICP-MS (Jost et al., 2012). Apesar de os litotipos do GBG apresentarem dados isotópicos significativos de zircão detrítico, definindo a área-fonte como paleoproterozoica, ainda é desconhecida a idade das unidades da SSP, em geral atribuída ao Neoproterozoico.

Dados isotópicos de grãos de zircão detrítico analisados por U-Pb LA-ICP-MS revelaram idades variando de 1,55 a 3,3 Ga para o Grupo Serra da Mesa (Marques, 2009). Esse autor interpreta que o conjunto de idades mais jovens encontradas nos sedimentos da unidade pode ser proveniente de detritos oriundos da Subprovíncia do Rio Paranã e vulcanismo associado, datado entre 1,8 e 1,7 Ga, dos granitos da Subprovíncia Rio Tocantins e do complexo Alcalino Peixe, datados de 1,55 a 1,58 Ga. Para o conjunto com idade de 1,8 a 1,7 Ga, a proveniência está relacionada a intrusões de rochas ígneas da Subprovíncia do Rio Paranã e derrames de riolitos no Grupo Araí (Pimentel et al., 1991).

Intrusões de granito tipo A (granito Serra da Mesa) na Subprovíncia Tocantins mostram 1,57 Ga de idade de zircão magmático (Rossi et al., 1992), dado também compatível com idade mínima de 1,57 Ga U-Pb em zircão ígneo obtido por Pimentel et al. (1991). Sparrenberger e Tassinari (1999) dataram cassiterita por U-Pb para identificação de eventos de mineralização estanífera na Subprovíncia do Rio Paranã, obtendo idades entre 1,54 e 1,47 Ga, as quais estiveram relacionadas à intrusão dos granitos mesoproterozoicos Pedra Branca e Mangabeira (Botelho, 1992a, 1992b). As idades desses granitos, intrusivos nos grupos Serra da Mesa (granitos Serra da Mesa, Serra do Encosto e Serra Dourada) e Araí (granitos Pedra Branca, Mangabeira e Mocambo, entre outros) apontam o limite inferior para a sedimentação dessas sequências. Lacerda Filho e Frasca (2008) descrevem que a bacia Rifte Intracontinental paleomesoproterozoica termina com o magmatismo granítico anorogênico das subprovíncias dos rios Paranã e Tocantins, com 1,77 e 1,60 Ga de idade, respectivamente. O estágio pós-rifte envolveu trangressões marinhas e sedimentação dos grupos Araí-Formação Traíras, Serra Dourada e Serra da Mesa, além de novo magmatismo relacionado a granitos da Subprovíncia Rio Tocantins e do Complexo Alcalino Peixe, datado entre 1,55 e 1,58 Ga (Rossi et al., 1992).

Marini et al. (1977) definiram a estratigrafia do Grupo Serra da Mesa, cuja seção típica ocorre entre a Serra Dourada e a Serra da Mesa, da base para o topo, em micaxisto com lentes de quartzito, quartzitos, micaxisto granadífero e micaxisto com intercalação de finas camadas de quartzitos. Fuck e Marini (1981) estenderam a denominação de Grupo Serra da Mesa para as sequências de rochas metassedimentares que se assenta sobre o GBG e o *Greenstone Belt* de Pilar de Goiás. Corroboram tal proposta trabalhos mais recentes como os de Viana (1995), Lacerda Filho e Frasca (2008) e Moreira et al. (2008).

Em suma, para a Sequência Psamo-Pelítica que ocorre na região, são defendidas por autores distintos duas interpretações litoestratigráficas:

- 1. corresponde ao Grupo Araxá, de idade neoproterozoica;
- 2. faz parte da sequência pós-rifte mesoproterozoica, sendo equivalente às sequências Serra da Mesa ou Serra Dourada.

A área selecionada para a coleta das amostras corresponde à porção sul do GBG mapeada em detalhe 1:25.000 (Silva, 2013; Silva e Simões, 2013), na qual identifica-se a Sequência do GBG ladeada a W pelas rochas do Complexo Granito-Gnáissico Caiamar e a NE pelo Complexo Granito-Gnáissico Moquém (Figura 2). As rochas da SSP ocorrem sobrepostas, por meio de discordância ou falha de empurrão, recobrindo a porção SE do GBG e desenhando complexo padrão devido à superposição de dobramentos.

A SSP compreende muscovita-quartzo xisto, clorita-quartzomuscovita xisto e biotita-clorita-muscovita-quartzo xisto, por vezes com magnetita. Menos frequentemente ocorrem lentes de quartzito nos xistos e, muito raramente, intercalações métricas de xisto carbonoso. Os quartzitos são micáceos a puros e finos a médios, com aspecto sacaroide. Paragêneses minerais das rochas dessa unidade indicam metamorfismo na fácies xisto verde, zona da biotita (Silva, 2013; Silva e Simões, 2013).

AMOSTRAGEM E CARACTERÍSTICAS PETROGRÁFICAS

Três amostras de quartzitos com 2 a 3 kg foram coletadas em afloramentos *in-situ* da SSP (Figuras 3A, 3B e 3C). O quartzito ocorre nas porções norte e central do GBG na forma de lentes, ora com camadas de espessuras decimétricas a métricas de composição micácea, ora como bandas mais puras alcançando espessuras decamétricas. A extensão dessas camadas de quartzito varia, aproximadamente, desde poucos metros até 2 km. Possuem coloração creme a acinzentada e granulação fina. As amostras, em escala microscópica, têm textura granoblástica, composta de grãos de quartzo com tamanho entre 0,1 e 0,6 mm, exibindo recristalização dinâmica por migração dos limites de grãos e rotação de subgrãos. Também são observadas algumas feições

de deformação intracristalina como extinção ondulante, bandas e lamelas de deformação que ocorrem de forma incipiente (Figuras 3A e 3C). Os contatos entre os grãos, em geral, são curviplanares a poligonizados, aproximadamente equigranulares e orientados, definindo a foliação principal da rocha.

MÉTODOS ANALÍTICOS

A concentração e separação de zircão das amostras de quartzitos foi realizada no Laboratório de Preparação de

Amostras da Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rio Claro, utilizando bateia mecanizada, separador magnético Frantz e bromofórmio para a concentração de minerais pesados. Posteriormente, os grãos de zircão foram coletados manualmente, com o auxílio de lupa binocular, e acondicionados em frascos para serem analisados no Laboratório de Geocronologia da Universidade de Brasília (UnB).

A análise isotópica U-Pb por ablação a laser, em espectrômetro de massa multicoletor com fonte de ionização de plasma (do inglês LA-MC-ICP-MS), nos cristais detríticos

Figura 2. Esboço geológico da porção sul do *Greenstone Belt* de Guarinos com a localização das amostras da Sequência Psamo-Pelítica datadas por U-Pb em zircão por ablação a laser (LA-MC-ICP-MS).

Figura 3. Afloramentos de quartzitos das amostras analisadas para datação U-Pb e fotomicrografia correspondente. (A) ponto AJM 263 (644170, 8361795), matriz com textura granoblástica de quartzo, alguns cristais de muscovita e grão de zircão com alta esfericidade; (B) ponto AJM 309 (641047, 8366386), afloramento em piso de estrada de quartzito pouco micáceo, dobrado. A fotomicrografia evidencia cristais de muscovita orientados segundo o plano da foliação principal e grão de zircão com forma subarredondada e polarizadores paralelos; (C) ponto R242 (644820, 8360148), afloramento de quartzito pouco micáceo no piso da estrada. A rocha mostra matriz com textura granoblástica de quartzo e alguns cristais de muscovita, e grão de zircão de forma elíptica (baixa esfericidade).

de zircão foi realizada no laboratório supracitado, utilizandose a metodologia descrita por Bühn et al. (2009). Os cristais foram montados em blocos de epoxy com 2,5 cm de diâmetro e, na sequência, houve polimento até a exposição do interior dos grãos para análise, *in situ*, de alta resolução. Em todas as amostras foi utilizado o padrão internacional GJ-1 para a correção da deriva do equipamento, assim como o fracionamento entre os isótopos de U e Pb. As idades foram calculadas utilizando-se planilha Excel com base em fórmulas ISOPLOT 3.0 (Ludwig, 2003). As incertezas associadas às razões apresentadas nas Tabelas 1 a 4 são de 1 σ em porcentagem.

