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			ABSTRACT

			The Guanhães banded iron formation (BIF) bearing succession occurs as tectonic slices, juxtaposed to Archean TTG granite-gneissic basement rock, developed during the Neoproterozoic-Cambrian Brasiliano collage. The succession has a maximum depositional age of ~2.18 Ga, from detrital zircons in quartzite, and consists of quartzites, schists, BIFs, gneiss and amphibolite, all metamorphosed under amphibolite facies conditions. The Guanhães BIF shows HREE enrichment and consistent positive Eu anomaly (PAAS-normalized REE+Y). Two types of contamination were observed in the samples. The first is contamination by an exotic detrital component, which resulted in low Y/Ho (< 30) and Pr/Yb (SN) ratios. Evidence of such contamination, combined with inferred stratigraphic stacking data, indicates that the Guanhães BIFs were deposited on a shallow marine environment. The second type of contamination resulted in higher Eu-anomalies, positive Ce-anomalies, and higher REE+Y concentrations, possibly due to the interaction between later magmatic fluids and the Guanhães BIF. A strong Cambrian event is recorded in zircon age data. The uncontaminated samples display REE+Y distribution similar to other Precambrian BIFs, particularly those from the Morro-Escuro Sequence and the Serra da Serpentina Group, without true Ce-anomalies and Y/Ho close to seawater values (45). Geochronological and geochemical data presented in this paper strongly suggest a correlation between the Guanhães supracrustal succession and the Serra da Serpentina and Serra de São José Groups.
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			RESUMO

			A sequência supracrustal Guanhães, portadora de formações ferríferas bandadas (BIFs), ocorre como fatias tectônicas superpostas ao embasamento de terrenos granito-gnáissicos do tipo TTG de idade Arqueana, desenvolvidas no limite entre o período Proterozoico e o Paleozoico, durante a colagem Brasiliana. A idade máxima de deposição da sucessão é de ~2,18 Ga e foi determinada por datação de zircões detríticos em quartzitos. Além de quartzitos, a sucessão é composta por xistos, BIFs, gnaisses e anfibolitos, todos metamorfisados em condições de fácies anfibolito. A análise dos Elementos Terras Raras + Y (ETR+Y), normalizados ao PASS, para as BIFs de Guanhães, mostra enriquecimento em ETR pesados e anomalia positiva de Eu. Dois tipos de contaminação foram observados nas amostras. O primeiro é uma contaminação detrítica que resultou em baixos valores de Y/Ho (< 30) e Pr/Yb (SN). As evidências de contaminação desse tipo, combinadas à análise do empilhamento estratigráfico do pacote de rochas supracrustais, indicam que as BIFs de Guanhães foram depositadas em ambiente marinho raso. Um evento Cambriano expressivo está presente nos dados relativos à datação de zircões. O segundo tipo de contaminação resultou em maiores valores de anomalia de Eu, anomalia positiva de Ce e maiores concentrações de ETR, possivelmente devido à interação entre fluidos magmáticos posteriores e as BIFs de Guanhães. As amostras sem contaminação mostram distribuição de ETR semelhante a outras BIFs Pré-cambrianas, particularmente às BIFs da Sequência do Morro Escuro e do Grupo Serra da Serpentina, com ausência de anomalia verdadeira de Ce e Y/Ho próximo aos valores da água do mar (45). Os dados geocronológicos e geoquímicos apresentados neste artigo sugerem correlação entre a sucessão supracrustal de Guanhães (GSSu) e os Grupos Serra da Serpentina e Serra de São José.

			Palavras-chave: Formações Ferríferas Bandadas; Guanhães; Geocronologia; Geoquímica.

			INTRODUÇÃO

			The Guanhães Group (Grossi-Sad, 1997) contains several small, discontinuously distributed, and highly deformed tectonic slices of Banded Iron Formation (BIF) that are associated with a metasiliciclastic succession. The metasedimentary succession remnants are distributed over an area of approximately 2,500 km2 around the Guanhães township, about 150 km Northeast of the world known Quadrilátero Ferrífero mining district, in Minas Gerais, Brazil (Figure 1). The existence of a BIF in this region has long been known, with references as old as 1833 (Grossi-Sad, 1997), but geological studies in the area, including stratigraphy, structural geology and geochemistry, are limited to the regional scale (Grossi-Sad et al., 1989, 1990a; Grossi-Sad, 1997; Pedrosa-Soares et al., 1994). Only Grossi-Sad et al. (1990b), based on geochemical data, classified the Guanhães BIFs as of Algoma-type and estimated an Archean age for the succession.

			This study focusses on BIFs from the Jambreiro quarry, which is located in the central region of known ore bodies where outcrops are few and discontinuous. The target area represents a typical and relatively well-exposed occurrence of the supracrustal succession, with several fresh, unaltered core drill samples that makes it suitable for chemical characterization of the Guanhães BIF, as well as for a first approach to the interpretation of its sedimentary environment.

