O uso de pseudosseções em Petrologia Metamórfica: conceitos básicos e aplicações, com ênfase em pelitos

Autores

DOI:

https://doi.org/10.11606/issn.2316-9095.v22-186131

Palavras-chave:

Grades petrogenéticas, Termodinâmica, Modelagem metamórfica, Metapelitos

Resumo

O uso de pseudosseções em trabalhos voltados para Petrologia Metamórfica tem se tornado cada vez mais comum nos últimos 20 anos em razão de uma série de fatores, entre eles o avanço das técnicas de análise química mineral usando microssonda eletrônica e laser ablation acoplado à ICP-MS, além do refinamento no tratamento dos dados isotópicos em fases acessórias, tais como monazita e zircão, e, principalmente, o aperfeiçoamento dos softwares disponíveis para a sua construção. A cada ano são lançadas novas atualizações desses softwares; no entanto, bibliografias básicas que contemplem os aspectos teórico-práticos sobre as pseudosseções são escassas, sobretudo em língua portuguesa. Esta contribuição visou sintetizar esses aspectos, que são necessários para aqueles que desejam se aprofundar em Petrologia Metamórfica. Aqui são apresentados alguns princípios básicos de diagramas de fase, no geral, e pseudosseções, em particular, e são discutidos os primeiros passos de sua construção. Também são tratados aspectos topológicos de pseudosseções em diferentes sistemas químicos, para exemplificar as diferenças e as semelhanças que ocorrem.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Atkins, P., Paula, J. (2018). Físico-química. Rio de Janeiro: LTC, 512 p.

Ball, D. W. (2005). Físico-química. São Paulo: Thomson, 877 p.

Barrow, G. (1893). On an intrusion of muscovite-biotite gneiss in the south-eastern highlands of Scotland, and its accompanying metamorphism. Quarterly Journal of the Geological Society, 49, 330-358. https://doi.org/10.1144/GSL.JGS.1893.049.01-04.52

Barrow, G. (1912). On the geology of lower dee-side and the southern Highland border. Proceedings of the Geologists’ Association, 23, 274-290. Disponível em: https://dokumen.tips/documents/on-the-geology-of-lowerdee-side-and-the-southern-highland-border.html. Acesso em: 19 nov. 2021.

Berman, R. G. (1988). Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeOFe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2), 445-522. https://doi.org/10.1093/petrology/29.2.445

Brown, M., Johnson, T. (2018). Secular change in metamorphism and the onset of global plate tectonics. American Mineralogist, 103(2), 181-196. https://doi.org/10.2138/am-2018-6166

Bucher, K., Grapes, R. (2011). Petrogenesis of metamorphic rocks. Heidelberg: Springer-Verlag, 428 p. https://doi.org/10.1007/978-3-540-74169-5

Candia, M. A. F., Szabó, G. A. J., Del Lama, E. A. (2003). Petrologia metamórfica: fundamentos para a interpretação de diagramas de fase. São Paulo: EDUSP, 190 p.

Carlson, W. D. (2002). Scales of disequilibrium and rates of equilibration during metamorphism. American Mineralogist, 87(2-3), 185-204. https://doi.org/10.2138/am-2002-2-301

Carlson, W. D., Pattison, D. R. M., Caddick, M. J. (2015). Beyond the equilibrium paradigm: how consideration of kinetics enhances metamorphic interpretation. American Mineralogist, 100(8-9), 1659-1667. https://doi.org/10.2138/am-2015-5097

Connolly, J. A. D. (1990). Multivariable phase-diagrams-an algorithm based on generalized thermodynamics. American Journal of Science, 290(6), 666-718. https://doi.org/10.2475/ajs.290.6.666

Connolly, J. A. D., Kerrick, D. M. (1987). An algorithm and computer program for calculating composition phase diagrams. Calphad, 11(1), 1-55. https://doi.org/10.1016/0364-5916(87)90018-6

de Capitani, C., Brown, T. H. (1987). The computation of chemical equilibrium incomplex systems containing non-ideal solutions. Geochimica et Cosmochimica Acta, 51(10), 2639-2652. https://doi.org/10.1016/0016-7037(87)90145-1

de Capitani, C., Petrakakis, K. (2010). The computation of equilibrium assemblage diagrams with Theriak/Domino software. American Mineralogist, 95(7), 1006-1016. https://doi.org/10.2138/am.2010.3354

Diener, J. F. A., Powell, R. (2010). Influence of ferric iron on the stability of mineral assemblages: Journal of Metamorphic Geology, 28(6), 599-613. https://doi.org/10.1111/j.1525-1314.2010.00880.x

