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ABSTRACT

Kriging of raw data presenting distributions with positive skewness must be avoided because the strong influence of a 
few high values in the resulting estimates. The solution is to apply data transformation, which changes the shape of original 
distribution into a symmetric distribution. Kriging of transformed data is performed and then back-transformed  to the 
original scale of measurement. In this paper, we examine the uniform score transform that results in a uniform distribution. 
Ordinary kriging estimates of uniform score data results in a bell-shaped distribution, since the tails of the distribution are 
lost in the estimation process because of the smoothing effect. The back-transformation of this bell-shaped distribution 
result in biased estimates. Therefore, the solution proposed in this paper is to correct the smoothing effect of the rank order 
kriging estimates before transforming them back to the scale of raw data. Results showed this algorithm is reliable and 
back-transformed estimates are unbiased in relation to the sample data.
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RESUMO

A krigagem de dados apresentando distribuições com assimetria positiva deve ser evitada devido à forte influência dos 
poucos valores altos nas estimativas resultantes. A solução é a transformada de dados que muda a forma da distribuição ori-
ginal para uma distribuição simétrica. A krigagem dos dados transformados é realizada e então transformada de volta para 
a escala original de medida. Nesse artigo, nós examinamos a transformada uniforme que resulta em uma distribuição uni-
forme. A krigagem ordinária de dados uniformes resulta numa distribuição em forma de sino, haja vista as caudas da distri-
buição terem sido perdidas no processo de estimativa devido ao efeito de suavização. A transformada reversa dos valores 
apresentando essa distribuição em sino resultará em estimativas enviesadas. Portanto, a solução proposta nesse artigo pas-
sa pela correção do efeito de suavização das estimativas ranqueadas antes de transformá-las para a escala dos dados origi-
nais. Os resultados obtidos mostraram que esse algoritmo é confiável e as estimativas transformadas para a escala original 
não são enviesadas em relação aos dados amostrais.

Palavras-chave: Transformação de dados; Transformada uniforme; Krigagem ordinária; Efeito de suavização; Transfor-
mada reversa.
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INTRODUCTION

Data transformations have been considered as an 
interesting alternative to kriging, particularly when 
kriging raw data should be avoided, as, for example, 
the case of data presenting highly skewed distribution. 
In geostatistics, the lognormal transformation and 
normal score transform have been used to normalize 
skewed distributions. Another data transformation 
was proposed by Journel and Deutsch (1997, p. 175), 
which is referred as uniform score transform that is 
the cumulative frequency for data sorted in ascending 
order. The uniform score transform produces data 
uniformly distributed into [0,1]. Therefore, this non-
linear data transformation changes the shape of the 
original data distribution into a uniform distribution. 
The great advantage of the uniform score transform is 
the possibility of integration of data of diverse types, 
scales, supports and accuracies (Journel and Deutsch, 
1997, p. 174). Transformed data can be estimated or 
simulated at unsampled locations and the resulting values 
can be back-transformed to the original measurement 
scale. This method has been used for mapping heavy 
metal concentrations in contaminated soils (Juang, Lee, 
Ellsworth, 2001, p. 895). However, kriging estimates 
show a reduced variance due to the smoothing effect 
(Journel and Deutsch, 1997, p. 179), which histogram 
and semivariogram are not reproduced. These authors 
have improved kriging estimates, transforming them 
under the constraint of data reproduction (Journel and 
Deutsch, 1997, p. 179-180), which produces a histogram 
closer to a uniform distribution, but the semivariogram 
is not reproduced. According to Journel and Deutsch 
(1997, p. 181), even using sequential uniform simu-
lation, the uniform distribution was not reproduced 
because simulated values fell outside the permissible 
range [0,1]. Once again, when simulated values are 
transformed under the constraint of data reproduction 
(Journel and Deutsch, 1997, p. 181), the authors 
obtained a histogram closer to the uniform distribution. 
Therefore, the challenge for estimating or simulating 
rank transformed data is the reproduction of the 
histogram displaying a uniform distribution. This paper 
shows how we can reproduce both, the sample histogram 
and the sample semivariogram of rank transformed data. 
Actually, the main objective of this paper is to show a 
new application of the post-processing algorithm for 
correcting the smoothing effect of ordinary kriging 
estimates (Yamamoto, 2005, 2007). Moreover, as it is 
shown in this paper, back-transformed values reproduce 
the original sample histogram and, consequently, the 
mean and variance of the original data.