Segundo Chemale Jr. et al. (2012), o método para a correção da presença de Pb comum dos cristais de zircão baseia-se no isótopo não radiogênico ²⁰⁴Pb. Entretanto, essa não é apropriada para a técnica por ablação a laser, uma vez que o sinal ²⁰⁴Pb é fortemente afetado por ²⁰⁴Hg, presente em argônio e hélio, necessários para o procedimento por ICP e ablação. Após a correção Hg baseada em ²⁰²Hg medido, o ²⁰⁴Pb comum é insignificante na maioria das situações, pois enquanto a intensidade típica do ²⁰⁴Hg durante a ablação do zircão padrão se situa entre 600 e 1.000 cps, a intensidade calculada do ²⁰⁴Pb é inferior ao erro estatístico (25 a 33 cps).

Considera-se que os valores de ²⁰⁴Pb obtidos a partir dos grãos de zircão refletem a composição do Pb comum. Dessa forma, leva-se em conta uma idade estimada concordante de ²⁰⁶Pb/²³⁸Pb e ²⁰⁷Pb/²⁰⁶Pb. Assim, a composição radiogênica de ²⁰⁶Pb e Pb²⁰⁷ se expressa pela Equação 1 de Williams (1998) como fração de ²⁰⁶Pb não radiogênico, isso é:

Para a composição isotópica do Pb comum, assumimos a sua evolução conforme proposto por Stacey e Kramers (1975), que é requerida para formação de grandes volumes de crosta continental. As proporções ²⁰⁷Pb/²⁰⁶Pb e ²⁰⁶Pb/²³⁸U foram corrigidas a partir de f_{206} e f_{207} nos ciclos individuais. E os ciclos com valores de f_{206} acima de 0,0025 geralmente não são incluídos no cálculo da idade.

RESULTADOS

Os grãos de zircão encontrados em todas as amostras possuem coloração que varia de marrom a incolor e se agrupam em duas populações principais morfologicamente distintas (Figura 4). Uma delas apresenta grãos alongados com comprimento de até 0,5 mm e largura de 0,17 mm, arredondados a subarredondados e em forma de elipsoide. A outra contém cristais com alta esfericidade, arredondados e com 0,05 a 0,2 mm de diâmetro. Os resultados das determinações isotópicas U-Pb nas três amostras de quartzitos (Tabela 1) revelam populações de idades variadas como mostram os histogramas de frequência (Figura 5).

Dentre os 61 pontos analisados da amostra AJM 263, 48 possuem dados concordantes, com idades entre 2024 e 3112 Ma, e maior frequência (~69% da população) de 2119 a 2220 Ma (Tabela 3 e Figura 5A). Em função das idades, os grãos se distribuem em quatro grupos distintos (Figura 5A). As populações de zircão mais antigas se concentram em 3112 Ma e 2876 Ma, ambas mesoarqueanas. Foi identificado um grão com idade de 2672 Ma (Neoarqueana); e a população de zircão mais jovem dessa amostra apresenta idades de 2119 a 2150 Ma (Riaciano). O conteúdo de U (16–301 ppm) e Th (4–106 ppm), bem como as razões Th/U (0,10–1,24) (Tabela 3 e Figura 6) situam-se, predominantemente, no campo de rocha ígnea máfica (Heaman et al., 1990; Belousova et al., 2002).

Na amostra AJM 309 foram analisados 61 cristais de zircão e os dados de 55 são concordantes, com idades entre 1405 e 2832 Ma. O histograma de distribuição de idades ilustra seis picos de frequência distribuído em cinco agrupamentos (Figura 5B). Os cristais mais antigos e menos expressivos se encontram no intervalo entre 2472 e 2832 Ma (Sideriano a Mesoarqueano). A variação principal tem idades entre 1929 e 2203 Ma (~73% dos resultados), com pico em 2170 Ma (Riaciano). As duas populações mais novas se concentram em torno de 1396 a 1837 Ma, com picos em 1405 e 1796 Ma (Calimiano e Orosiriano). Os teores de Th oscilam entre 8 e 128 ppm e os de U entre 35 e 365 ppm. A razão Th/U de 55 amostras varia de 0.062 a1.80 (Tabela 4 e Figura 6). A única amostra com razão < 0,1 (1977 Ma de idade) pode ser de origem metamórfica (Hoskin e Black, 2000; Rubatto e Hermann, 2003), tendo, a grande maioria, teores no campo de rochas máficas.

Os 54 dados concordantes da amostra R 242 permitem identificar dois conjuntos de idades distintas (Figura 5C): uma menos expressiva e de idade mais antiga — 2700 a 2838 Ma, com pico principal em 2805 Ma (Mesoarqueano) —, e outra de concentração dominante (~84% dos dados) com idades distribuídas entre 1988 e 2198 Ma e pico principal em 2158 Ma, o que indica área-fonte dominantemente

Tabela 1. Resumo dos dados geocronológicos ²⁰⁷Pb/²⁰⁶Pb obtidos para as amostras datadas.

Amostra	AJM 263	AJM 309	R 242
Número de zircão	61	61	61
Zircão concordante	48	55	54
Zircão mais novo da população (Ma)	2119 ± 15	1405 ± 10	1988 ± 11
Zircão mais antigo da população (Ma)	3112 ± 14	2832 ± 18	2805 ± 09
Idade de maior frequência	2119 ± 15	2170 ± 11	2158 ± 11

					Razões isotópicas							Idades (Ma)							
Sample	f(206)%	Th(ppm)	U(ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	1s(%)	²⁰⁷ Pb/ ²³⁵ U	1s(%)	²⁰⁶ Pb/ ²³⁸ U	1s(%)	²⁰⁷ Pb/ ²⁰⁶ Pb	1s(Ma)	²⁰⁷ Pb/ ²³⁵ U	1s(Ma)	²⁰⁶ Pb/ ²³⁸ U	1s(Ma)	Conc (%)		
Z01	0,0297	12	40	0,288	0,13431	1,13	6,51	1,92	0,35125	1,55	2.155	20	2.047	17	1.941	26	90		
Z02	0,0178	29	77	0,374	0,13401	0,71	7,47	1,04	0,40404	0,75	2.151	12	2.169	9	2.188	14	102		
Z03	0,0083	34	100	0,337	0,12966	0,91	7,01	1,12	0,39191	0,66	2.093	16	2.112	10	2.132	12	102		
Z04	0,0105	19	53	0,367	0,13585	0,55	7,13	0,82	0,38083	0,60	2.175	10	2.128	7	2.080	11	96		
Z05	3,2409	21	1.016	0,021	0,16638	1,15	4,33	5,30	0,18894	5,00	2.522	19	1.700	43	1.116	53	44		
Z06	0,0230	9	32	0,269	0,13666	0,84	7,14	1,27	0,37890	0,95	2.185	15	2.129	11	2.071	17	95		
Z07	0,0134	92	225	0,409	0,13150	0,85	6,46	1,06	0,35613	0,64	2.118	15	2.040	9	1.964	11	93		
Z08	0,0182	17	57	0,291	0,13493	0,75	7,37	1,06	0,39623	0,75	2.163	13	2.158	9	2.152	14	99		
Z09	0,0092	20	98	0,206	0,12881	0,78	6,88	1,08	0,38751	0,75	2.082	14	2.096	10	2.111	13	101		
Z10	0,0050	32	133	0,240	0,18624	0,51	13,11	1,07	0,51037	0,94	2.709	8	2.687	10	2.658	20	98		
Z11	0,0080	19	101	0,191	0,13288	0,84	7,25	1,02	0,39590	0,58	2.136	15	2.143	9	2.150	11	101		
Z12	0,1559	161	324	0,495	0,12295	0,64	3,82	1,47	0,22538	1,32	2.000	11	1.597	12	1.310	16	66		
Z13	0,0113	37	90	0,407	0,13185	0,52	7,17	0,80	0,39428	0,61	2.123	9	2.133	7	2.143	11	101		
Z14	0,0339	9	39	0,241	0,13331	0,79	5,98	1,57	0,32507	1,35	2.142	14	1.972	14	1.814	21	85		
Z15	0,0361	6	26	0,243	0,13020	1,77	6,85	2,15	0,38155	1,21	2.101	31	2.092	19	2.084	22	99		
Z16	0,0831	178	1.501	0,118	0,08320	1,03	1,94	4,50	0,16937	4,38	1.274	20	1.096	30	1.009	41	79		
Z17	0,0063	42	251	0,168	0,12741	0,41	6,21	0,82	0,35320	0,71	2.063	7	2.005	7	1.950	12	95		
Z18	0,0074	26	92	0,284	0,13399	0,64	7,33	0,90	0,39691	0,64	2.151	11	2.153	8	2.155	12	100		
Z19	0,0176	7	39	0,191	0,13302	1,48	7,18	1,80	0,39120	1,03	2.138	26	2.133	16	2.128	19	100		
Z20	0,0101	31	73	0,424	0,13276	0,60	7,39	0,85	0,40383	0,60	2.135	10	2.160	8	2.187	11	102		
Z21	0,0118	13	62	0,214	0,13619	0,69	7,65	1,07	0,40723	0,81	2.179	12	2.190	10	2.202	15	101		
Z22	0,0217	48	67	0,711	0,19269	0,71	13,52	1,06	0,50870	0,78	2.765	12	2.716	10	2.651	17	96		
Z23	0,0294	52	124	0,418	0,12250	1,47	5,34	2,47	0,31600	1,99	1.993	26	1.875	21	1.770	31	89		
Z24	0,0351	45	101	0,446	0,13164	1,20	6,86	1,46	0,37808	0,83	2.120	21	2.094	13	2.067	15	98		
Z25	0,0407	8	40	0,210	0,13627	1,17	7,22	1,69	0,38436	1,23	2.180	20	2.139	15	2.097	22	96		
Z26	0,0095	33	147	0,223	0,12215	0,63	6,25	0,87	0,37108	0,61	1.988	11	2.011	8	2.034	11	102		
Z27	0,0115	34	76	0,454	0,13331	0,95	7,14	1,16	0,38865	0,67	2.142	17	2.130	10	2.117	12	99		
Z28	0,0194	14	65	0,219	0,13404	0,72	7,30	1,09	0,39511	0,82	2.152	13	2.149	10	2.146	15	100		
Z29	0,0379	4	31	0,137	0,13506	0,80	7,40	1,32	0,39747	1,04	2.165	14	2.161	12	2.157	19	100		
Z30	0,0263	7	41	0,166	0,13543	0,81	7,35	1,10	0,39352	0,75	2.170	14	2.155	10	2.139	14	99		