			The present paper discusses the geochemistry and geochronology of the Guanhães BIFs in the light of modern analytical techniques, such as sensitive high-resolution ion microprobe (SHRIMP) zircon dating and inductively coupled plasma mass spectrometry (ICP-MS) geochemistry. This contribution provides valuable information to explore iron in such region, and seeks to understand the depositional basin characteristics, the nature of postdepositional processes they were subjected to, and the relationship with the surrounding areas and other metasedimentary successions. These interpretations are complemented by detrital zircon dating from quartzite layers closely associated with the BIF.

			GEOLOGICAl SETTING

			The Guanhães Group (Grossi-Sad, 1997) represents a BIF-bearing supracrustal sequence that occurs in the East of the Espinhaço Range (Figure 1), in highly deformed terranes, named the Guanhães Basement Block (Alkmim et al., 2006).
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			It is believed the Guanhães Basement Block is the product of crustal agglutination of Archean blocks that occurred during the Rhyacian orogenesis, affecting the Paleoproterozoic units approximately between 2.2 and 2.0 Ga (Noce et al., 2007). According to Alkmim et al. (2006), the block would have acted as a structural high during the Araçuaí Orogen already at the early stages of the orogeny, during the rifting phase (~875 Ma on Silva et al., 2002). The Neoproterozoic Araçuaí orogeny is one of many Brasiliano/Pan-African orogens that were developed in the assembly of West Gondwana (Pedrosa-Soares and Noce, 1998; Pedrosa-Soares and Wiedemann-Leonardos, 2000; Pedrosa-Soares et al., 2001, 2007).

			The Araçuaí Orogen consists of several distinct structural domains, which differ from one another in terms of style, orientation, deformation history, and shear sense. According to Alkmim et al. (2006), following the criteria adopted by Almeida et al. (1981), the Guanhães Complex, including the supracrustal BIF-bearing sequence, would be part of the basement to the Araçuaí orogeny that includes all units older than 1.8 Ga.

			The Guanhães’ BIFs are part of the Guanhães Group, which is a succession of metasedimentary rocks superposed on Archean Tonalite-Trondhjemite-Granodiorite (TTG) granite-gneissic basement (Pedrosa-Soares et al., 1994; Grossi-Sad, 1997; Silva et al., 2002). The Guanhães Group consists of schists, quartzites and paragneisses interpreted by Grossi-Sad et al. (1989, 1990a, 1990b) and Grossi-Sad (1997) as having metavolcano-sedimentary origin. Several authors place such group as part of the Archean Guanhães Complex, without distinctions of crystalline basement rocks from the supracrustal succession (Pedrosa-Soares et al., 1994; Dussin et al., 2000; Silva et al., 2002; Noce et al., 2007).

			In the studied area, the metasedimentary succession directly associated with the Guanhães BIFs (Figure 2 ) consists, from bottom to top, of:

			•	a lower quartzitic unit up to 50 m thick comprising mainly medium to coarse grain quartzites with saccharoidal texture of variable composition (pure, sericitic, arkosic and iron-rich), intercalated with gneiss and schist;

			•	the BIF (itabirite), which also displays a medium to fine grained saccharoidal texture. The iron oxide mineralogy comprises mainly hematite with variable morphologic characteristics (lamellar/specularite, granular and martite) and magnetite;

			•	an upper quartzitic unit that is very similar to the basal unit. The main difference here is the presence of garnet-rich amphibolite layers, which are close to the contact with the underlying BIF unit.
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			Several intrusive granites and associated pegmatites crosscut the metasedimentary rocks of the Guanhães Group. The granites show similar mineralogy, but they can be either massive and isotropic or locally overprinted by a S1 foliation (Barrote, 2016).

			The supracrustal rocks display mineral assemblages typical of high amphibolite facies (Grossi-Sad, 1997; Fernandes et al., 2000; Fernandes, 2001; Dussin et al., 2000). The metamorphic imprint was dated as 519-507 Ma (Noce et al., 2007), which indicates that the Guanhães block exposes rocks of a deeper crustal level, which is probably uplifted during the final stages of the Neoproterozoic-Cambrian Brasiliano collage (Knauer and Grossi-Sad, 1997).

			METHODOLOGY

			Geochemistry

			Seventeen fresh BIF samples were collected in different stratigraphic positions from 11 drill cores from the Jambreiro Iron Ore Project of Centaurus Metals Ltd. Eight of them were selected for thin sections and petrographic examination. For the geochemical analysis, the samples were pulverized with the use of a hand-held drill machine containing a small diamond disc (1 cm in diameter).The silica- and iron-rich bands of the BIF samples were not analyzed separately.