UNIFORM SCORE TRANSFORM

The uniform score transform is derived from rank orders 
r(xi) associated with a set of n data values {z(xi), i = 1, n}; 
in which r(x1) = 1 and r(xn) = n (Journel and Deutsch, 1997, 
p.176). According to these authors, the standardized rank:

v(xi) = r(xi)/n                               (1)

is the uniform score transform. We can also define the 
standardized rank as (Saito and Goovaerts, 2000, p. 4230):

v(xi) = r(xi)/n - 0.5/n                       (2)

A uniform distribution on an interval (a,b) has an 
expected value of:

            (a + b)E[X] =                  
2

and a variance of:
       (b - a)2
S2 =  .
          12

After equation (1), a is equal to 1/n and b is equal to 1. 
Therefore, the mean is equal to (n + 1)/2n, that is, a little 
greater than 0.5, and the variance is:

, i.e. a little less than 1/12.

According to equation (2), a is equal to (1 - 0.5)/n 
and b is equal to (n - 0.5)/n. Thus the mean is 0.5 and the 
variance is:

,  

which is the same value obtained in equation (1) and, 
therefore, a little less than 1/12. In this paper, equation (2) will 
be used, since it provides symmetric standardized ranks.

REPRODUCING THE UNIFORM SCORE 
HISTOGRAM

As mentioned before, the challenge here is the 
reproduction of the sample histogram that represents a 
uniform distribution. Clearly, in order to reproduce the 
sample histogram, it is necessary to obtain the sample 
variance. The reproduction of the sample semivariogram 
depends not only on the sample variance but also on the 
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spatial distribution of ranked estimates. We can estimate 
rank orders at unsampled locations using the well-known 
ordinary kriging technique:

                        (3)

where 

 

 is the rank order estimate at the unsampled 
location xo; {v(xi) = 1, n} is the set of neighbor ranked data 
and {li , i = 1, n} is the set of weights associated with 
neighbor data.

According to Yamamoto (2000), we can determine the 
interpolation variance associated with ordinary kriging 
estimate as:

                (4)

where  is the interpolation variance. Other variables 
have the same definition as in equation (3).

It has been proven the heteroscedastic interpolation 
variance is more reliable than the homoscedastic kriging 
variance (see Yamamoto, 2000, 2005, 2007). Although the 
interpolation variance has been used by this author since 
1989 (Yamamoto, 1989), it was published only after Journel 
and Rao (1996) interpreted ordinary kriging weights as 
conditional probabilities. To make that possible, not only 
must the ordinary kriging weights be all positive, but also 
they have to sum up to one. After it has been confirmed 
that all kriging weights are positive and sum up to one, a 
conditional cumulative distribution function can be built 
at any given location xo, by sorting the n neighboring data 
into increasing order:

z(x1) < z(x2) < ... < z(xn)

The local conditional cumulative distribution function 
is then modeled as:

where li is the weight associated with ith data point 
and interpreted as the conditional probability for the 
ith data point.

The conditional cumulative distribution function 
derived from ordinary kriging weights has a conditional 
expectation that is equal to the ordinary kriging estimate 
(3) and a conditional variance that is none other than the 
interpolation variance (4).

Because of the smoothing effect, the variance of 
ordinary kriging estimates is less than the sample variance 
and is expressed as:

If we want to reproduce the sample histogram, estimates 
have to be corrected by adding a certain amount, in order 
that the variance of corrected estimates be equal to the 
sample variance. The correcting amount can be obtained 
using simulation methods or a post-processing algorithm 
proposed by Yamamoto (2005, 2007), as follows:

                       (5)

where  is the correcting amount added to ordinary 
kriging estimates and factor is a number that makes 
the variance of corrected estimates equal to the sample 
variance. For details on the algorithm for correcting the 
smoothing effect of ordinary kriging estimates, please see 
Yamamoto (2005, 2007). The optimum value that makes 
the variance of corrected estimates equal to the sample 
variance is determined by the equation below:

where 

 
                 

is the discriminant of the quadratic function; and 

  is the sample variance.

This method reproduces the sample histogram. If the 
histogram of rank orders is recovered, the histogram of 
back-transformed values will be similar to the histogram 
of original values. 

The only way of restoring the sample variance is by 
adding a random variable in order that the variance of 
corrected estimates be equal to the sample variance. This is 
possible if and only if this random variable has a zero mean 
in order to guarantee unbiasedness of ordinary kriging 
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estimates and variance and covariance that restores the 
sample variance. For more details on this subject, please 
see Yamamoto (2008).