Tabela 2. Dados geocronológicos U-Pb obtidos em grãos de zircão por LA-MC-ICP-MS, da amostra de quartzito R 242 da Sequência Sedimentar Psamopelítica. As linhas cinzas indicam dados não concordantes.

Continua...

Tabela	2.	Continu	Jação.
--------	----	---------	--------

					Razões isotópicas						Idades (Ma)						
Sample	f(206)%	Th(ppm)	U(ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	1s(%)	²⁰⁷ Pb/ ²³⁵ U	1s(%)	²⁰⁶ Pb/ ²³⁸ U	1s(%)	²⁰⁷ Pb/ ²⁰⁶ Pb	1s(Ma)	²⁰⁷ Pb/ ²³⁵ U	1s(Ma)	²⁰⁶ Pb/ ²³⁸ U	1s(Ma)	Conc (%)
Z31	0,0302	52	357	0,145	0,12422	1,48	5,56	2,05	0,32475	1,42	2.018	26	1.910	18	1.813	22	90
Z32	0,0077	38	105	0,360	0,13455	0,61	7,32	0,86	0,39442	0,61	2.158	11	2.151	8	2.143	11	99
Z33	0,0329	45	301	0,151	0,11111	1,21	2,40	1,47	0,15642	0,83	1.818	22	1.242	11	937	7	52
Z34	0,0160	21	58	0,357	0,13589	1,32	7,17	1,49	0,38265	0,70	2.176	23	2.133	13	2.089	12	96
Z35	0,0070	44	119	0,368	0,13226	1,17	7,18	1,32	0,39370	0,61	2.128	20	2.134	12	2.140	11	101
Z36	0,0243	32	105	0,302	0,16535	1,04	5,35	2,06	0,23455	1,78	2.511	18	1.877	18	1.358	22	54
Z37	0,0532	6	31	0,205	0,12716	0,98	6,58	1,70	0,37517	1,39	2.059	17	2.056	15	2.054	25	100
Z38	0,0102	53	159	0,334	0,12736	1,59	5,59	1,83	0,31815	0,91	2.062	28	1.914	16	1.781	14	86
Z39	0,0014	72	198	0,363	0,12635	0,52	6,47	0,83	0,37162	0,65	2.048	9	2.042	7	2.037	11	99
Z40	0,0120	27	86	0,312	0,12954	0,62	6,84	0,93	0,38276	0,69	2.092	11	2.091	8	2.089	12	100
Z41	0,0051	36	99	0,362	0,19742	0,57	14,57	0,82	0,53543	0,59	2.805	9	2.788	8	2.764	13	99
Z42	0,0131	26	77	0,345	0,13329	1,19	6,98	1,41	0,37994	0,75	2.142	21	2.109	13	2.076	13	97
Z43	0,0067	30	85	0,355	0,13217	0,63	7,04	0,86	0,38603	0,58	2.127	11	2.116	8	2.104	10	99
Z44	0,0083	39	112	0,351	0,13486	0,49	7,12	0,79	0,38297	0,62	2.162	9	2.127	7	2.090	11	97
Z45	0,0377	8	22	0,373	0,13126	0,86	6,80	1,27	0,37582	0,93	2.115	15	2.086	11	2.057	16	97
Z46	0,0137	13	40	0,320	0,19799	1,34	14,84	1,55	0,54342	0,77	2.810	22	2.805	15	2.798	18	100
Z47	0,0088	39	96	0,411	0,13215	0,71	6,77	0,98	0,37174	0,67	2.127	12	2.082	9	2.038	12	96
Z48	0,0071	31	93	0,330	0,13611	0,68	7,61	0,94	0,40525	0,65	2.178	12	2.186	8	2.193	12	101
Z49	0,0067	45	123	0,364	0,13057	0,71	7,03	0,96	0,39048	0,65	2.106	13	2.115	9	2.125	12	101
Z50	0,0046	71	120	0,593	0,19851	0,82	15,01	1,00	0,54839	0,57	2.814	13	2.816	9	2.819	13	100
Z51	0,0078	68	197	0,346	0,19513	0,73	14,22	0,94	0,52853	0,59	2.786	12	2.765	9	2.735	13	98
Z52	0,0084	57	89	0,644	0,13417	0,71	7,33	0,97	0,39599	0,66	2.153	12	2.152	9	2.151	12	100
Z53	0,0194	23	47	0,497	0,13359	0,87	7,39	1,28	0,40133	0,94	2.146	15	2.160	11	2.175	17	101
Z54	0,0164	28	60	0,468	0,13551	1,33	7,48	1,52	0,40026	0,75	2.171	23	2.170	14	2.170	14	100
Z55	0,0052	53	192	0,277	0,13244	0,48	7,09	0,82	0,38845	0,67	2.131	8	2.123	7	2.116	12	99
Z56	0,0086	71	119	0,596	0,12746	0,50	5,64	1,11	0,32103	0,99	2.063	9	1.923	10	1.795	16	87
Z57	0,0175	23	38	0,598	0,19095	0,58	13,46	0,98	0,51122	0,79	2.750	10	2.712	9	2.662	17	97
Z58	0,0218	15	43	0,347	0,13408	1,34	7,04	1,57	0,38068	0,82	2.152	23	2.116	14	2.079	15	97
Z59	0,0374	39	53	0,723	0,20045	0,80	14,90	1,03	0,53924	0,66	2.830	13	2.809	10	2.780	15	98
Z60	0,0128	12	53	0,232	0,13279	1,14	7,24	1,38	0,39537	0,77	2.135	20	2.141	12	2.148	14	101
Z61	0,0353	44	189	0,233	0,13391	1,10	5,06	1,56	0,27393	1,11	2.150	19	1.829	13	1.561	15	73

1s: desvio-padrão.