			The geochemical analyses were accomplished at the Acme Analytical Laboratories, in Vancouver, Canada. Samples were analyzed with the LF202 (AQ200 add on – LF302 + LF100-EXT) package of Acme Labs (Acme, 2014). The inductively coupled plasma emission spectrometry (ICP-ES) is the chosen method used for major oxide elements and the inductively coupled plasma mass spectroscopy (ICP-MS) is applied for trace elements (including REE), following a dissolution by hot Aqua Regia digestion or lithium borate fusion (Acme, 2014). Precision and accuracy of the analyses were monitored through Acme Labs internal procedures.

			Concentrations of rare earth elements plus yttrium (REE+Y) in the BIF samples were normalized to Post-Archaean Average Shale (PAAS) of McLennan (1989) and to the chondrite of Taylor and McLennan (1985).

			Geochronology

			U-Pb sensitive high-resolution ion microprobe (SHRIMP) determinations were performed on detrital zircon crystals of four samples, from the upper and lower quartzitic units, and investigated using SHRIMP at the John de Laeter Center for Isotopic Research from the Curtin University in Perth, Western Australia. The samples were processed with conventional crushing, grinding and screening in the LOPAG-DEGEO laboratory at Universidade Federal de Ouro Preto. After the concentration, the four samples were sieved and washed to remove fine-grained material (clay and silt size). The 60-250 mesh fraction was treated with heavy liquid (TBE, tetrabromoethane) to remove light minerals. A Frantz LB1 magnetic separator was used to separate the less magnetic fraction where zircon is concentrated. Zircon was handpicked and organized in two epoxy mounts (UWA 13-22 and UWA 13-23), which were polished and coated with carbon for the Scanning Electron Microscope (SEM) study. Backscattered electron images (BSE) were taken using a JEOL6400 SEM at the Centre for Microscopy, Characterisation and Analysis of the University of Western Australia. Imaging of the zircon is critical for identifying internal features, like core and rims, and to avoid areas with high common lead content (inclusions, fractures, and metamict areas). Epoxy mounts were coated with gold for SHRIMP analyses. Most SHRIMP analytical spots were in the diameter range of 20-30 mm; however, in the presence of alteration haloes due to hydrothermal recrystallization, a spot size of only 10 mm was applied and greater spatial resolution was required. Four scans were used for each spot analysis of detrital zircon and six scans during the analyses of hydrothermal areas. The following masses were analyzed for zircon: 196Zr2O 204Pb, background, 206Pb, 207Pb, 208Pb, 238U, 248ThO, and 254UO. The zircon standard CZ3 (561.5 Ma, 551 ppm U) was used for U/Pb and U-content standard, and NBS611 was applied to identify the position of the mass peak 204Pb. OGC-1 zircon was used as a 207Pb/206Pb monitor. All data on detrital zircon with common lead correction greater than ~0.5% were detected during the first scan, and then the analysis was aborted. Uncertainties of individual ages are quoted at 1s level, whereas the ages plotted are calculated at 2s levels (about 95% confidence). SHRIMP data were reduced using SQUID software (Ludwig, 2001) and plots were prepared using ISOPLOT/Ex (Ludwig, 2003). The main lead loss is not modern, but it occurred at about 500 Ma and 207Pb/206Pb ages are presented for both modern and Cambrian Pb-losses.

			PETROGRAPHY

			The mineralogical composition of the Guanhães BIFs varies slightly in both mineral content and proportions. The composition is in average: quartz (40-50%); iron oxides (20-35%); amphibole (5-20%); carbonates + chlorite (1-10%); and accessories – such as epidote, muscovite and zircon (< 2.5%). The quartz grains are irregularly shaped and exhibit deformational features, such as undulose extinction. Quartz and magnetite are locally intermixed with a coarser granular fabric that partially obliterates the banded structure. Otherwise, the BIFs usually display a regular banding in meso (cm) to microscale (mm). The contact between “iron-rich” and “iron-poor” microbands is usually sharp, but more diffuse transitions within the “iron-poor” laminae are observed, which probably reflect the primary BIF-features (Figure 3A and Figure 3A ).

			[image: ]

			Iron-rich laminae are largely composed of hematite, but they show distinct textural features such as specular and granular (Figure 4A and Figure 4B, respectively). Magnetite tends to occur as inclusion-free sub-hedral to euhedral, thin to medium-grained crystals (0.4 to 1.0 mm; Figure 4B). The intergrowth and genetic relation between magnetite and hematite along the original primary bands of the BIFs is not clear, but the occurrence of martite with relicts of magnetite indicates that magnetite predated at least one generation of hematite (Figure 4C). A younger generation of oriented specularite superposes the granular-textured iron oxides on iron rich bands (Figure 4A).
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			Iron poor layers are mainly composed of quartz with polygonal contacts, wavy extinction and straight to irregular grain boundaries (Figure 5A). There are two varieties of amphiboles in the Guanhães BIFs: the first is colorless syn-deformational tremolite (Figure 5B), with crystals presenting the same orientation as the younger specularite; the second is associated with hornblende that also occurs preferably as random crystals in the iron-rich bands and is strongly pleochroic (pale green, dark green to deep bluish green) that indicates high iron content (Figure 5C).

