Controle estratigráfico e estrutural sobre a distribuição da permeabilidade em rochas siliciclásticas pouco consolidadas

Autores

DOI:

https://doi.org/10.11606/issn.2316-9095.v21-173516

Palavras-chave:

Permeabilidade, Simulação geoestatística, Controle litoestrutural

Resumo

Modelos de permeabilidade têm grande relevância na caracterização de sistemas petrolíferos. Contudo, limitações relacionadas à resolução dos dados sísmicos adquiridos tornam difícil a identificação de estruturas subsísmicas, sedimentares e tectônicas, que podem ter grande impacto no padrão de fluxo. Neste trabalho, foi analisada a variabilidade espacial da permeabilidade segundo o controle da estratigrafia e da geologia estrutural, tendo como finalidade propor um modelo que possa ser empregado em reservatórios siliciclásticos pouco consolidados, fraturados e falhados. Em um afloramento análogo a esse tipo de reservatório foram realizadas leituras de permeabilidade ao ar em três direções ortogonais de 24 pontos espaçados de 2 m. Os modelos foram obtidos a partir da simulação sequencial gaussiana (SSG), após o tratamento estatístico dos dados. A validação dos modelos foi realizada para assegurar a consistência dos cenários gerados. As permeabilidades apresentaram distribuição assimétrica positiva e diminuição das medianas em direção às estruturas tectônicas. O modelo de ajuste dos semivariogramas foi o exponencial, sendo a continuidade espacial maior na direção de fluxo horizontal e menor na direção de fluxo vertical. Os modelos de permeabilidade ressaltaram a importância de considerar estruturas subsísmicas na análise de fluxo em reservatórios, uma vez que essas mostraram desempenhar papel relevante na distribuição da permeabilidade no afloramento análogo analisado.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Associação Brasileira de Normas Técnicas (ABNT). (2016). NBR 7181: Solo - Análise Granulométrica. Rio de Janeiro: ABNT.

Ballas, G., Fossen, H., Soliva, R. (2015). Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs. Journal of Structural Geology, 76, 1-21. https://doi.org/10.1016/j.jsg.2015.03.013

Balsamo, F., Bezerra, F. H. R., Vieira M. M., Storti, F. (2013). Structural control on the Formation of iron-oxideconcretions and liesegang bands in faulted, poorly lithifiedcenozoic sandstones of the Paraíba Basin, Brazil. Geological Society of America Bulletin, 125(5-6), 913-931. https://doi.org/10.1130/B30686.1

Belila, A. M. P., Kuroda, M. C., Souza, J. P. P., Vidal, A. C., Trevisan, O. V. (2018). Petrophysical characterization of coquinas from Morro do Chaves Formation (Sergipe-Alagoas Basin) by x-ray computed tomography. Geologia USP. Serie Cientifica, 18(3), 3-13. https://doi.org/10.11606/issn.2316-9095.v18-124101

Braga, L. P. V. (2014). Introdução à geoestatística: Com programas em R. Rio de Janeiro: E-papers. Brown, S., Smith, M. (2013). A transient-flow syringe air permeameter. Geophysics, 78(5), D307-D313. https://doi.org/10.1190/GEO2012-0534.1

Camargo, J. E. N., Jensen, J. L. (2012). Analysis of fault permeability using mapping and flowmodeling, Hickory sandstone aquifer, Central Texas. Natural Resources Research, 21(3), 395-409. https://doi.org/10.1007/s11053-012-9181-5

Cao, R., Zee Ma, Y., Gomez, E. (2014). Geostatistical applications in petroleum reservoir modelling. Journal of the Southern African Institute of Mining and Metallurgy, 114, 625-629.

Cressie, N. A. C. (1991). Statistics for spatial data. Michigan: J. Wiley.

Farrell, N. J. C., Healy, D., Taylor, C. W. (2014). Anisotropy of permeability in faulted porous sandstones. Journal of Structural Geology, 63, 50-67. https://doi.org/10.1016/j.jsg.2014.02.008

Fegh, A., Riahi, M. A., Norouzi, G. H. (2012). Permeability prediction and construction of 3d geological model: Application of neural networks and stochastic approaches in an Iranian gas reservoir. Neural Computing and Applications, 23(6), 1763-1770. https://doi.org/10.1007/s00521-012-1142-8

Fiuza, B. O. (2019). Análise multiescalar da deformação rúptil em rochas siliciclásticas pouco consolidadas (Formação Resende, Eoceno, Bacia de Volta Redonda, RJ). Dissertação (Mestrado). Rio de Janeiro: Instituto de Geociências - UFRJ.

Fiuza, B. O., Mello, C. L., Ribeiro, C. S. (2020). Parâmetros de densidade de falhas e bandas de deformação em rochas siliciclásticas pouco consolidadas da Formação Resende, Eoceno, Bacia de Volta Redonda, estado do Rio de Janeiro. Geologia USP. Série Científica, 20(4), 39-52. https://doi.org/10.11606/issn.2316-9095.v20-165065

Folk, R. L. (1974). Petrology of Sedimentary Rocks. Estados Unidos: Hemphill Publishing Co.