Tabela 3. Dados geocronológicos U-Pb obtidos em grãos de zircão por LA-MC-ICP-MS, da amostra de quartzito AJM
263 da Sequência Sedimentar Psamopelítica. As linhas cinzas indicam dados não concordantes.

					Razões isotópicas						Idades (Ma)						
Sample	f(206)%	Th(ppm)	U(ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	1s(%)	²⁰⁷ Pb/ ²³⁵ U	1s(%)	²⁰⁶ Pb/ ²³⁸ U	1s(%)	²⁰⁷ Pb/ ²⁰⁶ Pb	1s(Ma)	²⁰⁷ Pb/ ²³⁵ U	1s(Ma)	²⁰⁶ Pb/ ²³⁸ U	1s(Ma)	Conc (%)
Z01	0,045	31	211	0,147	0,12998	0,38	6,24	0,78	0,34797	0,68	2.098	7	2.010	7	1.925	11	92
Z02	0,009	30	69	0,433	0,13390	0,49	7,30	0,76	0,39547	0,58	2.150	9	2.149	7	2.148	11	100
Z03	0,007	106	272	0,391	0,12670	1,25	5,95	1,57	0,34063	0,95	2.053	22	1.969	14	1.890	16	92
Z04	0,006	32	114	0,278	0,13216	0,56	7,13	0,82	0,39113	0,60	2.127	10	2.127	7	2.128	11	100
Z05	0,013	67	105	0,636	0,12910	0,62	5,63	0,91	0,31613	0,67	2.086	11	1.920	8	1.771	10	85
Z06	0,012	40	99	0,403	0,13151	0,55	7,23	0,94	0,39853	0,76	2.118	10	2.140	8	2.162	14	102
Z07	0,011	35	109	0,322	0,13711	0,93	7,04	1,14	0,37265	0,67	2.191	16	2.117	10	2.042	12	93
Z08	0,011	51	149	0,340	0,13074	0,55	6,89	0,85	0,38212	0,64	2.108	10	2.097	8	2.086	11	99
Z09	0,010	21	69	0,302	0,13340	0,51	7,37	0,82	0,40087	0,65	2.143	9	2.158	7	2.173	12	101
Z10	0,234	105	452	0,232	0,12449	0,64	4,52	1,20	0,26340	1,01	2.022	11	1.735	10	1.507	14	75
Z11	0,009	58	97	0,599	0,12946	0,95	5,92	1,22	0,33170	0,76	2.091	17	1.964	11	1.847	12	88
Z12	0,009	37	84	0,439	0,13190	0,50	7,09	0,82	0,38990	0,65	2.123	9	2.123	7	2.122	12	100
Z13	0,043	4	16	0,256	0,13995	1,84	7,87	2,59	0,40788	1,82	2.227	32	2.216	23	2.205	34	99
Z14	0,007	38	73	0,525	0,12937	0,73	6,97	1,12	0,39085	0,85	2.089	13	2.108	10	2.127	15	102
Z15	0,016	15	47	0,322	0,13274	1,59	7,25	1,77	0,39602	0,77	2.134	28	2.142	16	2.151	14	101
Z16	0,017	28	92	0,310	0,12885	0,81	6,81	1,09	0,38348	0,72	2.082	14	2.087	10	2.093	13	100
Z17	0,407	133	326	0,409	0,14189	0,62	6,68	1,08	0,34151	0,89	2.250	11	2.070	10	1.894	15	84
Z18	0,007	85	148	0,579	0,12880	0,44	7,01	0,73	0,39452	0,58	2.082	8	2.112	6	2.144	11	103
Z19	0,008	52	107	0,488	0,13381	0,74	7,41	0,97	0,40185	0,62	2.149	13	2.163	9	2.178	11	101
Z20	0,012	16	57	0,283	0,23877	0,85	20,89	1,36	0,63461	1,06	3.112	14	3.134	13	3.168	27	102
Z21	0,015	17	46	0,378	0,13410	0,65	7,38	0,98	0,39896	0,74	2.152	11	2.158	9	2.164	14	101
Z22	0,014	9	80	0,106	0,13389	0,67	7,34	0,98	0,39766	0,72	2.150	12	2.154	9	2.158	13	100
Z23	0,007	26	74	0,353	0,19723	0,70	14,73	0,94	0,54167	0,63	2.803	11	2.798	9	2.790	14	100
Z24	0,038	14	45	0,315	0,12634	1,46	6,95	1,81	0,39889	1,06	2.048	26	2.105	16	2.164	20	106
Z25	0,007	46	152	0,299	0,13655	0,56	7,50	0,84	0,39862	0,62	2.184	10	2.174	8	2.163	11	99
Z26	0,018	23	63	0,362	0,13435	0,63	7,50	0,88	0,40474	0,62	2.156	11	2.173	8	2.191	12	102
Z27	0,338	10	27	0,376	0,14056	2,75	7,41	3,15	0,38210	1,54	2.234	48	2.162	28	2.086	28	93
Z28	0,133	130	293	0,443	0,12839	0,57	5,56	0,79	0,31425	0,56	2.076	10	1.910	7	1.762	9	85
Z29	0,027	40	162	0,248	0,12034	0,54	5,09	0,89	0,30658	0,71	1.961	10	1.834	8	1.724	11	88
Z30	0,011	20	55	0,358	0,13631	0,89	7,41	1,21	0,39410	0,83	2.181	15	2.162	11	2.142	15	98
																Car	ations

Tabela	3.	Contin	uação.
--------	----	--------	--------

					Razões isotópicas						Idades (Ma)						
Sample	f(206)%	Th(ppm)	U(ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	1s(%)	²⁰⁷ Pb/ ²³⁵ U	1s(%)	²⁰⁶ Pb/ ²³⁸ U	1s(%)	²⁰⁷ Pb/ ²⁰⁶ Pb	1s(Ma)	²⁰⁷ Pb/ ²³⁵ U	1s(Ma)	²⁰⁶ Pb/ ²³⁸ U	1s(Ma)	Conc (%)
Z31	0,019	26	63	0,409	0,13425	0,96	7,41	1,38	0,40009	0,99	2.154	17	2.162	12	2.169	18	101
Z32	0,010	47	73	0,650	0,13772	0,98	7,87	1,31	0,41425	0,86	2.199	17	2.216	12	2.234	16	102
Z33	0,027	24	46	0,511	0,13160	0,84	6,98	1,14	0,38466	0,76	2.119	15	2.109	10	2.098	14	99
Z34	0,031	22	54	0,401	0,13098	1,04	6,92	1,34	0,38296	0,84	2.111	18	2.101	12	2.090	15	99
Z35	0,015	51	84	0,610	0,13352	0,55	7,28	0,84	0,39565	0,63	2.145	10	2.147	7	2.149	12	100
Z36	0,008	13	101	0,131	0,13104	0,53	6,87	0,87	0,37997	0,69	2.112	9	2.094	8	2.076	12	98
Z37	0,003	39	80	0,485	0,13432	0,67	7,23	0,94	0,39053	0,66	2.155	12	2.140	8	2.125	12	99
Z38	0,011	50	103	0,485	0,13005	1,18	6,93	1,40	0,38672	0,76	2.099	21	2.103	12	2.108	14	100
Z39	0,016	45	37	1,240	0,19275	0,78	14,06	1,12	0,52898	0,80	2.766	13	2.754	11	2.737	18	99
Z40	1,392	318	744	0,427	0,10346	0,58	1,58	2,70	0,11056	2,63	1.687	11	961	17	676	17	40
Z41	0,013	21	71	0,294	0,13106	0,63	7,01	1,03	0,38815	0,82	2.112	11	2.113	9	2.114	15	100
Z42	0,302	77	194	0,395	0,18208	1,05	10,00	1,28	0,39848	0,73	2.672	17	2.435	12	2.162	13	81
Z43	0,006	50	110	0,452	0,13024	1,08	6,63	1,34	0,36915	0,79	2.101	19	2.063	12	2.025	14	96
Z44	0,030	9	28	0,325	0,13598	1,20	7,20	1,84	0,38389	1,39	2.177	21	2.136	16	2.094	25	96
Z45	0,021	35	50	0,703	0,13072	0,84	7,02	1,30	0,38949	0,99	2.108	15	2.114	12	2.120	18	101
Z46	0,013	31	83	0,378	0,13080	1,54	6,78	1,78	0,37612	0,90	2.109	27	2.084	16	2.058	16	98
Z47	0,023	17	50	0,345	0,13493	0,85	7,17	1,17	0,38515	0,81	2.163	15	2.132	10	2.100	14	97
Z48	2,799	162	961	0,168	0,08005	0,57	1,26	1,62	0,11380	1,48	1.198	11	826	9	695	10	58
Z49	2,842	372	1.380	0,269	0,06746	2,12	0,94	2,44	0,10115	1,17	852	43	673	12	621	7	73
Z50	0,003	58	301	0,194	0,12731	0,50	6,80	0,72	0,38764	0,52	2.061	9	2.086	6	2.112	9	102
Z51	1,018	279	430	0,648	0,16173	0,63	4,86	1,14	0,21808	0,96	2.474	11	1.796	10	1.272	11	51
Z52	0,004	71	185	0,383	0,13201	0,45	7,34	0,73	0,40348	0,58	2.125	8	2.154	7	2.185	11	103
Z53	0,008	32	107	0,301	0,13232	0,55	7,23	0,82	0,39621	0,61	2.129	10	2.140	7	2.152	11	101
Z54	0,004	73	123	0,591	0,20617	1,44	16,64	1,56	0,58521	0,61	2.876	23	2.914	15	2.970	15	103
Z55	0,007	31	106	0,291	0,19982	0,76	15,86	1,04	0,57561	0,72	2.825	12	2.868	10	2.931	17	104
Z56	0,005	21	96	0,214	0,20053	0,76	15,76	1,06	0,56989	0,73	2.831	12	2.862	10	2.907	17	103
Z57	0,349	127	390	0,327	0,12928	0,94	5,81	1,73	0,32602	1,45	2.088	16	1.948	15	1.819	23	87
Z58	0,330	137	297	0,462	0,12709	1,16	4,56	1,43	0,26019	0,83	2.058	21	1.742	12	1.491	11	72
Z59	0,018	30	60	0,498	0,13575	0,71	7,38	1,06	0,39430	0,79	2.174	12	2.159	9	2.143	14	99
Z60	0,031	14	28	0,517	0,13744	1,15	7,30	1,85	0,38541	1,45	2.195	20	2.149	17	2.102	26	96
Z61	0,015	24	47	0,523	0,18204	1,01	11,76	1,69	0,46840	1,36	2.672	17	2.585	16	2.477	28	93