			Iron rich and quartz layers are occasionally interlayered with thin (1-2 mm) white to pale brown (Figure 5C and Figure 5D).The samples can be separated into two groups, according to the presence or absence of carbonates. Samples 051-115.2, 050-134.5, 051-123.0, 020-113.3, 027-127.7 and 052-133.5 contain carbonate, as indicated in Table 1.
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			Geochronology

			The age of detrital zircons provides robust documentation of the source region of siliciclastic sediments. Vermeesch (2004) states that dating a large number of detrital zircon crystals is required in order to detect a source area that represents 5% of the population (95% confidence interval). However, several authors consider that a much smaller number of grains must be analyzed to detect major sources, while minor sources that contribute 10% or less to the filling of the basins may remain undetected (Hartmann et al., 2006; Silveira-Braga et al., 2015; Rolim et al., 2016).

			In this study, we investigated from 19 (Peçanha3) to > 30 (Cinzas and Tigre1) zircon crystal grains in each sample in order to identify the main populations and ages from the source rocks. The maximum depositional age for the quartzitic units associated with the BIFs of the Guanhães supracrustal succession (SSGu) was determined based on the youngest population of detrital zircon grains.

			Four samples were selected from the upper and lower quartzitic units and zircons; then they were separated and investigated using SHRIMP (Appendix A). In the four samples, the grains are sub-rounded to rounded (Figure 6A, Figure 6B, and Figure 6C), although some prismatic crystals were also observed (Figure 6A and Figure 6B). All samples have several grains that show compositional rims, which are visualized through backscattered electron (BSE) images (Figure 6D, Figure 6E, and Figure 6F). Some rims display diffuse contacts with core regions and are atypical of igneous growth. They are coupled with the presence of concordant Cambrian ages (~500 Ma) in all samples (Figure 6E and Figure 6F; Appendix A), which complicates the interpretation of detrital age data.
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			All samples have some zircon analyses at ~500 Ma and, when combined, yield a 207Pb/206Pb age of 519 ± 14 Ma (n = 18; MSWD = 0.75). These analyses came from disturbed areas within detrital zircons and have significantly higher U-content. This would have resulted in enhanced radiation damage and metamictization, leading to a preferential replacement during a later event. Furthermore, all of the ~500 Ma analyses have a distinctive low Th/U (i.e. 16 of 18 analyses have Th/U < 0.05). The nature and extent of this disturbance is currently unclear and awaits further analysis.

			One consequence of this disturbance is Pb-loss within detrital zircons at this time, and the production of Pb-loss chords towards ~500 Ma on Concordia plots. Accordingly, data in Appendix A have been calculated for both current and Cambrian Pb-loss, which is discussed further below. Single ages that do not overlap other analyses (within error) are not considered reliable indicators of a detrital age due to possible Pb-loss.

			Lower quartzitic unit

			Of the 32 analyzed grains, 2 are Cambrian and 16 are within the 10% concordance level. In this case, the data for recent Pb-loss are applicable. The youngest ages obtained from the sample CINZAS is ~2.71 Ga (n = 2), which points to source rocks of Archean age. For the 16 data which are > 10% discordant and for which Cambrian Pb-loss is applicable, a single analysis of ~2.66 Ga is of uncertain validity as a detrital zircon age, therefore 2.71 Ga are taken as the maximum depositional age. 34 analyses were performed on zircon grains from the lower quartzitic unit (CANDONGA). Five of the 34 analyses were Cambrian. Omitted single analyses at ~1.70 and ~2.68 Ga were of uncertain veracity. The youngest grouping (of two analyses) is ~2.77 Ga, reflecting an Archean source.

			Upper quartzitic unit

			The Tigre1 sample from the upper quartzitic unit at the Jambreiro Quarry shows a different pattern of zircon ages when compared to the lower unit. 34 analyses include 4 Cambrian and 1 spectrum of Archean-Proterozoic ages, and 11 of them define the youngest population at ~2.18 Ga, which is considered the maximum age of deposition.

			Archean grains also dominate the other sample from the upper quartzitic unit (Peçanha3). Among the 26 detrital zircon analyses, 7 are Cambrian and the youngest population (of 2 grains) is ~2.1 Ga, which is similar to Tigre1.

			Excluding Cambrian analyses, the detrital zircon age data for the combined SSGu dataset are shown in Figure 7. There is strong input of Archean grains (about 80% of the detrital material) with ages from ~2.7 to ~3.3 Ga followed by about 20% of Paleoproterozoic input (~2.18 Ga).

