Normal shear zones in SW Amazonic Craton, Brazil: microstructural analysis of the Indiavaí Granite milonitic rocks

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v20-150808

Keywords:

Amazonic Craton, Microstructural analysis, Extensional Shear zone, Phyllonite

Abstract

Ductile shear zones of normal kinematics in continental orogens previously thickened by compressive orogenic events have aroused great interest in the scientific community. In the region of Indiavaí southwestern portion of the Amazonian Craton, central west portion of Brazil, the Água Rica and Cristo Rei shear zones affect the rocks of the Indiavaí Granite. Analysis of the structures on a mesoscopic scale reveals a progressive transformation of a granitic protolite with a weak foliation, passing to rocks with a protomillonitic texture, milonitic to ultramillonitic. Microstructural analysis shows a gradual decrease in grain size, leading to an increase in the matrix. Rocks with incipient foliation have no matrix. Recrystallized quartz is observed, wavy extinction in feldspars, intense processes of sericitization in plagioclase, and orthoclase with pertites in flames. In the protomilonites, the matrix, making up 20 to 30% of the rock, is composed of quartz and biotite. Potassium feldspar porphyroclasts are observed, with fractures, faults and undulating extinction. In the milonites the matrix, which makes up 60 and 75% of the rock, is composed of quartz, biotite and muscovite. Quartz porphyroclasts commonly occur in the form of ribbons, which show recrystallization by migration of the grain boundary. Potassium feldspar and plagioclase exhibit wavy extinction and lump recrystallization. In ultramilonites, whereas the matrix predominates, this is basically composed of quartz, muscovite and medium grained biotite. It is estimated that the processes that acted in the development of mylonitic foliation occurred at temperatures between 400–600°C. Analysis of the kinematic indicators reveals that the tectonic movement was normal. It is interpreted that the Cristo Rei and Água Limpa shear zones are part of an 

Downloads

References

Araújo, L. M. B. (2008). Evolução do magmatismo pós‑cinemático do Domínio Cachoeirinha: Suítes Intrusivas Santa Cruz, Alvorada e Rio Branco – SW do Cráton Amazônico – MT. Tese (Doutorado). Rio Claro: Instituto de Geociências e Ciências Exatas, UNESP. Disponível em: <http://hdl.handle.net/11449/103003>. Acesso em: 18 jun. 2020.

Barros, A. M., Silva, R. H., Cardoso, O. R. F. A., Freire, F. A., Souza Junior, J. J., Rivetti, M., Luz, D. S., Palmeira, R. C. B., Tassinari, C. C. G. (1982). Geologia. In: Brasil. DNPM. Projeto RADAMBRASIL. Folha SD. 21 Cuiabá; geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Rio de Janeiro: DNPM. 540 p. p. 25-192. (Levantamentos de Recursos Naturais, 26).

Bettencourt, J. S., Leite Jr., W. B., Ruiz, A. S., Matos, R., Payolla, B. L., Tosdal, R. M. (2010). The Rondonian-San Ignácio Province in the SW Amazonian Craton: an overview. Journal of South American Earth Sciences, 29(1), 28-46. https://doi.org/10.1016/j.jsames.2009.08.006

Camacho, C. R., Sousa, F. R. F. R. O. (2017). O arcabouço estrutural da Bacia Sedimentar do Araripe, Província Borborema, baseado em dados aeromagnetométricos. Geologia USP. Série Científica, 17(3), 149-161. https://doi.org/10.11606/issn.2316-9095.v17-393

Chauvet, A., Seranne, M. (1988). Microtectonic evidence of Devonian extensional westward shearing in Southwest Norway. In: R. Gayer (Ed.), The Caledonide Geology of Scandinavia. Londres: Graham e Trotman. p. 245-254.

Foster, A. N., Ebinger, C., Mbede, E., Rex, D. (1997). Tectonic development of the northern Tanzanian sector of the East African Rift system. Journal of the Geological Society, 154(4), 689-700. https://doi.org/10.1144/gsjgs.154.4.0689

Geraldes, M. C. (2000). Geocronologia e geoquímica do plutonismo mesoproterozóico do SW do Estado de Mato Grosso (SW do Cráton Amazônico). Tese (Doutorado). São Paulo: Instituto de Geociências, USP. https://doi.org/10.11606/T.44.2000.tde-26092014-162541

Geraldes, M. C., Bettencourt, J. S., Teixeira, W., Matos, J. M. (2004). Geochemistry and isotopic constraints on the origin of the mesoproterozoic Rio Branco ‘anorogenic’ plutonic suite, SW of Amazonian craton, Brazil: high heat flow and crustal extension behind the Santa Helena arc? Journal of South American Earth Sciences, 17(3), 195-208. https://doi.org/10.1016/j.jsames.2004.05.010

Geraldes, M. C., Kozuch, M., Teixeira, W., Van Schmus, W. R. (1997). U-Pb constraints on the origin of Mesoproterozoic granites of Pontes e Lacerda region, SW of Amazon Craton. I South American Symposium on Isotope Geology, 126-129. Campos do Jordão: SBG.

