Petrographic and litogeochemical characterization of Vale do Jacurici marbles and calc-silicate rocks, Bahia: paleoenvironmental conditions and phosphogenetic processes
DOI:
https://doi.org/10.11606/issn.2316-9095.v21-161794Keywords:
Jacuricy Valley, marbles, Calc-silicate rocks, Paleoenviromental conditions, PhosphogenesisAbstract
Based on paleoenvironmental interpretations with geochemical data, Vale do Jacurici marbles and calcissilicatic rocks, North-central of Bahia State, demonstrated an association with a paleoproterozoic shallow marine paleoenvironment. These rocks are deformed, metassomatized, and metamorphosed under high amphibolite to granulite conditions. They are intruded by the Itiúba Sienite and Mafic-ultramafic Complex Vale do Jacurici, mineralized in chromite, relation that indicates the minimum Paleoproterozoic age for the succession. In marble, marine signatures are preserved in RRE + Y patterns (PAAS normalized) with negative Ce-anomalies, positive Y and Gd-anomalies, and Y/Ho ratios near the values of sea water (60–168). Crustal contamination patterns indicate the presence of terrigenous components, especially in calc-silicate rocks, resulting in positive relations Zr versus Hf, relative enrichment of trace metals, ΣRRE + Y and Pr/Yb [SN], Y/Ho (< 30), and less marked anomalies. The presence of variable magnitudes of positive Eu-anomalies may reflect the contribution of signatures from residual Archaean seas and the influence of late magmatic fluids. The occourrence of anomalous values of P2O5 in marbles (1.38 and 4.56%) and diopsidites (2.07 and 2.3%) delimited with Y/Ho ratio (parameter of detritic contamination in the basin) that indicade signature of zones between terrestrial and marine contribution, evidences the stratigraphic control in phosphate concentration. These data indicate a paleoenvironment influenced by global climatic events that favors phosphogenesis, involving oxygen availability, similar scenario to Paleoproterozoic phosphate mineralized sedimentary basins in São Francisco Craton (SFC) and other parts of the world.
Downloads
References
Alexander, B. W., Bau, M., Andersson, P., Dulski, P. (2008). Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72(2), 378-394. https://doi.org/10.1016/j.gca.2007.10.028
Almeida, F. F. M. (1967). Origem e evolução da plataforma brasileira. DNPM-DGM Boletim, 241, 36 p.
Almeida, F. F. M. (1977). O Cráton do São Francisco. Revista Brasileira de Geociências, 7(4), 349-364.
Barbosa J. S. F., Dominguez J. M. L. (1996). Texto Explicativo para o Mapa Geológico da Bahia ao Milionésimo. Salvador: SICM/SGM. Edição Especial.
Barbosa, J. S. F., Mascarenhas, J. F., Corrêa-Gomes, L. C., Dominguez, J. M. L., Souza, J. S. (2012). Geologia da Bahia: Pesquisa e Atualização. Salvador: CBPM-Companhia Baiana de Pesquisa Mineral.