			[image: ]

			

			Table 2. Selected trace elements composition from the Guanhães BIF at the Jambreiro quarry in ppm.
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			GEOCHEMISTRY

			Major and trace elements

			Major and selected trace element content in the Guanhães BIF obtained from the Jambreiro quarry are presented in Table 1 and 2, respectively. Chondrite and PAAS-normalized REY-diagrams (REE+Y) are shown in Figure 8A and Figure 8B.

			The SiO2 and Fe2O3 content range from 8.78 to 54.55% and from 39.76 to 54.40%, respectively. The samples display relatively low content in Al2O3, TiO2, Zr, Nb, Sc, Cr, V, and Ni.

			 Figure 8 shows that, with the exception of two samples (“042-028.0” and “039-040.0”), the REE+Y spectra of the other samples are consistent. Samples 042-028.0 and 039-040.0 show an anomalous enrichment in LREE when normalized to the PAAS and a very pronounced LREE enrichment when chondrite-normalized (Figure 8). Those samples are considered affected by weathering, causing the accumulation of LREE in clay and hydroxide particles, and are not considered in the discussion of Proterozoic compositions. The chondrite-normalized (Taylor and McLennan, 1985) REY-diagram (Figure 8A) for the Guanhães BIF indicates a pronounced LREE enrichment in relation to HREE (Pr/Yb [SN] = 0.61 in average) as illustrated in  Figure 8. The Eu anomaly is, in general, slightly positive with an average of 1.03 (Eu/Eu*(CN) = (Eu (CN)/0.5Sm (CN) + 0.5Gd (CN)) = 0.44-1.34).

			As normalized to the PAAS (McLennan, 1989), the REY diagram (Figure 8B) shows the typical HREE enrichment as to LREE [(Pr/Yb) (SN) = 0.86 on average]. The Eu anomaly is generally positive with an average of 1.59, close to the value of 1.5 proposed by Planavsky et al. (2010) that characterizes the late Proterozoic iron formations [Eu/Eu* (SN) = Eu (SN)/ (0.66 Sm (SN) + 0.33 Tb (SN)) = 0.84-1.96].
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			Element correlations

			The Guanhães BIF samples display a positive correlation between the lithophile elements Hf and Zr (Figure 9). However, they lack some correlation between Th and Zr.
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			The samples can be divided into two major groups according to their Y/Ho (Figure 10). The first group comprises five samples with Y/Ho under 30. The rest of the samples can be further grouped based on the presence or absence of carbonate. Carbonate-rich BIF samples have higher Y/Ho, ranging from around 40 to 47, whereas samples that do not contain carbonate show Y/Ho close to 35.

			Samples with low Y/Ho do not present any correlation neither between the LREE/HREE ratio and Y/Ho (Figure 10A) nor between the Eu/Eu*(SN) and Y/Ho (Figure 10B). The remaining samples show a slightly positive correlation between the LREE/HREE ratio and Y/Ho (Figure 10A) and a weak negative correlation between Eu/Eu*(SN) and Y/Ho (Figure 10B). BIFs without carbonate present slightly higher Eu anomalies (Figure 10B).

			Ce-anomaly

			The Ce anomaly is recognized as one of the fundamental features of lanthanide geochemistry (Taylor and McLennan, 1985). Due to its sensitivity to redox state of the environment, Ce is a prime proxy for ocean-atmosphere evolution over the geological timescale (e.g., Towe, 1991; Lawrence and Kamber, 2006). Due to this prominent role, it is essential to avoid artefacts in Ce anomaly calculations that might arise from the La overabundance.

			The approach described by Bau and Dulski (1996) and adopted in this paper discriminates positive La and true negative Ce-anomalies: [Ce/Ce* = Ce (SN)/(0.5 Pr (SN) + 0.5 La (SN))] and [Pr/Pr* = (Pr (SN)/(0.5 Ce (SN) + 0.5 Nd (SN))].

			Five samples with low Y/Ho (squares; Figure 10B) do not present real Ce anomaly, but they show positive Pr anomaly (Pr/Pr* (SN) > 1) plotting outside the usual field reported for BIFs (Planavsky et al., 2010). The carbonate-free samples with higher Y/Ho (circles) display a light positive Ce anomaly, whereas ones containing carbonate show an absence of Ce, La or Pr anomalies (triangles; Figure 11).
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			DISCUSSION

			Clastic contamination

			Minor amounts of clastic material can result in elevated and correlated abundance of incompatible elements, such as Th, Hf, Zr and Sc. Clastic contamination may also modify the original content of authigenic REE and other trace elements, thus generating anomalous enrichments of redox-sensitive elements like Ce and U.

			The Guanhães BIF from the Jambreiro quarry have relatively low TiO2 (average of 0.3 wt %), Hf (average of 0.5 ppm) and Sc (average of 1.0 ppm for 9 and 8 samples under the detection limit) content, but somewhat elevated concentration of Al2O3 (0.35 – 2.01wt %) and Th (average of 12.9 ppm for 15 and 2 samples over 70 ppm). Other pieces of evidence for detrital contamination are provided through the co-variation of the incompatible elements Hf versus Zr, as depicted in Figure 9.