Diener, J. F. A., Powell, R. (2012). Revised activitycomposition models for clinopyroxene and amphibole. Journal of Metamorphic Geology, 30(2), 131-142. https://doi.org/10.1111/j.1525-1314.2011.00959.x

Duesterhoeft, E. (2017). BED92.v1 - Theriak-Domino Database. https://doi.org/10.13140/RG.2.2.10285.69609

Duesterhoeft, E., Lanari, P. (2020). Iterative thermodynamic modelling-Part 1: A theoretical scoring technique and a computer program (Bingo-Antidote). Journal of Metamorphic Geology, 38(5), 527-551. https://doi.org/10.1111/jmg.12538

Eskola, P. (1939). Die enstehung der Gesteine. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-86244-1

Fumes, R. A., Luvizotto, G., Moraes, R., Lanari, P., Valeriano, C., Zack, T., Caddick, M., Simões, L. S. (2021). Petrochronology of high-pressure granulite facies rocks from Southern Brasília Orogen, SE Brazil: combining quantitative compositional mapping, single-element thermometry and geochronology. Journal of Metamorphic Geology. https://doi.org/10.1111/jmg.12637

Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B., Palin, R. M. (2016). Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9), 845-869. https://doi.org/10.1111/jmg.12211

Helgeson, H. C., Delany, J. M., Nesbitt, H. W., Bird, D. K. (1978). Summary and critique of the thermodynamic properties of rock-forming minerals. American Journal of Science, 278A, 1-229.

Hensen, B. J. (1971). Theoretical phase relations involving cordierite and garnet in the system MgO-FeO-Al2O3-SiO2. Contribution to Mineralogy and Petrology, 33, 191-214. https://doi.org/10.1007/BF00374063

Holland, T. J. B., Powell, R. (1985). An internally consistent thermodynamic dataset with uncertainties and correlations: 2. Data and results. Journal of Metamorphic Geology, 3(4), 343-370. https://doi.org/10.1111/j.1525-1314.1985.tb00325.x

Holland, T. J. B., Powell, R. (1998). An internally consistent thermodynamic dataset for phases of petrological interest. Journal of Metamorphic Geology, 16(3), 309-344. https://doi.org/10.1111/j.1525-1314.1998.00140.x

Holland, T. J. B., Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3), 333-383. https://doi.org/10.1111/j.1525-1314.2010.00923.x

Joesten, R. (1977). Evolution of mineral assemblage zoning in diffusion metasomatism. Geochimica et Cosmochimica Acta, 41(5), 649-670. https://doi.org/10.1016/0016-7037(77)90303-9

Lanari, P., Duesterhoeft, E. (2019). Modeling metamorphic rocks using equilibrium thermodynamics and internally consistent databases: past achievements, problems and perspectives. Journal of Petrology, 60(1), 19-56. https://doi.org/10.1093/petrology/egy105

Lanari, P., Engi, M. (2017). Local bulk composition effects on metamorphic mineral assemblages. Reviews in Mineralogy and Geochemistry, 83, 55-102. https://doi.org/10.1515/9783110561890-004

López-Carmona, A., Pitra, P., Abati, J. (2013). Blueschistfacies metapelites from the Malpica–Tui Unit (NW Iberian Massif): phase equilibria modelling and H2O and Fe2O3 influence in high-pressure assemblages. Journal of Metamorphic Geology, 31(3), 263-280. https://doi.org/10.1111/jmg.12018

Mirwald, P. W., Massonne, H. J. (1980). The low-high quartz and quartz-coesite transition to 40 kbar between 600 and 1600°C and some reconnaissance data on the effect of NaAlO, component on the low quartz-coesite transition. Journal of Geophysical Research, 85(B12), 6983-6990. https://doi.org/10.1029/JB085iB12p06983

Motta, R. G., Fitzsimons, I. C. W., Moraes, R., Johnson, T. E., Schuindt, S., Benetti, B. Y. (2021). Recovering P–T–t paths from ultra-high temperature (UHT) felsic orthogneiss: an example from the Southern Brasília Orogen, Brazil. Precambrian Research, 359, 106222. https://doi.org/10.1016/j.precamres.2021.106222

Palin, R. M., Weller, O. M., Waters, D. J., Dyck, B. (2016). Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geoscience Frontiers, 7(4), 591-607. https://doi.org/10.1016/j.gsf.2015.08.005

Pavan, M. (2010). Modelamento metamórfico de rochas das fácies xisto-verde e anfibolito com o uso de pseudosseções: exemplo das rochas da klippe Carrancas, sul de Minas Gerais. Dissertação (Mestrado). São Paulo: Universidade de São Paulo, 147 p. https://doi.org/10.11606/D.44.2010.tde-06052010-145012