1s: desvio-padrão.

						Idades (Ma)											
Sample	f(206)%	Th(ppm)	U(ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	1s(%)	²⁰⁷ Pb/ ²³⁵ U	1s(%)	²⁰⁶ Pb/ ²³⁸ U	1s(%)	²⁰⁷ Pb/ ²⁰⁶ Pb	1s(Ma)	²⁰⁷ Pb/ ²³⁵ U	1s(Ma)	²⁰⁶ Pb/ ²³⁸ U	1s(Ma)	Conc (%)
Z01	0,011	23	118	0,197	0,12719	0,53	6,94	0,82	0,39569	0,62	2.059	9	2.104	7	2.149	11	104
Z02	0,011	26	102	0,253	0,11784	0,44	5,83	0,78	0,35888	0,65	1.924	8	1.951	7	1.977	11	103
Z03	0,022	11	35	0,325	0,13515	1,64	7,42	1,91	0,39794	0,97	2.166	29	2.163	17	2.160	18	100
Z04	0,012	21	101	0,207	0,12081	0,55	5,96	0,83	0,35753	0,63	1.968	10	1.969	7	1.970	11	100
Z05	0,010	21	67	0,322	0,13642	0,68	7,57	0,94	0,40243	0,65	2.182	12	2.181	8	2.180	12	100
Z06	0,010	36	109	0,329	0,12909	0,63	6,89	0,90	0,38731	0,64	2.086	11	2.098	8	2.110	12	101
Z07	0,006	10	158	0,062	0,12139	0,87	6,21	1,05	0,37125	0,58	1.977	16	2.006	9	2.035	10	103
Z08	0,017	14	47	0,296	0,13508	0,94	7,48	1,23	0,40144	0,80	2.165	16	2.170	11	2.176	15	100
Z09	0,014	128	106	1,205	0,11834	0,52	5,96	0,80	0,36540	0,61	1.931	9	1.970	7	2.008	11	104
Z10	0,011	30	100	0,295	0,13537	0,51	7,21	0,82	0,38601	0,64	2.169	9	2.137	7	2.104	11	97
Z11	0,016	37	112	0,332	0,11794	0,90	5,07	1,18	0,31187	0,76	1.925	16	1.831	10	1.750	12	91
Z12	7,088	37	35	1,071	0,14881	0,95	7,23	1,35	0,35240	0,88	2.332	16	2.140	12	1.946	16	83
Z13	0,323	107	410	0,260	0,11877	0,44	4,89	1,05	0,29885	0,96	1.938	8	1.801	9	1.686	14	87
Z14	0,020	12	64	0,186	0,13323	0,72	7,39	1,08	0,40223	0,81	2.141	13	2.160	10	2.179	15	102
Z15	0,008	43	153	0,283	0,11956	0,84	6,13	1,03	0,37201	0,61	1.950	15	1.995	9	2.039	11	105
Z16	0,004	39	365	0,108	0,10331	0,65	4,01	1,30	0,28133	1,12	1.684	12	1.636	11	1.598	16	95
Z17	0,009	60	177	0,337	0,10979	0,43	5,09	0,76	0,33621	0,63	1.796	8	1.834	6	1.868	10	104
Z18	0,021	14	61	0,235	0,13543	0,62	7,76	1,09	0,41578	0,90	2.170	11	2.204	10	2.241	17	103
Z19	0,166	76	42	1,812	0,19022	1,07	14,42	1,36	0,54997	0,84	2.744	18	2.778	13	2.825	19	103
Z20	0,024	63	111	0,572	0,13530	0,58	7,41	0,89	0,39742	0,68	2.168	10	2.163	8	2.157	13	100
Z21	0,290	30	118	0,254	0,06163	1,36	0,82	2,14	0,09653	1,65	661	29	608	10	594	9	90
Z22	0,017	26	73	0,353	0,13464	0,68	7,52	1,10	0,40492	0,86	2.159	12	2.175	10	2.192	16	101
Z23	0,045	29	97	0,300	0,11148	1,12	4,96	1,40	0,32240	0,84	1.824	20	1.812	12	1.801	13	99
Z24	0,010	32	150	0,215	0,10734	0,67	4,84	1,01	0,32717	0,75	1.755	12	1.792	8	1.825	12	104
Z25	0,009	39	122	0,325	0,13302	0,52	7,29	0,87	0,39771	0,71	2.138	9	2.148	8	2.158	13	101
Z26	1,579	153	469	0,327	0,13327	0,90	3,48	1,53	0,18937	1,24	2.141	16	1.523	12	1.118	13	52
Z27	2,201	11	53	0,200	0,12766	2,13	7,02	2,59	0,39888	1,44	2.066	37	2.114	23	2.164	27	105
Z28	0,012	71	264	0,269	0,08905	0,52	3,14	0,78	0,25579	0,59	1.405	10	1.443	6	1.468	8	104
Z29	0,032	8	36	0,216	0,13095	1,34	6,91	1,90	0,38276	1,34	2.111	24	2.100	17	2.089	24	99
Z30	0,007	42	176	0,241	0,12253	0,62	6,45	0,95	0,38156	0,72	1.993	11	2.039	8	2.084	13	105

Tabela 4. Dados geocronológicos U-Pb obtidos em grãos de zircão por LA-MC-ICP-MS, da amostra de quartzito AJM 309 da Sequência Sedimentar Psamopelítica. As linhas cinzas indicam dados não concordantes.

Continua...