			Between the Guanhães BIF samples, 5 show strong signatures of terrigenous input, as indicated by the low values of Y/Ho (under 30) plotting in the shale field of the Pr/Y(SN) versus Y/Ho plot (Figure 10A). Crustal material has a constant Y/Ho value of ca. 26, whereas seawater-like ratios are > 44 and thus any contamination would depress the seawater signature and lead to negative co-variations (Pecoits, 2010). These samples are contaminated by clastic materials and do not present real Ce anomalies (Figure 11), however they have high Pr/Pr*(SN) values. They are also clearly HREE depleted (Figure 12) and display low Pr/Yb (SN) (Figure 10A).

			The chemical indication of clastic contamination, the lack of negative Ce-anomalies and the close association of BIF layers with quartzitic successions (including the occasional occurrence of interbedded quartzite in BIFs) are strong pieces of evidence that these sediments precipitated in a shallow marine environment, with the notable influence of continental input. Another possible explanation for the source of clastic contaminants is the occurrence of sediments from turbiditic sequences; however, there is no sedimentological evidence (e.g., preservation of sedimentary structures) that would indicate the occurrence of metaturbidites in the SSGu.

			Nonclastic contamination

			Samples without evidence of clastic input can be further subdivided into two groups: (1) hornblende and carbonate-rich BIFs, and (2) BIFs with no carbonate that show distinct REY patterns (Figure 12).

			The BIFs with no carbonate display a true positive Ce-anomaly (Figure 11) and Y/Ho close to the chondritic value of 35 (from 35 to 38). They also show higher HREE enrichment, given by the Pr/Yb (SN) ratio (Figure 10A), the slope of the REY-diagram (Figure 12), and the overall higher SREE content. These samples do not present the typical seawater La anomaly on the REY-diagram. This suggests some sort of contamination that alters the geochemistry of these postdepositional rocks, creating a pattern that is not similar to the clastic contamination.

			Because there is evidence of Cambrian magmatic-driven hydrothermal activity in the region [e.g. zircon U/Pb age data from quartzites, quartz and carbonate veins associated with granites and pegmatites (Barrote, 2016) and metamict zircons associated with hydrothermal xenotime (Rolim, 2016)], a possible contaminant could be younger hydrothermal fluids. The hydrothermal nature of the contaminating fluid could generate such higher positive Eu-anomalies found on those samples (Figure 10B  and Figure 12).
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			New generations of REE-bearing minerals (i.e. crystallized from younger hydrothermal fluids) would alter the REY distribution on those samples, and therefore they would create, for example, a “true” positive Ce-anomaly that does not reflect the redox conditions of BIFs deposition, which is similarly to what was reported by Silveira-Braga et al. (2015) for some of Morro-Escuro BIFs samples containing allanite.

			Uncontaminated BIFs

			Carbonate-bearing BIFs have the most seawater-like REY-distribution (Figure 12) and Y/Ho values close to 45. These samples lack true Ce anomalies and display REY patterns very similar to the Morro-Escuro BIFs (Figure 13). This could indicate that the presence of carbonates points to uncontaminated BIF. Even though clastic components are probably present in all samples, as indicated by the correlation plot between the incompatible elements Hf versus Zr (Figure 9), they are negligible in the hornblende and carbonate-rich BIF samples. The Guanhães BIF has REY-distributions very similar to other Precambrian BIF reported around the world and typical of Archean to Early Proterozoic or Late Proterozoic from oxic to suboxic environments (Planavsky et al., 2010).

			The uncontaminated Guanhães BIF displays a REY-distribution pattern (Figure 13) comparable to that of Morro Escuro and Serra da Serpentina BIFs (Figure 1), and shows a similar lack of Ce anomaly, positive Y anomaly, and HREE depletion over LREE and very similar positive Eu anomaly, which indicates that those BIFs could have been formed in similar environments.
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			Geochronology

			SHRIMP data of detrital zircon grains from BIF-related quartzitic units of the SSGu succession suggest a maximum depositional age of ~2.18 Ga derived from the major population in TIGRE1. Even though additional data are necessary for a robust characterization of the ages and populations of source rock and subsequent provenance studies, it is clear that the studied metasedimentary succession is much younger than the Guanhães Complex (2867 ± 10 Ma, Silva et al., 2002) in disagreement with the interpretations of Grossi-Sad (1997).

			The ages of source rocks from the detrital zircons on the lower quartzitic unit are similar to those found by Rolim et al. (2016) for the Meloso Formation, basal to the Serra do Sapo BIF, which presents a large population of Archean zircons with few younger late Paleoproterozoic grains. The upper quartzitic unit shows the prevalence of Archean and Late Orosirian-Rhyacian detrital zircon grains, similarly to the Itapanhoacanga Formation (Rolim et al., 2016). The Guanhães BIF could correlate to the Serra do Sapo Formation, described by Rolim et al. (2016).