Pavan, M., Moraes, R., Sawyer, E. W. (2021a). Changes in the composition of anatectic melt and its complementary residue by forward-modelling using THERMOCALC. Lithos, 396-397, 106220. https://doi.org/10.1016/j.lithos.2021.106220

Pavan, M., Sawyer, E. W., Moraes, R., Faleiros, F. M. (2021b). Partial melting of granodiorite, a common igneous rock: insights from Ediacaran granulite-facies metamorphism in the Southern Brazil. Journal of Petrology, 62(7), egab028. https://doi.org/10.1093/petrology/egab028

Philpotts, A. R., Ague, J. J. (2009). Principles of igneous and metamorphic geology. Nova York: Cambridge University Press, 667 p.

Powell, R. (1978). Equilibrium thermodynamics in petrology. Londres: Harper & Row, 284 p.

Powell, R., Guiraud, M., White, R. W. (2005). Truth and beauty in metamorphic phase-equilibria: Conjugate variables and phase diagrams. The Canadian Mineralogist, 43(1), 21-33. https://doi.org/10.2113/gscanmin.43.1.21

Powell, R., Holland, T. J. B. (1988). An internally consistent thermodynamic dataset with uncertainties and correlations: application methods, worked examples and a computer program. Journal of Metamorphic Geology, 6(2), 173-204. https://doi.org/10.1111/j.1525-1314.1988.tb00415.x

Powell, R., Holland, T. J. B. (1990). Calculated mineral equilibria in the pelite system, KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O). American Mineralogist, 75(3-4), 367-380.

Powell, R., Holland, T. J. B. (1993). On the formulation of simple mixing models for complex phases. American Mineralogist, 78(11-12), 1174-1180. Disponível em: http://pubs.geoscienceworld.org/msa/ammin/articlepdf/78/11-12/1174/4218476/am78_1174.pdf. Acesso em: 19 nov. 2021.

Powell, R., Holland, T. (2008). On thermobarometry. Journal of Metamorphic Geology, 26(2), 155-179. https://doi.org/10.1111/j.1525-1314.2007.00756.x

Powell, R., Holland, T., Worley, B. (1998). Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16(4), 577-588. https://doi.org/10.1111/j.1525-1314.1998.00157.x

Powell, R., White, R. W., Kelsey, D., Diener, J. (2006). THERMOCALC Short Course. São Paulo. Disponível em: https://hpxeosandthermocalc.org/the-thermocalc-software/thermocalc-help/. Acesso em: 19 nov. 2021.

Proyer, A., Dachs, E., McCammon, C. (2004). Pitfalls in geothermobarometry of eclogites: Fe3+ and changes in the mineral chemistry of omphacite at ultrahigh pressures. Contributions to Mineralogy and Petrology, 147(3), 305-318. https://doi.org/10.1007/s00410-004-0554-6

Reno, B. L., Brown, M., Kobayashi, K., Nakamura, E., Piccoli, P. M., Trouw, R. A. J. (2009). Eclogite–high-pressure granulite metamorphism records early collision in West Gondwana: new data from the Southern Brasília Belt, Brazil. Journal of the Geological Society, 166(6), 1013-1032. https://doi.org/10.1144/0016-76492008-140

Santos, A. C., Moraes, R., Szabó, G. A. J. (2019). A comparison between pseudosections for metamafic rocks using THERMOCALC and experimental and independent thermobarometric data. Lithos, 340-341, 108-123. https://doi.org/10.1016/j.lithos.2019.04.024

Santos, C., White, R. W., Moraes, R., Szabó, G. A. J. (2021). The gabbro to amphibolite transition along a hydration–deformation front. Journal of Metamorphic Geology, 39(4), 417-442. https://doi.org/10.1111/jmg.12582

Spear, F. S. (1993). Metamorphic phase equilibria and pressure-temperature-time paths. Washington, D.C.: Mineralogical Society of America, 799 p.