Geraldes, M. C., Nogueira, C. C., Vargas-Matos, G. L., Matos, R., Teixeira, W., Valencia, V., Ruiz, J. (2014). U-Pb detrital zircon ages from the Aguapeí Group (Brazil): Implications for the geological evolution of the SW border of the Amazonian Craton. Precambrian Research, 244, 306-316. https://doi.org/10.1016/j.precamres.2014.02.001

Geraldes, M. C., Van Schmus, W. R., Condie, K. C., Bell, S., Teixeira, W., Babinski, M. (2001). Proterozoic geologic evolution of the SW part of the Amazonian Craton in Mato Grosso state, Brazil. Precambrian Research, 111(1-4), 91-128. https://doi.org/10.1016/S0301-9268(01)00158-9

Leite, J. A. D., Saes, G., Weska, R. K. (1985). A Suíte Rio Branco e o Grupo Aguapeí nas serras de Rio Branco e Roncador. II Simpósio de Geologia do Centro Oeste, 1, 247-255. Goiânia: SBG.

Lima, M. G., Souza, A. A., Castro, C. C., Trindade Netto, G. B. (2011). Geologia e recursos minerais da folha Rio Novo-SD.21-Y-A-I, Estado do Mato Grosso, escala 1:100.000. Porto Velho: CPRM. Disponível em: <http://rigeo.cprm.gov.br/jspui/handle/doc/11369>. Acesso em: 18 jun. 2020.

Malavieille, J., Guihot, P., Costa, S., Lardeaux, J. M., Gardien, V. (1990). Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. Etienne Late Carboniferous basin. Tectonophysics, 117(1‑3), 139-149. https://doi.org/10.1016/0040-1951(90)90278-G

Matos, R. M. D. (1992). The Northeastern Brazilian rift system. Tectonics, 11(4), 766-791. https://doi.org/10.1029/91TC03092

O’Hara, K. (1988). Fluid flow and volume loss during mylonitization: an origin for phyllonite in an overthrust setting, North Carolina, U.S.A. Tectonophysics, 156(1-2), 21-36. https://doi.org/10.1016/0040-1951(88)90280-6

Oliva, L. A., Olivatti, O., Ribeiro Filho, W., Schobbenhaus Filho, C. (1979). Folha SD21 Cuiabá. (Carta geológica do Brasil ao milionésimo). Brasília: DNPM.

Pryer, L. L. (1993). Microstructures in feldspars from a major crustal thrust zone: the Grenville Front, Ontario, Canada. Journal of Structure Geology, 15(1), 21-36. https://doi.org/10.1016/0191-8141(93)90076-M

Pryer, L. L., Robin, P. Y. F. (1995) Retrograde metamorphic reactions in deforming granites and the origin of flame perthite. Journal of Metamorphic Geology, 13(6), 645-658. https://doi.org/10.1111/j.1525-1314.1995.tb00249.x

Reynolds, S. J., Spencer, J. E. (1985). Evidence for largescale transport on the Bullard detachment fault, westcentral Arizona. Geology, 13(5), 353-356. https://doi.org/10.1130/0091-7613(1985)13<353:EFLTOT>2.0.CO;2

Ruiz, A. S. (2005). Evolução Geológica do Sudoeste do Cráton Amazônico Região Limítrofe Brasil Bolívia-Mato Grosso. Tese (Doutorado). Rio Claro: Instituto de Geociências e Ciências Exatas, UNESP. Disponível em: <http://hdl.handle.net/11449/103015>. Acesso em: 18 jun. 2020.

Saes, G. S., Leite, J. A. D., Weska, R. K. (1984). Geologia da Folha Jauru (SD-21-Y-C-III): Uma Síntese dos Conhecimentos. XXXIII Congresso Brasileiro de Geologia, 5, 2193-2204. Rio de Janeiro: SBG.

Silva, D. C. (2014). Caracterização Microestrutural da Zona de Cisalhamento Água Rica, SW do Cráton Amazônico, Indiavaí - MT. Trabalho de Conclusão de Curso (Graduação). Cuiabá: Instituto de Ciências Exatas e da Terra, UFMT. Disponível em: <http://www.fageo.ufmt.br/wp-content/uploads/2019/06/81.pdf>. Acesso em: 18 jun. 2020.

Stipp, M., Stünitz, H., Heilbronner, R., Schmid, S. M. (2002). The eastern Tonale fault zone: a “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. Journal of Structure Geology, 24(12), 1861-1884. https://doi.org/10.1016/S0191-8141(02)00035-4

Tassinari, C. C. G., Macambira, M. J. B. (1999). Geochronological provinces of the Amazonian Craton. Episodes, 22(3), 174-182. https://doi.org/10.18814/epiiugs/1999/v22i3/004

Teixeira, W., Geraldes, M. C., D’Agrella-Filho, M. S., Santos, J. O. S., Barros, M. A. S., Ruiz, A. S., Costa, P. C. C. (2011). Mesoproterozoic juvenile mafic-ultramafic magmatism in the SW Amazonian Craton (Rio Negro-Juruena province): SHRIMP U-Pb geochronology and Nd-Sr constraints of the Figueira Branca Suíte. Journal of South American Earth Sciences, 32(4), 309-323. https://doi.org/10.1016/j.jsames.2011.04.011

Tullis, J., Yund, R. A. (1991). Diffusion creep in feldspar aggregates: experimental evidence. Journal of Structure Geology, 13(9), 987-1000. https://doi.org/10.1016/0191-8141(91)90051-J

Published

2020-08-12

Issue

Section

Articles

How to Cite

Silva, D. C. da, Silva, C. H. da, & Costa, A. C. D. da. (2020). Normal shear zones in SW Amazonic Craton, Brazil: microstructural analysis of the Indiavaí Granite milonitic rocks. Geologia USP. Série Científica, 20(2), 39-60. https://doi.org/10.11606/issn.2316-9095.v20-150808