Barbosa, J. S. F., Sabaté, P., Marinho, M. M. (2003). O Cráton do São Francisco na Bahia: uma síntese. Revista Brasileira de Geociências, 33(1 Supl.), 3-6. https://doi.org/10.25249/0375-7536.200333S10306
Bau, M. (1993). Effects of syn-depositional and postdepositional processes on the rare-earth element distribution in Precambrian iron-formations. European Journal of Mineralogy, 5(2), 257-268. https://doi.org/10.1127/ejm/5/2/0257
Bau, M. (1999). Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta, 63(1), 67-77. https://doi.org/10.1016/S0016-7037(99)00014-9
Bau, M., Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman ironformations, Transvaal Supergroup, South Africa. Precambriam Research, 79(1-2), 37-55. https://doi.org/10.1016/0301-9268(95)00087-9
Bau, M., Möller, P., Dulski, P. (1997). Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry, 56(1-2), 123-131. https://doi.org/10.1016/S0304-4203(96)00091-6
Bolhar, R., Kamber, B. S., Moorbath, S., Fedo, C. M., Withehouse, M. J. (2004). Characterisation of early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letter, 222(1), 43-60. https://doi.org/10.1016/j.epsl.2004.02.016
Bolhar, R., Van Kranendonk, M. J. (2007). A nonmarine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Research, 155(3-4), 229-250. https://doi.org/10.1016/j.precamres.2007.02.002
Cook, P. J., Shergold, J. H. (1984). Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature, 308, 231-236. https://doi.org/10.1038/308231a0
Corkeron, M., Webb, G. E., Moulds, J., Grey, K. (2012). Discriminating stromatolite formation modes using rare earth element geochemistry: trapping and binding versus in situ precipitation of stromatolites from the Neoproterozoic Bitter Springs Formation, Northern Territory, Australia. Precambrian Research, 212-213, 194-206. https://doi.org/10.1016/j.precamres.2012.04.019
De Baar, H. J. W., Bacon, M. P., Brewer, P. G. (1983). Rareearth distributions with a positive Ce anomaly in the Western North Atlantic Ocean. Nature, 301, 324-327. https://doi.org/10.1038/301324a0
De Baar, H. J. W., Bacon, M. P., Brewer, P. G., Bruland, K. W. (1985). Rare earth elements in the Pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta, 49(9), 1943-1959. https://doi.org/10.1016/0016-7037(85)90089-4
Deb, M., Thorpe, R. I. (2004). Geochronologial constraints in the Precambrian geology of Rajasthan and their metallogenic implications. In: M. Deb, W. D. Goodfellow (eds.). Sedimenthosted lead-zinc sulphide deposits (p. 246-263). New Delhi: Narosa Publishing House.
Del Lama, E. A., Candia, M. A. F., Szabó, G. A. J. (2001). Petrography and Metamorphism of the Metasedimentary Country-Rocks of the Jacurici Valley Chromitite-Hosting Mafic-Ultramafic Complexes, Bahia, Northeastern Brazil. Geologia USP. Série Científica, 1, 1-15. https://doi.org/10.5327/S1519-874X2001000100002
Elderfield, H., Hawkesworth, C. H., Greaves, M. J., Calvert, S. E. (1981). Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments. Geochimica et Cosmochimica Acta, 45(4), 513-528. https://doi.org/10.1016/0016-7037(81)90184-8
Fonseca, A. C. (2013). Geoquímica dos Elementos Terras Raras (ETR). Disponível em: http://www.geobrasil.net/ geoinfo/docs%5Cgeoquimica.pdf. Acesso em: 20 jan. 2019.
Gaertner, C., Broecker, M., Strauss, H., Farber, K. (2011). Strontium-, carbon- and oxygen-isotope compositions of marbles from the Cycladic blueschist belt. Greece Geology, 148, 511-528. https://doi.org/10.1017/S001675681100001X
Gama, M. (2014). Caracterização petrográfica e litogeoquímica das rochas metacarbonáticas e calcissilicáticas do Vale do Rio Jacurici, Bahia. Trabalho de Conclusão de Curso. Bahia: Instituto de Geociências – UFBA.
Grauch, R. I. (1989). Rare-earth elements in metamorphic rocks. In: B. R. Lipin, G. A. McKay (eds.). Geochemistry and Mineralogy of Rare Earth Elements. Washington, D.C.: The Mineralogical Society of America. https://doi.org/10.1515/9781501509032-009
Jardim de Sá, E. F. (1983). Geologia da Região do Vale do Jacurici. Relatório Técnico de Consultoria. SME/COM.
Johannesson, K. H., Hawkins Jr., D. L., Cortés, A. (2006). Do Archean chemical sediments record ancient seawater rare earth element patterns? Geochimica et Cosmochimica Acta, 70(4), 871-890. https://doi.org/10.1016/j.gca.2005.10.013
Kazakov, A. V. (1937). The phosphorite facies end the genesis of Phosphonates. In: Geol. lnvestigations of Agricultural Ores. Trans. ScL Jnst. Fertilizers and Insecto-Fungicides, 142, 95-113.