MATERIALS AND METHODS

For testing the proposed method, three exhaustive data 
sets have been considered in this study. These data sets 
were derived from the well-known true.dat (Deutsch and 
Journel, 1992, p. 35), modifying the secondary variable by 
mathematical transformation, and resulting in a new variable. 
The first variable represents a perfect normal distribution 
after a normal score transform of the secondary variable:

ZGAUSS = G-1(Z)

The second variable was derived from an exponential 
function:

ZLOG = 0.004115exp(1.098612*ZGAUSS)

Therefore, this variable represents a lognormal 
distribution. And the third variable is the sum of both 
variables:

ZSUM = ZGAUSS + ZLOG

All exhaustive data sets generated according to 
previous equations are shown in Figure 1. Table 1 presents 
summary statistics for variables of the exhaustive data sets. 
The first variable represents a normal distribution and the 
second a lognormal distribution, whereas the third variable 
represents a positively skewed distribution, but cannot be 
considered a lognormal distribution. 

From these exhaustive data sets, samples of 121 data 
points were drawn based on stratified random sampling. 
These samples have the same location of data points for 

Figure 1. Image maps for exhaustive data sets: A. normal 
distribution, B. lognormal distribution, C. positive skewness 
distribution.
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the three data sets. Statistics for the samples drawn from 
exhaustive data sets are shown in Table 2. Histograms are 
shown in Figure 2. These samples were used for inferring 
their exhaustive models.

All original variables were converted into standardized 
ranks according to equation (2). Since data locations of all 

three samples are the same, standardized rank histogram 
(Figure 3A) and semivariogram (Figure 3B) were the same 
for all samples. 

All calculations were carried out based on this 
semivariogram model. Ordinary kriging and corrected 
ordinary kriging estimates were calculated according to 

Figure 2. Sample histograms for: A. variable with a normal 
distribution, B. variable with a lognormal distribution,      
C. variable with a positive skewness distribution.

Table 1. Summary statistics for variables of exhaustive 
data sets.

Table 2. Summary statistics for samples drawn from 
exhaustive data sets.
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equations (3) and (5), respectively. The ordinary kriging 
estimation was obtained using the twelve nearest neighbor 
points searched by the quadrant procedure. Firstly, we 
want to show that the method for correcting the smoothing 
effect of ordinary kriging estimates reproduces the sample 
histogram and the sample semivariogram. Furthermore, 
we also want to show that the back-transformed values are 
reliable and unbiased.

RESULTS AND DISCUSSION

First, let us analyze the standardized rank statistics 
(Table 3). When examining this table, it is observed that 
ordinary kriging estimates have reduced variance. On the 
contrary, corrected ordinary kriging estimates reproduce 
the mean and variance, but the median has a small bias. 
However, it has to be checked if this small difference in the 
upper tail of the distribution affects back-transformation to 
original values.

When original data is transformed into a new scale, 
for instance, rank data, the main concern is the back-
transformation procedure. As we know, ordinary kriging 
estimates have a serious drawback, which is known as 
the smoothing effect. Therefore, if smoothed kriging 
estimates (calculated after equation - 3) are back-
transformed, the resulting estimates will also be smoothed 
and, consequently, biased (loss of lower and upper tails 
and reduced variance). Thus, the solution is to correct 
the smoothing effect (equation 5) and back-transform the 
corrected estimates to the original scale of measurement. 
Please, see Table 4 - back-transformed estimates from 
both conventional ordinary kriging estimates and Table 5 - 
corrected ordinary kriging estimates.

Figure 3. Uniform histogram of standardized rank data (A) and standardized rank semivariogram model (B).

Table 3. Standardized rank statistics.

Table 4. Summary statistics for back-transformed estimates 
obtained from conventional rank order ordinary kriging 
estimates (equation 3).
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After comparing summary statistics in Tables 4 and 
5, we conclude that the back-transformation of corrected 
rank order kriging estimates produces the best results 
when compared with sample data (Table 2). Figures 4, 
5 and 6 illustrate both procedures for back-transforming 
rank order kriging estimates.

In Figures 4, 5 and 6, we can see how the post-
processing algorithm for correcting the smoothing effect 
works properly. As observed in these figures, an almost 
bell shaped histogram resulting from smoothed ordinary 
kriging estimates is corrected to a uniform distribution. 
Therefore, we can reproduce as close as possible the 
sample histogram, when corrected estimates with uniform 
distribution are back-transformed.

The proposed procedure for back-transforming 
rank order kriging estimates seems to reproduce sample 
histograms quite well. Since it is very difficult to compare 
histograms, it is much easier to reach a conclusion about the 
effectiveness of the proposed method using the comparison 
of cumulative frequency distribution (Figure 7).

Figure 7 shows the reproduction of the sample histogram 
of back-transformed corrected rank order kriging estimates. 
P-P plots also confirm this observation.

Figures 8, 9 and 10 present back-transformed histograms 
for both smoothed and corrected rank order kriging estimates. 
Comparing these figures, it is clear that the post-processing 
algorithm adds some information that was missing due to 
the smoothing effect.

