Respostas do microplâncton marinho durante os Eventos Anóxicos Oceânicos (OAEs) do Cretáceo
DOI:
https://doi.org/10.11606/issn.2316-9095.v25-227385Palavras-chave:
Produtividade marinha, Eventos de extinção, Taxa de rotatividade de espécies, Nanofósseis calcários, Oceano Atlântico SulResumo
Os microfósseis desempenham um papel vital como componentes das rochas sedimentares depositadas durante o Cretáceo, fornecendo informações para a caracterização dos Eventos Anóxicos Oceânicos (OAEs). Esse estudo visa identificar e sistematizar as respostas do microplâncton marinho aos OAEs do Cretáceo, por meio da literatura publicada. Os microfósseis marinhos respondem aos OAEs por meio de eventos evolutivos, variações preservacionais, nas abundâncias e diversidade das associações. Além disso, esses organismos exportam concentrações significativas de elementos químicos para o fundo marinho, impactando o clima global. Mudanças nos ciclos orbitais do planeta e eventos paleogeográficos e vulcânicos de grande escala são considerados as principais causas que promoveram mudanças significativas nos ecossistemas do Mesozoico, resultando nos processos geológicos que caracterizam os OAEs. Ao analisar os oito OAEs do Cretáceo foi possível caracterizar as respostas geoquímicas e do microplâncton marinho para cada OAE. Por meio desse estudo é possível inferir que cada OAE possui características únicas, amplitude específica no tempo geológico, distintos fatores causais e impactos específicos sobre a biota marinha. Os microfósseis marinhos, em especial os nanofósseis calcários, radiolários e foraminíferos representam um importante componente para os ciclos biogeoquímicos do planeta e sua evolução está intimamente relacionada aos OAEs. Estudos adicionais, com materiais do Oceano Atlântico Sul, são necessários para melhor compreender os impactos dos OAEs na evolução da biota marinha.
Downloads
Referências
Aguado, R., Company, M., Castro, J. M., de Gea, G. A., Molina, J. M., Nieto, L. M., Ruiz-Ortiz, P. A. (2018). A new record of the Weissert episode from the Valanginian succession of Cehegín (Subbetic, SE Spain): Bio- and carbon isotope stratigraphy. Cretaceous Research, 92, 122-137. https://doi.org/10.1016/j.cretres.2018.07.010
Ait-Itto, F. Z., Martinez, M., Deconinck, J. F., Bodin, S. (2023). Astronomical calibration of the OAE1b from the Col de Pré-Guittard Section (Aptian–Albian), Vocontian Basin, France. Cretaceous Research, 105618. https://doi.org/10.1016/j.cretres.2023.105618
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpsom, C., Tomašových, A., Visaggi, C. C. (2008). Phanerozoic Trends in the Global Diversity of Marine Invertebrates. Science, 321(5885), 97-100. https://doi.org/10.1126/science.1156963
Arai, M. (1988). Geochemical reconnaissance of the mid-Cretaceous Anoxic Event in the Santos Basin, Brazil. Revista Brasileira de Geociências, 18(3), 273-282.
Arai, M. (2014). Aptian/Albian (Early Cretaceous) paleogeography of the South Atlantic: A paleontological perspective. Brazilian Journal of Geology, 44(2), 339-350. https://doi.org/10.5327/Z2317-4889201400020012
Arthur, M. A., Schlanger, S. O. (1979). Cretaceous “Oceanic Anoxic Events” as causal factors in development of reef-reservoired giant oil fields. AAPG Bulletin, 63(6), 870-885. https://doi.org/10.1306/2F91848C-16CE-11D7-8645000102C1865D
Arthur, M. A., Brumsack, H. J., Jenkyns, H. C., Schlanger, S. O. (1990). Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences. Cretaceous resources, events and rhythms: background and plans for research, 75-119. https://doi.org/10.1007/978-94-015-6861-6_6
Aubry, M. P., Bord, D., Beaufort, L., Kahn, A., Boyd, S. (2005). Trends in size changes in the coccolithophorids, calcareous nannoplankton, during the Mesozoic: A pilot study. Micropaleontology, 51(4), 309-318. https://doi.org/10.2113/gsmicropal.51.4.309
Barbarin, N., Bonin, A., Mattioli, E., Pucéat, E., Cappetta, H., Gréselle, B., Pitet, B., Vennin E., Joachimski, M. (2012). Evidence for a complex Valanginian nannoconid decline in the Vocontian basin (South East France). Marine Micropaleontology, 84-85, 37-53. https://doi.org/10.1016/j.marmicro.2011.11.005
Bastos, L. P. H., Pereira, E., Cavalcante, D. C., Alferes, C. L. F., Menezes, C. J., Rodrigues, R. (2020). Expression of Early Cretaceous global anoxic events in Northeastern Brazilian basins. Cretaceous Research, 110. https://doi.org/10.1016/j.cretres.2020.104390