Knoll, A. H., Kaufman, A. J., Semikhatov, M. A. (1995). The carbon isotopic composition of Proterozoic carbonates: Riphean successions from Northwestern Siberia (Anabar Massif Turukhansk uplift). American Journal of Science, 295(7), 823-850. https://doi.org/10.2475/ajs.295.7.823
Kosin, M. D., Melo, C. M., Souza, J. D., Oliveira, E. P., Carvalho, C. M. M. L. (2003). Geologia do segmento norte do Orógeno Itabuna-Salvador-Curaçá e guia de excursão. Revista Brasileira de Geociências, 33(1 Supl.), 15-26. https://doi.org/10.25249/0375-7536.200333S11526
Lawrence, M. G., Kamber, B. S. (2006). The behaviour of the rare earth elements during estuarine mixing-revisited. Marine Chemistry, 100(1-2), 147-161. https://doi.org/10.1016/j.marchem.2005.11.007
Lee, J. H., Byrne, R. H. (1993). Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions. Geochimica et Cosmochimica Acta, 57(2), 295-302. https://doi.org/10.1016/0016-7037(93)90432-V
Maheshwari, A., Sial, A. N., Gaucher, C., Bossi, J., Bekker, A., Ferreira, V. P., Romano, A. W. (2010). Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: a review of occurrences in Brazil, India and Uruguay. Precambrian Research, 182(4), 274-299. https://doi.org/10.1016/j.precamres.2010.06.017
Marinho, M. M., Rocha, G. F., Deus, P. B., Viana, J. S. (1986). Geologia e potencial cromitífero do Vale do Jacurici, Bahia: XXXIV Congresso Brasileiro de Geologia, 5, 2074-2088. Goiânia, SBG.
Marques, J. C., Ferreira Filho, C. F. (2003). The chromite deposits of the Ipueira Medrado Sill, Bahia, Brazil. Economic Geology, 98(1), 87-108. https://doi.org/10.2113/98.1.87
McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: B. R. Lipin, G. A. McKay (Eds.). Geochemistry and Mineralogy of Rare Earth Elements. Washington, D.C.: The Mineralogical Society of America. https://doi.org/10.1515/9781501509032-010
Moller, P., Bau, M. (1993). Rare earth patterns with positive Ce anomaly in alkaline water from Lake Van, Turkey. Earth and Planetary Science Letters, 117(3-4), 671-676. https://doi.org/10.1016/0012-821X(93)90110-U
Nelson, G. J., Pufahl, P. K., Hiatt, E. E. (2010). Paleoceanographic constraints on Precambrian phosphorite accumulation, Baraga Group, Michigan, USA. Sedimentary Geology, 226(1-4), 9-21. https://doi.org/10.1016/j.sedgeo.2010.02.001
Nozaki, Y., Zhang, J., Amakawa, H. (1997). The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters, 148(1-2), 329-340. https://doi.org/10.1016/S0012-821X(97)00034-4
Oliveira, E. P., Grisólia, M. F., Moreto, C., Donatti Filho, J. P., McNaughton, N., Vale, I. Z., (2010). Descoberta de um Complexo de Fore-arc Paleoproterozoico no Greenstone Belt do Rio Itapicuru, Bahia, e Implicações Geodinâmicas. XXXXV Congresso Brasileiro de Geologia. Belém: SBG.
Oliveira, E. P., Windley, B. F., McNaughton, N. J., Pimentel, M., Fletcher, I. R. (2004). Contrasting copper and chromium metallogenic evolution of terranes in the Paleoproterozoic Itabuna–Salvador–Curaçá orogen, São Francisco craton, Brazil: new zircon (SHRIMP) and Sm–Nd (model) ages and their significance for orogen-parallel escape tectonics. Precrambian Research, 128(1-2), 143-165. https://doi.org/10.1016/j.precamres.2003.09.018
Papineau, D. (2010). Global biogeochemical changes at both ends of the Proterozoic: insights from phosphorites. Astrobiology, 10(2), 165-181. https://doi.org/10.1089/ast.2009.0360
Piper, D. Z. (1974). Rare-Earth Elements in the Sedi Cycle: A Summary. Chemical Geology, 14(4), 285-304. https://doi.org/10.1016/0009-2541(74)90066-7
Planavsky, N., Bekker, A., Rouxel, O. J., Kamber, B., Hofmann, A., Knudsen, A., Lyons, T. W. (2010). Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta, 74(22), 6387-6405. https://doi.org/10.1016/j.gca.2010.07.021
Pufahl, P. K., Hiatt, E. E. (2012). Oxygenation of the Earth’s atmosphere-ocean system: a review of physical and chemical sedimentologic responses. Marine and Petroleum Geology, 32(1), 1-20. https://doi.org/10.1016/j.marpetgeo.2011.12.002
Ribeiro, T. S. (2016). Caracterização geológica das rochas calcissilicáticas e metacarbonáticas do complexo Tanque Novo – Ipirá na folha Pintadas – BA: potencial metalogenético para fosfato. Dissertação (Mestrado). Salvador: Instituto de Geociências - UFBA.