Tabela	4.	Continu	lação.
--------	----	---------	--------

					Razões isotópicas					Idades (Ma)							_
Sample	f(206)%	Th(ppm)	U(ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	1s(%)	²⁰⁷ Pb/ ²³⁵ U	1s(%)	²⁰⁶ Pb/ ²³⁸ U	1s(%)	²⁰⁷ Pb/ ²⁰⁶ Pb	1s(Ma)	²⁰⁷ Pb/ ²³⁵ U	1s(Ma)	²⁰⁶ Pb/ ²³⁸ U	1s(Ma)	Conc (%)
Z31	0,008	20	95	0,213	0,16156	1,37	10,82	1,59	0,48558	0,80	2.472	23	2.507	15	2.552	17	103
Z32	0,019	30	89	0,334	0,09169	1,05	3,13	1,45	0,24738	0,99	1.461	20	1.439	11	1.425	13	98
Z33	0,012	42	47	0,902	0,18877	1,11	13,97	1,43	0,53689	0,90	2.731	18	2.748	14	2.770	20	101
Z34	0,011	50	124	0,407	0,10638	1,39	4,65	1,81	0,31721	1,17	1.738	25	1.759	15	1.776	18	102
Z35	0,048	29	56	0,512	0,13578	1,00	7,65	1,33	0,40863	0,87	2.174	18	2.191	12	2.209	16	102
Z36	0,010	33	88	0,376	0,13629	0,81	7,55	1,20	0,40199	0,88	2.181	14	2.179	11	2.178	16	100
Z37	0,005	33	220	0,149	0,12449	0,70	6,40	1,03	0,37314	0,75	2.022	12	2.033	9	2.044	13	101
Z38	0,022	12	61	0,198	0,13000	1,48	6,72	1,75	0,37518	0,93	2.098	26	2.076	15	2.054	16	98
Z39	0,004	94	294	0,319	0,10073	0,59	4,06	0,89	0,29256	0,67	1.638	11	1.647	7	1.654	10	101
Z40	0,024	65	58	1,127	0,12334	0,81	6,02	1,38	0,35402	1,12	2.005	14	1.979	12	1.954	19	97
Z41	0,019	14	44	0,308	0,13715	0,95	7,45	1,58	0,39414	1,27	2.192	16	2.167	14	2.142	23	98
Z42	0,052	7	23	0,312	0,14220	2,92	7,55	3,33	0,38529	1,62	2.254	50	2.179	30	2.101	29	93
Z43	0,007	72	171	0,420	0,12073	0,73	5,97	1,06	0,35837	0,76	1.967	13	1.971	9	1.974	13	100
Z44	0,003	44	200	0,219	0,13331	0,83	7,36	1,20	0,40039	0,86	2.142	15	2.156	11	2.171	16	101
Z45	0,867	196	398	0,493	0,11430	0,88	2,83	1,74	0,17926	1,50	1.869	16	1.362	13	1.063	15	57
Z46	0,019	21	52	0,394	0,13392	1,56	7,33	1,98	0,39703	1,22	2.150	27	2.153	18	2.155	22	100
Z47	0,214	38	234	0,163	0,11412	1,07	4,46	1,56	0,28317	1,14	1.866	19	1.723	13	1.607	16	86
Z48	0,065	53	144	0,366	0,12591	1,42	6,36	1,82	0,36655	1,14	2.042	25	2.027	16	2.013	20	99
Z49	0,024	12	54	0,230	0,12300	2,07	6,16	2,40	0,36305	1,21	2.000	37	1.998	21	1.997	21	100
Z50	0,008	46	160	0,289	0,10831	2,26	4,93	2,44	0,33039	0,93	1.771	41	1.808	21	1.840	15	104
Z51	0,014	34	209	0,161	0,11961	1,51	5,72	1,72	0,34697	0,83	1.950	27	1.935	15	1.920	14	98
Z52	0,007	29	182	0,157	0,12261	1,11	6,22	1,46	0,36800	0,95	1.995	20	2.007	13	2.020	16	101
Z53	0,016	33	96	0,339	0,11187	0,62	5,20	0,95	0,33709	0,73	1.830	11	1.852	8	1.873	12	102
Z54	0,017	27	135	0,198	0,12273	1,96	5,87	2,42	0,34673	1,42	1.996	35	1.956	21	1.919	24	96
Z55	0,019	15	40	0,370	0,13524	1,03	7,85	1,33	0,42094	0,84	2.167	18	2.214	12	2.265	16	105
Z56	0,025	13	42	0,315	0,13886	0,97	7,77	1,50	0,40573	1,14	2.213	17	2.204	13	2.195	21	99
Z57	0,022	31	67	0,460	0,12936	0,80	6,93	1,18	0,38866	0,87	2.089	14	2.103	10	2.117	16	101
Z58	0,011	31	47	0,658	0,20074	1,10	15,63	1,30	0,56473	0,70	2.832	18	2.854	12	2.886	16	102
Z59	0,036	23	78	0,291	0,13218	0,67	7,35	1,00	0,40308	0,74	2.127	12	2.154	9	2.183	14	103
Z60	0,024	20	65	0,307	0,13495	0,73	7,65	1,17	0,41132	0,92	2.163	13	2.191	11	2.221	17	103
Z61	0,011	36	136	0,261	0,18914	0,94	11,48	1,65	0,44027	1,35	2.735	16	2.563	15	2.352	27	86

1s: desvio-padrão.

Riaciana. Os teores de Th variam de 4 a 92 ppm e os de U de 22 a 357 ppm, e a razão Th/U é de 0,13 a 0,72 (Tabela 2 e Figura 6), compatível com proveniência ígnea.

Figura 4. Morfologia dos cristais de zircão encontrados nas amostras datadas. Em geral, foram identificadas duas populações, sendo uma de faces arredondas a subarredondas e forma de elipsoide, e a segunda com alta esfericidade de forma arredondada.

Figura 6. Diagrama de razão Th/U *versus* UO2% mostrando os campos de zircão para os diferentes tipos de rocha. Os cristais de zircão das três amostras apresentam maior concentração no campo de ígnea máfica, com razão Th/U entre 0,1 e 0,7. A classificação do zircão tem como base os dados de Belousova et al. (2002) e Heaman et al. (1990). Modificado de Barros et al. (2005).

Figura 5. Histograma de frequência de idades ²⁰⁷Pb/²⁰⁶Pb dos cristais de zircão para as amostras de quartzitos. (A) AJM 263; (B) AJM 309; (C) R 242.

DISCUSSÃO E CONCLUSÃO

Os dados geocronológicos obtidos neste estudo indicam idade máxima de 1405 ± 10 Ma (população de zircão mais jovem) para o início da deposição das rochas metassedimentares, sobrepostas à sequência GBG, envolvendo fontes mesoproterozoicas. Embora o número de cristais com essa idade seja pequeno e não permita uma interpretação mais robusta, sugere que essas rochas devem ser equivalentes aos grupos Serra da Mesa e Serra Dourada e não ao Araxá, cujo padrão isotópico na região é caracterizado por abundantes cristais de zircão detríticos neoproterozoicos (Laux et al., 2005; Pimentel et al., 2011).

Esses grãos com idades em torno de 1,4 Ma podem ser oriundos de granitos relacionados à Subprovíncia do Paranã, visto que são descritas idades de 1450 ± 21 Ma (Marini et al., 1985) e 1425 ± 79 Ma (Sparrenberger e Tassinari, 1999) para o corpo. De acordo com Dardenne (2000), os granitos da Subprovíncia Rio Tocantins, de idade 1,57 Ga (Pimentel et al., 1991), e o metasienito (1,47 Ga) do Complexo Alcalino de Peixe (Rossi et al., 1996), nas metassedimentares do Grupo Serra da Mesa, podem corresponder a aproximadamente o período de pós-rifte do Grupo Araí.

Marques (2009) propõe um modelo evolutivo para as metassedimentares dos grupos Araí e Serra da Mesa com base em dados de litoestratigrafia, geoquímica e geocronologia, considerando que o Grupo Araí compõe uma Megasequência de primeira ordem paleo/mesoproterozoica (1,71 - 1,55 Ga) do tipo *rift-sag*, desenvolvida na tafrogênese do Estateriano, na qual são reconhecidos os estágios de evolução pré-rifte, sin-rifte, transicional e pós-rifte. O Grupo Serra da Mesa, cujos cristais de zircão detríticos mais jovens fornecem idades em torno de 1,55 Ga, corresponderia ao estágio pós-rifte da evolução dessa bacia (Marques, 2009).