Galvão, M. S., Barroso, E. V., Leão, M. F., Mello, C. L., Souza, J. A. B. (2018). Fault zones control on permeability of poorly lithified sandstone. In: 52nd US Rock Mechanics/Geomechanics Symposium. Washington, D.C.: American Rock Mechanics Association.

Hosseini, E., Gholami, R., Hajivand, F. (2019). Geostatistical modeling and spatial distribution analysis of porosity and permeability in the Shurijeh-B reservoir of Khangiran gas field in Iran. Journal of Petroleum Exploration and Production Technology, 9(2), 1051-1073. https://doi.org/10.1007/s13202-018-0587-4

Leuangthong, O., McLennan, J. A., Deutsch, C. V. (2004). Minimum acceptance criteria for geostatistical realizations. Natural Resources Research, 13(3), 131-141. https://doi.org/10.1023/B:NARR.0000046916.91703.bb

Maciel, I. B., Mello, C. L., Silva, A. T. (2017). Caracterização da deformação rúptil em afloramento da formação Resende, bacia de Volta Redonda, Estado do Rio de Janeiro. Geologia USP. Série Científica, 17(3), 113-124. https://doi.org/10.11606/issn.2316-9095.v17-391

Negrão, A. P., Ramos, R. R. C., Mello, C. L., Sanson, M. S. R. (2015). Mapa geológico do cenozoico da região da bacia de Volta Redonda (RJ, segmento central do Rifte Continental do Sudeste do Brasil): Identificação de novos grabens e ocorrências descontínuas, e caracterização de estágios tectonossedimentares. Brazilian Journal of Geology, 45(2), 273-291. https://doi.org/10.1590/23174889201500020007

Pebesma, E. J., Wesseling, C. G. (1998). Gstat: a program for geostatistical modelling, prediction and simulation. Computers & Geosciences, 24(1), 17-31. https://doi.org/10.1016/S0098-3004(97)00082-4

Pyrcz, M. J., Deutsch, C. V. (2014). Geostatistical reservoir modeling. 2. ed. Estados Unidos: Oxford University Press. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org.Accessed on: Apr. 29, 2021.

Ren, S., Yao, G., Zhang, Y. (2019). High-resolution geostatistical modeling of an intensively drilled heavy oil reservoir, the BQ 10 block, Biyang Sag, Nanxiang Basin, China. Marine and Petroleum Geology, 104, 404-422. https://doi.org/10.1016/j.marpetgeo.2019.03.026

Riccomini, C., Sant’Anna, L. G., Ferrari, A. L. (2004). Evolução geológica do Rift Continental do Sudeste do Brasil. In: V. Mantesso-Neto, A. Bartorelli, C. Dal Ré Carneiro, B. B. Brito Neves (Eds.), Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida (p. 383-405). São Paulo: Beca.

Rotava, T. (2017). Caracterização macroscópica e microscópica de bandas de deformação em arenitos da Formação Resende (Eoceno, Rift Continental do Sudeste do Brasil). Trabalho de Conclusão de Curso (Bacharelado em Geologia). Rio de Janeiro: Instituto de Geociências - UFRJ.

Sanson, M. S. R., Ramos, R. R. C., Mello, C. L. (2006). Bacias Sedimentares Brasileiras – Bacia de Volta Redonda. Phoenix, 88, 1-6.

Slatt, R. M. (2006). Stratigraphic Reservoir Characterization for Petroleum Geologist, Geophysicists and Engineers. Amsterdã: Elsevier.

Souza, A. M. (2013). Proposta metodológica para o imageamento, caracterização, parametrização e geração de modelos virtuais de afloramentos. Tese (Doutorado). Rio Grande do Norte: Instituto de Geociências - UFRN.

Vogel, S. N., Mello, C. L., Silva, A. T. (2019). Aspectos tomográficos e microtomográficos de feições de deformação rúptil em arenitos pouco consolidados da Formação Resende (Bacia de Volta Redonda-RJ). Anuário do Instituto de Geociências, 42(1), 759-768. https://doi.org/10.11137/2019_1_759_768

Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. Journal of Sedimentary Petrology, 30, 377-392. https://doi.org/10.1086/622910

Wilson, C. E., Aydin, A., Durlofsky, L. J., Boucher, A., Brownlow, D. T. (2011). Use of outcrop observations, geostatistical analysis, and flow simulation to investigate structural controls on secondary hydrocarbon migration in the Anacacho Limestone, Uvalde, Texas. AAPG Bulletin, 95(7), 1181-1206. https://doi.org/10.1306/11191010069

Zhao, S., Zhou, Y., Wang, M., Xin, X., Chen, F. (2014). Thickness, porosity, and permeability prediction: comparative studies and application of the geostatistical modeling in an Oil field. Environmental Systems Research, 3, 1-24. https://doi.org/10.1186/2193-2697-3-7

Downloads

Publicado

2021-08-19

Edição

Seção

Artigos

Como Citar

Andrade, T. P. de ., Barroso, E. V. ., Braga, L. P. V. ., Mello, C. L. ., & Souza, J. A. B. de . (2021). Controle estratigráfico e estrutural sobre a distribuição da permeabilidade em rochas siliciclásticas pouco consolidadas. Geologia USP. Série Científica, 21(2), 107-120. https://doi.org/10.11606/issn.2316-9095.v21-173516