Since the exhaustive data sets (Figure 1) are available, 
we can compare actual values vs. estimates in scattergrams 
(Figures 11, 12 and 13).

Table 5. Summary statistics for back-transformed estimates 
obtained from corrected rank order ordinary kriging 
estimates (equation 5).

Once again, scattergrams of back-transformed estimates 
after correcting the smoothing effect show better correlation 
and are not biased in relation to the 1:1 line. Moreover, 
the post-processing algorithm improves local accuracy in 
terms of the correlation between actual values and back-
transformed estimates.

Let us also analyze the semivariogram reproduction of rank 
order kriging estimates. Figure 14 displays the semivariogram 
model with experimental semivariograms computed from 
smoothed (empty circle) and corrected (full circle) rank 
order kriging estimates. Since the post-processing algorithm 
(equation 4) recovers almost the full sample variance, the 
experimental semivariogram of corrected estimates has a sill 
closer to the sill of the semivariogram model.

Now we can see how the post-processing algorithm 
works. Equation (5) is composed of two terms: the ordinary 
kriging estimate and the smoothing error. Thus, summing 
up these two terms, we obtain the corrected estimates. 
Figure 15 displays histograms of these two terms and the 
resulting histogram of corrected estimates. Smoothing 
errors in Figure 15B have a bell shaped distribution with a 
mean of zero and standard deviation of 0.1088.

It is important to check the reproduction of variance after 
equation (5). Applying the variance operator to equation 
(5), we obtain the variance of corrected estimates as:

where  is the variance of the corrected estimates;

 is the variance of the ordinary kriging estimates

and 
 
is the variance of the correcting

amounts multiplied by a constant factor.
Table 6 shows the components of the variance of the 

corrected estimates, which sum up to 0.819. This result is 
very close to 0.8197, which is the sample variance. Note that 
the sample variance tends to 1/12 (0.08333) when the sample 
size tends to infinity. In this case study, where the sample size 
is equal to 121, the sample variance is only 0.08197.

It is also important to understand how smoothing errors 
are related to rank order kriging estimates. Figure 16 shows 
that there is a linear relationship between smoothing errors 
and rank order kriging estimates. Therefore, these errors 
are not independent of estimates, as stated by Yamamoto 
(2008, p. 589).
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Figure 4. Procedures for back-transforming rank order kriging estimates for variable ZGAUSS.

7_Kazuo.indd   108 13/7/2010   15:49:29



- 109 -

Backtransforming Rank Order Kriging Estimates

Figure 5. Procedures for back-transforming rank order kriging estimates for variable ZLOG.
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Figure 6. Procedures for back-transforming rank order kriging estimates for variable ZSUM.
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Figure 7. A. Cumulative frequency distributions for variable 
with normal distribution. B. Lognormal distribution. C. Positive 
skewness distribution. Legend: Red cross = sample data; green 
circle = back-transformed smoothed rank order kriging; blue 
square = back-transformed corrected rank order kriging.
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Figure 8. Back-transformed rank order kriging estimates for normal variables: A. smoothed rank estimates, B. corrected rank estimates.

Figure 9. Back-transformed rank order kriging estimates for lognormal variables: A. smoothed rank estimates, B. corrected rank estimates.

Figure 10. Back-transformed rank order kriging estimates for added variables: A. smoothed rank estimates, B. corrected rank estimates.
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Figure 11. Scattergrams of actual values vs. estimates for normal variables: A. back-transformed smoothed rank estimates, 
B. back-transformed corrected rank estimates.

Figure 12. Scattergrams of actual values vs. estimates for lognormal variables: A. back-transformed smoothed rank 
estimates, B. back-transformed corrected rank estimates.

Figure 13. Scattergrams of actual values vs. estimates for added variables: A. back-transformed smoothed rank estimates, 
B. back-transformed corrected rank estimates.
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Figure 14. Semivariograms of ordinary kriging estimates 
(empty circle), corrected ordinary kriging estimates (full circle) 
and sample data (asterisk).

Figure 15. Illustrating the post-processing algorithm: A. rank order kriging estimates, B. smoothing errors, C. corrected 
rank order kriging estimates.
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Table 6. Components for the variance of corrected ordinary rank order kriging estimates.

CONCLUSIONS

This paper shows a new application of the post-
processing algorithm. In this application, the challenge 
was the reproduction of the sample histogram with uniform 
distribution. The post-processing algorithm reproduced 
the uniform score histogram very well and, consequently, 
the back-transformed estimates had cumulative frequency 
distributions that closely matched the sample distributions. 
Therefore this procedure guarantees unbiased back-
transformed estimates, making it possible to use uniform 
score transform as proposed in the literature.
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