Os histogramas das três amostras, AJM 263, AJM 309 e R 242 (Figuras 5A, 5B e 5C), fornecem idades riacianas com maior frequência de 2119 a 2170 Ma, compatíveis com idade de dique máfico intrudido nos terrenos granito-*greenstone* da região de Hidrolina-Pilar de Goiás-Crixás (Jost et al., 1994, 2010; Queiroz, 2008). Jost et al. (2012) interpretam que o zircão riaciano, com composição similar à de rocha máfica encontrada nas metassedimentares da Formação São Patricinho, teria como fonte os litotipos da Formação Serra Azul. Os grãos com idade entre 2119 e 2170 Ma, conforme apresentado neste trabalho, também são passiveis de serem interpretados como oriundos, dentre outros, dos basaltos da Formação Serra Azul.

A forte predominância de grãos de zircão riacianos, com composições de U e razão Th/U similares aos de rochas máficas, e a baixa frequência de cristais com idades compatíveis aos TTGs (arqueano) nas metassedimentares da SSP podem ser interpretadas como:

- o zircão magmático é mais resistente à abrasão (transporte e intemperismo) do que o zircão metamórfico (Hartmann e Santos, 2004);
- a geração de sedimentos pela alteração dos TTGs ocorreu de forma limitada na bacia, possivelmente condicionada por fatores geológicos;
- os TTGs poderiam estar encobertos por sedimentos, o que limitaria a fonte de zircão.

A amostra AJM 309 (Figura 5B) apresenta populações de zircão com idades estateriana e orosiriana (1796 \pm 8 e 1977 \pm 16 Ma), que podem representar proveniência a partir dos granitos da Subprovíncia do Rio Paranã e vulcanismo associado.

Presente em todas as amostras, porém de expressão secundária, um grupo de grãos possui idades entre 2709 e 2876 Ma (Figuras 5A, 5B e 5C), o que é coerente com idades de ortognaisses datados por Queiroz et al. (2008) na porção norte do Bloco Arqueano de Goiás, levando a interpretá-los como uma fonte de detritos da bacia.

Considerando que os cristais mais jovens apresentam idades calimianas (1405 \pm 10 Ma), sugere-se que esse deve ser o período para a deposição dessa sequência e interpreta-se que sejam derivados de rochas menos frequentes, provavelmente equivalentes aos granitos anarogênicos da Província Estanífera de Goiás. A hipótese da SSP ser mais jovem do que o Caliminiano, embora não possa ser totalmente descartada, parece pouco provável, pois unidades mais jovens conhecidas na região correspondem às sequências metassedimentares que exibem forte contribuição de zircão neoproterozoico, em geral incluídas no Grupo Araxá, que é interpretado como depósito contemporâneo ou mais jovem do que o Arco Magmático de Goiás (Laux et al., 2005; Pimentel et al., 2011).

AGRADECIMENTOS

Os autores agradecem à Yamana Desenvolvimento Mineral S.A. por custear as análises isotópicas e dar suporte logístico para o desenvolvimento do mapeamento geológico e aos revisores anônimos cujos comentários ajudaram a melhorar este trabalho.

REFERÊNCIAS

Barbosa, O., Baptista, M. B., Dyer, R. C., Braun, O. P. G., Cotta, J. C. (1969). Geologia e inventário dos recursos minerais do Projeto Brasília. *Relatório DNPM/PROSPEC*, Rio de Janeiro. 225p.

Barros, C. E., Nardi, L. V. S., Dillenburg, S. R. (2005). Geoquímica de minerais detríticos em estudos de Proveniência: Uma revisão. *Pesquisas em Geociências*, 32(1), 3-15. Belousova, E. A., Griffin, W. L., O'Reilly, S. Y., Fisher, N. I. (2002). Igneous zircon: trace element composition as an indicator of source rock type. *Contributions to Mineralogy and Petrology*, 143, 602-622.

Botelho, N. F. (1992a). Caracterização de duas famílias de granitos subalcalinos a peraluminosos na Subprovíncia Estanífera do Paranã: consequências sobre a geologia, a petrologia e a metalogenia dos granitos estaníferos de Goiás. *XXXVII Congresso Brasileiro de Geologia*. Boletim de Resumos Expandidos, 360-361. São Paulo: SBG.

Botelho, N. F. (1992b). *Lês ensembles granitiques subalcalins* à peralumineux mineralisés en Sn et In de Ia Sous-Province Paraná, Etat de Goiás, Brésil. 344 f. Tese (Doutorado). Paris: Université Paris VI.

Bühn, B., Pimentel, M. M., Matteini, M., Dantas, E. L. (2009). High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-IC-MS). *Anais da Academia Brasileira de Ciências*, 81(1), 1-16.

Castro, J. H. G., Magalhães, L. F. (1984). Revisão Estratigráfica do Grupo Pilar de Goiás na Faixa Crixás. *XXXIII Congresso Brasileiro de Geologia*, v. 6, 2563-2576. Rio de Janeiro: SBG.

Chemale Jr., F., Kawashita, K., Dussin, I. A., Ávila, J. N., Justino, D., Bertotti, A. (2012). U-Pb zircon in situ dating with LA-MC-ICP-MS using a mixed detector configuration. *Anais da Academia Brasileira de Ciências*, 84(2), 275-295.

Correia Filho, F. C. L., Sá, A. M. (1980). *Projeto Natividade*. DNPM/CPRM, 1, 256.

Danni, J. C. M., Ribeiro, C. C. (1978). Caracterização estratigráfica da sequência vulcano-sedimentar de Pilar de Goiás e de Guarinos, Goiás. *XXX Congresso Brasileiro de Geologia*, 2, 582-596. Recife: SBG.

Dardenne, M. A. (2000). The Brasília Fold Belt. In: U. G. Cordani, E. J. Milani, A. Tomas Filho, D. A. Campos (Eds.), Tectonic Evolution of South America. *Proceedings of the XXXI International Geological Congress*, v. 1, 231-263.

Fuck, R. A., Marini, O. J. (1979). *Projeto São Félix, Geologia da Folha Córrego São Bento*. Brasília: Convênio Fundação Universidade de Brasília/Eletronorte. 49 p.

Fuck, R. A., Marini, O. J. (1981). O Grupo Araxá e unidade homotaxiais. *I Simpósio Cráton do São Francisco e suas faixasmarginais*, 118-130. Salvador: SBG. Guimarães, D., Dutra, C. V. (1964). Contribuição à petrografia e geoquímica da jazida estanífera de Ipameri, Goiás. *DNPM/ DFPM*, 86, 13-38.

Hartmann, L. A., Santos, J. O. S. (2004). Predominance of high Th/U, magmatic zircon in Brazilian Shield sandstones. *Geology*, 32(1), 73-76.

Hasui, Y., Almeida, F. F. M. (1970). Geocronologia do centro-oeste brasileiro. *Boletim da Sociedade Brasileira de Geologia*, 19, 5-26.

Heaman, L. M., Bowins, R., Crocket, J. (1990). The chemical composition of igneous zircon suites: Implications for geochemical tracer studies. *Geochimica et Cosmochimica Acta*, 54(6),1597-1607.

Hoskin, P. W. O., Black, L. P. (2000). Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. *Journal of Metamorphic Geology*, 18, 423-439.

Jost, H., Chemale Jr., F., Dussin, I. A., Tassinari, C. C. G., Martins, R. A. (2010). U-Pb zircon Paleoproterozoic age for the metasedimentary host rocks and gold mineralization of the Crixás greenstone belt, Goiás, Central Brazil. *Ore Geology Reviews*, 37, 127-139.

Jost, H., Dussin, I. A., Chemale Jr., F., Tassinari, C. C. G., Junges, S. (2008). U-Pb and Sm-Nd constraints for the Paleoproterozoic age of the metasedimentary sequences of the Goiás Archean greenstone belts. *VI South American Symposium on Isotope Geology*, 4 p. San Carlos de Bariloche, Argentina.

Jost, H., Fortes, P. T. F. O. (2001). Gold deposits and occurrences of the Crixás Goldfield, central Brazil. *Mineralium Deposita*, 36, 358-376.