			There is a correlation between the SSGu’s supracrustal units and the stratigraphy proposed by Rolim et al. (2016) for the nearby Serra da Serpentina ridge. The correlation between Serra da Serpentina and Serra de São José groups and the stratigraphy of the central portion of the Southern Espinhaço ridge, as proposed by Rolim el al. (2016), might also be applicable to the SSGu in the Guanhães area, as shown in Figure 14.

			[image: ]

			The possible source areas for the Archean detrital zircons for the SSGu includes the Guanhães Complex with ages between 2867 and 2711 Ma (Noce et al., 2007), and Rio das Velhas greenstone belt located in the Quadrilátero Ferrífero (Figure 1), in Southern São Francisco Craton (Machado et al., 1996; Hartmann et al., 2006). The Rhyacian peaks are possibly related to the Rhyacian Orogeny (Brito Neves et al., 2014) and potential sources of zircon are rocks from the magmatic-tectonic events of the Minas accretionary event (Teixeira et al., 2015).

			Although the Guanhães BIFs are presented as discontinuous inlets in gneissic terranes, the pieces of evidence of contamination by crustal clastic material and the stratigraphic association with siliciclastic sedimentary rocks indicate that they were deposited in a shallow marine environment.

			The dating of detrital zircon of the quartzites is complicated by a strong Cambrian overprint, but it indicates a strong Archean source and a maximum depositional age of the Guanhães BIF of ~2.18 Ga. Further data are necessary for a robust characterization of the ages and populations of source rock and subsequent provenance studies.

			Seawater-like REY signatures are present in BIFs with inter-layered carbonates that broadly preserve the paleoenvironment chemical conditions. Chemically preserved BIF samples have REY distribution (Figure 13) similar to the Morro-Escuro and Serra da Serpentina BIFs from Morro do Pilar (Silveira-Braga et al., 2015; Rolim et al., 2016).

			The close association of the Guanhães BIFs with siliciclastic metasediments that display similar distributions of detritic zircon to the quartzitic units of the Meloso and Itapanhoacanga Formation (Rolim et al., 2016) also points to a correlation between SSGu and the Units described at Serra da Serpentina and Serra de São José ridges.
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Qz: quartz; Tr: tremolite; Hbl: hornblende; Cb: carbonate.

Figure 5. Microphotography of the Guanhaes Banded Iron Formation (BIF) under transmitted light, taken with crossed
polars. (A) Iron-rich band with predominance of hematite and silica-rich band with predominance of quartz, with
polygonal contacts, wavy extinction and straight to irregular grain boundaries. (B) Tremolite crystal in an iron-rich band,
syn-formational to the specular hematite (i.e. syn-deformational). (C) Iron-rich band with predominance of hematite and
hornblende. The hornblende is locally altered to carbonate. Silica-rich bands with predominance of oriented quartz and
occurrence of carbonate. (D) Euhedral to sub-hedral crystals of non-oriented carbonate on a silica-rich band. The iron-
rich band is predominantly composed of hematite and hornblende (not shown).
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Figure 1. (A) Regional geological map showing the location of the Guanhaes Group’s Banded Iron Formation (BIFs) and
distribution of others BIF-bearing successions nearby in the Quadrilatero Ferrifero region in Southeast Brazil (based on

Grossi-Sad, 1997; Pedrosa-Soares et al., 1994). The entire region is located on the limit between the Sdo Francisco Craton
and the Aracuai Orogen (based on Alkmin et al., 2006). (B) Geological map of the Jambreiro quarry (from Barrote, 2016).
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Figure 13. Comparative REY(SN) spidergram for the Guanhaes BIF and other worldwide Proterozoic Iron Formations.
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Figure 12. REY spidergram discriminated for each group of sample (average values) from the Guanhaes Banded Iron Formation.
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Figure 6. Backscattered electron (BSE) image of selected detrital zircon grains from samples Cinzas (A) and Pecanha 3
(B). (C) and (D) Small scale BSE images of a couple of zircon grains from the sample Pecanha 3, of Rhyacian and Archean
age, respectively. (E) Small scale BSE image of a zircon grain from the sample Cinzas with analyses at ~500 Ma in an area
that has significantly higher U-content within the detrital zircon. (F) BSE images of a couple of zircon grains of Archean
age from the sample Cinzas and a zircon grain with analyses at ~500 Ma, the difference in U content is evidenced by the
brightness differences between grains.
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Figure 2. Stratigraphic succession of the Guanhdes supracrustal succession showing
stratigraphic location of samples selected for detrital zircon dating.
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Figure 7. Age probability diagram for the combined age data obtained from detrital zircon grains from the SSGu in the
Guanhaes region. Major populations are at the ages of 2192, 2702, 2843 and 2979 Ma (main population), and 3292 Ma.
There is a single 1737 Ma analysis that does not overlap other analyses (within error).
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Figure 8. (A) Chondrite-normalized REE spidergram for the Guanhéaes BIFs. (B) PAAS-
normalized REE+Y spidergram for the Guanhaes Banded Iron Formations.
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Figure 3. (A) Drill core showing microbanded Banded Iron Formation samples, with intrafolial
folds. (B) Drill core showing coarse-grained iron formation with obliterated banded structure.
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Figure 11. Plot of Ce (SN) and Pr (SN) anomalies. True negative Ce anomalies plots in the field defined by Ce/Ce*(SN) =
(CeSN/ (0.5(PrSN + LaSN) > 1 and Pr/Pr*(SN) = (PrSN/ (0.5CeSN + 0.5NdSN)) <1. The approach (Bau and Dulski, 1996)
discriminates between positive La and true negative Ce anomalies. Samples that plot in the grey area present neither Ce
nor La anomalies (Planavsky et al., 2010).
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Table 1. Composition of the major elements from the Guanhaes BIF at the Jambreiro quarry.