Spear, F. S., Cheney, J. T. (1989). A petrogenetic grid for politic schists in the system SiO2–Al2O3–FeO–MgO–K2O–H2O. Contributions to Mineralogy and Petrology, 101, 149-164. https://doi.org/10.1007/BF00375302

Spear, F. S., Pattison, D. R. M, Cheney, J. T. (2016). The metamorphosis of metamorphic petrology. Geological Society of America Special Paper, 523. https://doi.org/10.1130/2016.2523(02)

Štipska, P., Powell, R., White, R. W., Baldwin, J. A. (2010). Using calculated chemical potential relationships to account for coronas around kyanite: an example from the Bohemian Massif. Journal of Metamorphic Geology, 28(1), 97-116. https://doi.org/10.1111/j.1525-1314.2009.00857.x

Stüwe, K. (1997). Effective bulk composition changes due to cooling: a model predicting complexities in retrograde reaction textures. Contributions to Mineralogy and Petrology, 129, 43-52. https://doi.org/10.1007/s004100050322

Tedeschi, M., Lanari, P., Rubatto, D., Pedrosa-Soares, A., Hermann, J., Dussin, I., Pinheiro, M. A. P., Bouvier, A. S., Baumgartner, L. (2017). Reconstruction of multiple P-T-t stages from retrogressed mafic rocks: Subduction versus collision in the Southern Brasília Orogen (SE Brazil). Lithos, 294-295, 283-303. https://doi.org/10.1016/j.lithos.2017.09.025

Thompson, J. B. Jr. (1957). The graphical analysis of mineral assemblages in pelitic schists. American Mineralogist, 42(11-12), 842-858. Disponível em: http://pubs.geoscienceworld.org/msa/ammin/article-pdf/42/11-12/842/4247296/am-1957-842.pdf. Acesso em: 19 nov. 2021.

Trommsdorff, V., Evans, B. W. (1972). Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy). American Journal of Science, 272(5), 423-437. https://doi.org/10.2475/ajs.272.5.423

Trouw, R. A. J., Ribeiro, A., Paciullo, F. V. P. (1983). Geologia estrutural dos Grupos São João Del Rei, Carrancas e Andrelândia, sul de Minas Gerais. Anais da Academia Brasileira de Ciências, 55, 71-85.

Wernert, P., Schulmann, K., Chopin, F., Štipska, P., Bosch, D., El Houicha, M. (2016). Tectonometamorphic evolution of an intracontinental orogeny inferred from P–T–t–d paths of the metapelites from the Rehamna massif (Morocco). Journal of Metamorphic Geology, 34(9), 917-940. https://doi.org/10.1111/jmg.12214

White, R. W., Powell, R. (2010). Retrograde melt–residue interaction and the formation of near-anhydrous leucosomes in migmatites, Journal of Metamorphic Geology, 28(6), 579-597. https://doi.org/10.1111/j.1525-1314.2010.00881.x

White, R. W., Powell, R., Baldwin, J. A. (2008). Calculated phase equilibria involving chemical potentials to investigate the textural evolution of metamorphic rocks. Journal of Metamorphic Geology, 26(2), 181-198. https://doi.org/10.1111/j.1525-1314.2008.00764.x

White, R. W., Powell, R., Clarke, G. L. (2002). The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-H2O-Fe2O3. Journal of Metamorphic Geology, 20(1), 41-55. https://doi.org/10.1046/j.0263-4929.2001.00349.x

White, R. W., Powell, R., Holland, T. J. B. (2007). Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology, 25, 511-527. https://doi.org/10.1111/j.1525-1314.2007.00711.x

White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., Green, E. C. R. (2014a). New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3), 261-286. https://doi.org/10.1111/jmg.12071

White, R. W., Powell, R., Holland, T. J. B., Worley, B. A. (2000). The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5), 497-511. https://doi.org/10.1046/j.1525-1314.2000.00269.x

White, R. W., Powell, R., Johnson, T. E. (2014b). The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals: Journal of Metamorphic Geology, 32(8), 809-828. https://doi.org/10.1111/jmg.12095

Whitney, D. L., Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-187. https://doi.org/10.2138/am.2010.3371

Will, T. M. (1998). Phase equilibria in metamorphic rocks: thermodynamic background and petrological applications. Berlin: Springer-Verlag. 315 p. https://doi.org/10.1007/BFb0117723

Zen, E-a. (1966). Construction of pressure temperature diagrams for multicomponent systems after the method of Schreinemakers – a geometric approach: United States Geological Survey Bulletin, v. 1225. 68 p. Disponível em: https://pubs.usgs.gov/bul/1225/report.pdf. Acesso em: 19 nov. 2021.

Downloads

Publicado

2022-02-24

Edição

Seção

Artigos

Como Citar

Gengo, R. M. ., Santos, C. A. ., Moraes, R. ., & Szabó, G. A. J. . (2022). O uso de pseudosseções em Petrologia Metamórfica: conceitos básicos e aplicações, com ênfase em pelitos. Geologia USP. Série Científica, 22(1), 21-38. https://doi.org/10.11606/issn.2316-9095.v22-186131