Jost, H., Kuyumjian, R. M., Freitas, A. L. S., Costa, A. L. L., Nascimento, C. T. C., Vasconcelos, F. M., Galotti Neto, L., Martins, M. C., Carvalho, M. N., Condé, V. C. (1995). Geologia da porção norte do greenstone belt de Guarinos, Goiás. *Revista Brasileira de Geociências*, 25(1), 51-60.

Jost, H., Oliveira, A. (1991). Stratigraphy of the greenstone belts, Crixás region, Goiás, central Brazil. *Journal of South American Earth Sciences*, 4, 201-214.

Jost, H., Rodrigues, V. G., Carvalho, M. J., Chemale Jr., F., Marques, J. C. (2012). Estratigrafia e geocronologia do greenstone belt de Guarinos, Goiás. *Geologia USP. Série Científica*, 12(2), 31-48.

Jost, H., Vargas, M. C., Fuck, R. A., Kuyumjian, R. M., Pires, A. C. B. (1994). Relações de contato, litologias, geologia estrutural e geofísica do Bloco Arqueano do Moquém, Crixás. *IV Simpósio de Geologia do Centro-Oeste*, 15-17. Brasília: SBG.

Lacerda Filho, J. V., Frasca, A. A. S. (2008). Proposta de compartimentação geotectônica do estado de Goiás e Distrito Federal. *XLIV Congresso Brasileiro de Geologia*, 1, 26-31. Curitiba: SBG.

Laux, J. H., Pimentel, M. M., Dantas, E. L., Armstrong, R. A., Junges, S. L. (2005). Two Neoproterozoic crustal accretion events in the Brasília belt, central Brazil. *Journal of South American Earth Sciences*, 18, 183-198.

Ludwig, K. R. (2003). Using *Isoplot/Ex, version 3.00, a geochronological toolkit for Microsoft Excel*. Berkeley Geochronology Center, 1, 43.

Marini, O. J., Botelho, N. F., Macambira, M. J. B., Provost, A. (1985). Idade do granito Pedra Branca (Goiás) e possíveis implicações geotectônicas. *II Simpósio de Geologia do Centro Oeste*, 90-105. Goiânia: SBG.

Marini, O. J., Fuck, R. A., Dardenne, M. A., Faria, A. (1977). Contribuição à geologia do Pré-cambriano da porção central de Goiás. *Revista Brasileira de Geociências*, 7(4), 304-324.

Marques, G. C. (2009). *Geologia dos grupos Araí e Serra da Mesa e seu embasamento no sul do Tocantins*. 122 f. Dissertação (Mestrado). Brasília: Instituto de Geociências – UnB.

Moreira, M. O., Moreton, L. C., Araújo, V. A., Lacerda Filho, J. V., Costa, H. F. (2008). *Geologia do Estado de Goiás e Distrito Federal*. Texto explicativo do mapa geológico. Escala 1:500.000. Convênio: Ministério de Minas e Energia (MME), Serviço Geológico do Brasil (CPRM), Secretaria de Indústria e Comércio (SIC), Fundo de Fomento a Mineração (FUNMINERAL) e Governo do Estado de Goiás. Goiânia: CPRM/SIC/ FUNMINERAL. 141 p.

Pimentel, M. M., Fuck, R. A., Gioia, S. M. C. L. (2000a). The neoproterozoic Goiás Magmatic Arc, central Brazil: a review and new Sm-Nd isotopic data. *Revista Brasileira de Geociências*, 30(1), 35-39.

Pimentel, M. M., Fuck, R. A., Jost, H., Ferreira Filho, C. F., Araújo, S. M. (2000b). The basement of the Brasilia Fold Belt and Goiás Magmatic Arc. In: U. G. Cordani, E. J. Milani, A. D. Thomaz Filho, A. Campos (Eds.), Tectonic

Evolution of South America. *31st International Geological Congress*, 195-230. Rio de Janeiro.

Pimentel, M. M., Heaman, L., Fuck, R. A. (1991). U-Pb zircon and sphene geochronology of late Proterozoic volcanic are rock units from southwestern Goiás, Central Brazil. *Journal of South American Earth Sciences*, 4, 329-339.

Pimentel, M. M., Rodrigues, J. B., Della Giustina, M. E. S., Junges, S., Matteini, M., Armstrong, R. (2011). The tectonic evolution of the Neoproterozoic Brasília Belt, central Brazil, based on SHRIMP and LA-ICPMS U–Pb sedimentary provenance data: a review. *Journal of South American Earth Sciences*, 31(4), 345-357.

Pimentel, M. M., Whitehouse, M. J., Vianna, M. G., Fuck, R. A., Machado, N. (1997). The Mara Rosa arc in the the Tocantins Province: further evidence for Neoproterozoic crustal accretion in central Brazil. *Precambrian Research*, 81, 299-310.

Pulz, G. M. (1995). *Modelos prospectivos para ouro em greenstone belts: Exemplo dos depósitos Maria Lázara e Ogó, na região de Guarinos e Pilar de Goiás, Goiás.* 189 f. Tese (Doutorado). Brasília: Instituto de Geociências – UnB.

Queiroz, C. L., Jost, H., Mcnaughton, N. J., Silva, L. C. (2008). U-Pb SHRIMP and Sm-Nd geochronology of granitegneiss complexes and implications for the evolution of the Central Brazil Achean Terrain. *Journal of South American Earth Sciences*, 26, 100-124.

Ribeiro Filho, W. (1981). Reavaliação da geologia de Pilar-Mara Rosa. *I Simpósio de Geologia do Centro-Oeste*, 281-299. Goiânia: SBG.

Ribeiro Filho, W., Costa, J. F. G., Araújo, V. A., Valente, C. R., Machado, E. C., Matos, S. H. S., Rodrigues, R., Vivian, O., Sá, A. M., Lima P. F. C. (1978). Projeto Geologia da região de Pilar-Mara Rosa. *Relatório Final*. Goiânia: DNPM/CPRM.

Rossi, P., Andrade, G. F., Cocherie, A. (1992). The 1.58 Ga A-type granite of Serra da Mesa (GO): an example of NYF fertile granite pegmatite. *XXXVII Congresso Brasileiro de Geologia*. Boletim de Resumos Expandidos, 389-390. São Paulo: SBG.

Rossi, P., Andrade, G. F., Gaspar, J. C. (1996). The Peixe (Tocantins, Brazil) Mesoproterozoic corundum-bearing syenite pegmatite complex: age, considerations on its origin and regional significance. *XXXIX Congresso Brasileiro de Geologia*, 6, 426-428. Sergipe: SBG.

Rubatto, D., Hermann, J. (2003). Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. *Geochimica et Cosmochimica Acta*, 67(12), 2173-2187.

Sabóia, L. A. (1979). Os greenstone belts de Crixás e Goiás, Go. *Boletim Informativo do Núcleo Centro-Oeste*, 9, 44-72. SBG, Núcleo Centro-Oeste.

Silva, A. J. C. A. (2013). *Caracterização estrutural da porção sul do Greenstone Belt de Guarinos, GO*.141 f. Dissertação (Mestrado). Rio Claro: Instituto de Geociências e Ciências Exatas - UNESP.

Silva, A. J. C. A., Simões, L. S. A. (2013). Caracterização estrutural da porção sul do Greenstone Belt de Guarinos, GO. *Revista Brasileira de Geociências*, 43(4), 623-628.

Sparrenberger, I., Tassinari, C. C. G. (1999). Subprovíncia do Rio Paranã (GO): um exemplo de aplicação dos métodos de datação U-Pb e Pb-Pb em cassiterita. *Revista Brasileira de Geociências*, 29, 405-414.

Stacey, J. S., Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth and Planetary Science Letters*, 26, 207-221.

Viana, M. G. (1995). *Geocronologia e geoquímica das* rochas ortognáissicas e metavulcânicas da região de Mara *Rosa, norte de Goiás*.110 f. Dissertação (Mestrado). Brasília: Instituto de Geociências – UnB.

Williams, I. S. (1998). U-Th-Pb geochronology by ion microprobe. *Reviews in Economic Geology*, 7, 1-35.