XRF Sio, Tio, ALO, FeOt MnO MgO CaO Na,0 K,0 P,O, vg'éh

Sample
008-046.1 4517  <0.01 0.2 54.4 0.02 <0.01 0.02 <0.01 <0.01 0.05
020-134.6  47.53 0.04 1 49.71 0.04 0.13 0.13 0.01 0.02 0.04
037-055.0 52.43 0.02 1.02 4576  0.02 <0.01 0.02 <0.01 0.02 <0.01
039-040.0 51.97 0.08 1.37 4574  0.05 <0.01 0.01 <0.01 0.02 <0.01
040-051.2 48.83 0.03 0.36 5042 0.01 <0.01 <0.01 <0.01 <0.01 <0.01
042-028.0 54.55 0.04 121 43.53  0.03 <0.01 0.01 <0.01 0.02 <0.01
045-0459 51.66 0.02 0.41 4718  0.02 <0.01 0.02 <0.01 <0.01 <0.01
045-064.7 4415 0.06 0.69 4537 0.21 4.51 413 0.06 <0.01 0.13
051-116.2  8.78 0.41 2.01 49.93  0.32 8.6 13.42 0.02 0.16 0.12 yes
050-134.5 37.48 0.038 0.583 4993 0.21 4.62 6 0.05 0.01 0.06 yes
051-123.0 32.11 0.08 0.44  39.76  0.43 9.83 13.39 0.06 <0.01 0.09 yes
020-113.3  52.92 0.5 0.44  46.05 0.07 <0.01 0.02 <0.01 <0.01 0.05 yes
027-127.7 12.78 05 0.78 4741 0.43 6.81 17.97 0.01 0.038 0.09 yes
062-133.5 53.55 0.3 0.38 4347  0.04 0.42 1.08 <0.01 <0.01 0.12 yes
052-162.7 51.75 T 0.95 4444  0.09 073 1.14 0.02 0.1 0.15
050-112.5 53.34 0.5 0.35  45.71 0.038 0.02 0.16 <0.01 <0.01 0.12
051-112.4  49.32 04 0.44  49.37  0.05 0.13 0.22 <0.01 0.038 0147

*samples that have Carbonate (Cb) are indicated ** strikethrough samples are weathered and not considered in the discussion
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Figure 4. Schematic drawing (on the left) and correlated microphotography (on the right) of the Guanhdes Banded
Iron Formation (BIF) under reflected light, focused on texture and structure of the iron oxides. (A) Two generations of
specular hematite. The first generation is distributed into the iron-rich bands of the BIF and the second generation is
oriented concordant to the foliation (Sn). Sub-hedral crystals of magnetite are distributed through the iron-rich band
and are cut by the second generation of specularite. (B) Euhedral magnetite and granular hematite in an iron-rich band.
(C) Sub-hedral martite (hematite pseudomorph of magnetite) with residues of magnetite and sub-hedral magnetite
crystals within an iron-rich band.
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Figure 9. Binary plots of Th and Zr (A) and Hf and Zr (B). Line shows tendency and R2 values are shown.
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Figure 10. Binary plot of (A) LREE/HREE versus Y/Ho. (B) Eu-anomaly versus Y/Ho. Lines show tendencies with respective R2
values.
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Figure 14. Stratigraphic chart of the Espinhaco Supergroup in the central portion of Southern Espinhaco (modified after

Martins-Neto, 2000; Chemale Jr. et al., 2012) correlated to the stratigraphic chart of the Serra da Serpentina and Serra de
Séo José Groups in the Serpentina Range (after Rolim et al., 2016) and to the lithostratigraphic stacking of the SSGuu.
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