Ribeiro, T. S. (2017). Complexo Tanque Novo-Ipirá: Geologia e potencialidade para fosfato na folha Pintadas, Bahia. CBPM. Série Arquivos Abertos, 42.
Sanches, A. L. (1997). O Fosforito proterozoico da região de Irecê (Bahia). Dissertação (Mestrado). Salvador: Instituto de Geociências – UFBA.
Sarangi, S., Gopalan, K., Roy, A. B., Sreenivas, B., Das Sharma, S. (2006). Pb–Pb age of the carbonates of Jhamarkotra Formation constraining the age of the Aravalli Supergroup, Rajasthan. Journal of the Geological Society of India, 67(4), 442-446.
Shields, G., Stille, P., Brasier, M. D. (2000). Isotopic records across two phosphorite giant episodes compared: the Precambrian-Cambrian and the late Cretaceous-Recent. In: C. R. Glenn, L. Prevot, J. Lucas (eds.). Marine authigenesis: from global to microbial (p. 103-116). Tulsa: SEPM. https://doi.org/10.2110/pec.00.66.0103
Silveira, C. J. S., Frantz, J. C., Marques, J. C., Queiroz, W. J. A., Roos, S., Peixoto, V. M. (2015). Geocronologia U-Pb em zircão de rochas intrusivas e de embasamento na região do Vale do Jacurici, Cráton do São Francisco, Bahia. Brazilian Journal of Geology, 45(3), 453-474. https://doi.org/10.1590/2317-488920150030233
Swart, P. K. (2015). The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology, 62(5), 1233-1304. https://doi.org/10.1111/sed.12205
Taylor, S. R., McLennan, S. M. (1985). The continental crust: its composition and evolution. Oxford: Blackwell Scientific Publications.
Towe, K. M. (1991). Aerobic carbon cycling and cerium oxidation: significance for Archean oxygen levels and banded iron-formation deposition. Global and Planetary Change, 97(1-2), 113-123. https://doi.org/10.1016/0031-0182(91)90187-V
Veizer, J., Plumb, K. A., Clayton, R. N., Hinton, R. W., Grotzinger, J. P. (1992). Geochemistry of Precambrian carbonates: V. Late Paleoproterozoic seawater. Geochimica et Cosmochimica Acta, 56(6), 2487-2501. https://doi.org/10.1016/0016-7037(92)90204-V
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Mariana Andriotti Gama, Aroldo Misi, José Haroldo da Silva Sá, Luis Rodrigues dos Santos de Oliveira, Tatiana Silva Ribeiro

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish in this journal shall comply with the following terms:
- Authors keep their copyright and grant to Geologia USP: Série Científica the right of first publication, with the paper under the Creative Commons BY-NC-SA license (summary of the license: https://creativecommons.org/licenses/by-nc-sa/4.0 | full text of the license: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode) that allows the non-commercial sharing of the paper and granting the proper copyrights of the first publication in this journal.
- Authors are authorized to take additional contracts separately, for non-exclusive distribution of the version of the paper published in this journal (publish in institutional repository or as a book chapter), granting the proper copyrights of first publication in this journal.
- Authors are allowed and encouraged to publish and distribute their paper online (in institutional repositories or their personal page) at any point before or during the editorial process, since this can generate productive changes as well as increase the impact and citation of the published paper (See The effect of Open Access and downloads on citation impact).