Batenburg, S. J., De Vleeschouwer, D., Sprovieri, M., Hilgen, F. J., Gale, A. S., Singer, B. S., Koeberl, C., Coccioni, R., Claeys, P., Montanari, A. (2016). Orbital control on the timing of oceanic anoxia in the Late Cretaceous. Climate of the Past, 12(10), 1995-2009. https://doi.org/10.5194/cp-12-1995-2016
Baudin, F. (2005). A Late Hauterivian short-lived anoxic event in the Mediterranean Tethys: the ‘Faraoni Event’. Comptes Rendus Geoscience, 337(16), 1532-1540. https://doi.org/10.1016/j.crte.2005.08.012
Baudin, F., Riquier, L. (2014). The Late Hauterivian Faraoni “Oceanic Anoxic Event”: an update. Bulletin de la Société Géologique de France, 185, 359-377. https://doi.org/10.2113/gssgfbull.185.6.359
Bauer, K. W., McKenzie, N. R., Cheung, C. T., Gambacorta, G., Bottini, C., Nordsvan, A. R., Erba, E., Crowe, S. A. (2024). A climate threshold for ocean deoxygenation during the Early Cretaceous. Nature, 633(8030), 582-586. https://doi.org/10.1038/s41586-024-07876-1
Behrooz, L., Naafs, B. D. A., Dickson, A. J., Love, G. D., Batenburg, S. J., Pancost, R. D. (2018). Astronomically Driven Variations in Depositional Environments in the South Atlantic During the Early Cretaceous. Paleoceanography and Paleoclimatology, 33, 894-912. https://doi.org/10.1029/2018PA003338
Benamara, A., Charbonnier, G., Adatte, T., Spangenberg, J. E., Föllmi, K. B. (2020). Precession-driven monsoonal activity controlled the development of the early Albian Paquier oceanic anoxic event (OAE1b): Evidence from the Vocontian Basin, SE France. Palaeogeography, Palaeoclimatology, Palaeoecology, 537, 109406. https://doi.org/10.1016/j.palaeo.2019.109406
Berger, W. H., Vincent, E. (1986). Deep-sea carbonates: reading the carbon-isotope signal. Geologische Rundschau, 75, 249-269. https://doi.org/10.1007/BF01770192
Bersezio, R., Erba, E., Gorza, M., Riva, A. (2002). Berriasian–Aptian black shales of the Maiolica formation (Lombardian Basin, Southern Alps, Northern Italy): local to global events. Palaeogeography, Palaeoclimatology, Palaeoecology, 180(4), 253-275. https://doi.org/10.1016/S0031-0182(01)00416-3
Bettoni, C., Erba, E., Castiglione, S., Raia, P., Bottini, C. (2024). Morphometric changes in Watznaueria barnesiae across the mid Cretaceous: Paleoecological implications. Marine Micropaleontology, 188, 102343. https://doi.org/10.1016/j.marmicro.2024.102343
Billen, G., Lancelot, C., Meybeck, M. (1991). N, P and Si retention along the aquatic continuum from land to ocean. In: Mantoura, R.F.C., Martin, J.M., Wollast, R. (Eds.), Ocean Margin Processes in Global Change. Dahlem Workshop Reports. Berlin: Wiley, 19-44.
Bodin, S., Godet, A., Matera, V., Steinmann, P., Vermeulen, J., Gardin, S., Adatte, T., Coccioni, R., Föllmi, K. B. (2007). Enrichment of redox-sensitive trace metals (U, V, Mo, As) associated with the late Hauterivian Faraoni oceanic anoxic event. International Journal of Earth Sciences, 96, 327-341. https://doi.org/10.1007/s00531-006-0091-9
Bodin, S., Charpentier, M., Ullmann, C. V., Rudra, A., Sanei, H. (2023). Carbon cycle during the late Aptian–early Albian OAE 1b: A focus on the Kilian–Paquier levels interval. Global and Planetary Change, 222, 104074. https://doi.org/10.1016/j.gloplacha.2023.104074
Bolli, H. M., Ryan, W. B. F., Foresman, J. B., Hottman, W. E., Kagami, H., Longoria, J. F., McKnight, B. K., Melguen, M., Natland, J. H., Proto-Decima, F., Siesser, W. G. (1978). Angola continental margin-Sites 364 and 365, in: Hans M. Bolli et al., (Ed.), Initial Reports of the Deep Sea Drilling Project. Washington: U.S. Government Printing Office, pp. 357-390. https://doi.org/10.2973/dsdp.proc.40.104.1978
Bom, M. H. H., Kochhann, K. G. D., Heimhofer, U., Mota, M. A. L., Guerra, R. M., Simões, M. G., Krahl, G., Meirelles, V., Ceolin, D., Fürsich, F., Lima, F. H. O., Fauth, G., Assine, M. L. (2023). Fossil-bearing concretions of the Araripe Basin accumulated during Oceanic Anoxic Event 1b. Paleoceanography and Paleoclimatology, 38(11), e2023PA004736. https://doi.org/10.1029/2023PA004736
Bonazzi, M., Bonacina, G., Massara, E. P., Piva, A., Scotti, P., Viaggi, P., Sanfilippo, A. (2024). Reconstructing redox variation in a young, expanding ocean basin (Cretaceous Central Atlantic). Cretaceous Research, 105681. https://doi.org/10.1016/j.cretres.2023.105681
Bond, D. P., Grasby, S. E. (2017). On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005
Bornemann, A., Pross, J., Reichelt, K., Herrle, J. O., Hemleben, C., Mutterlose, J. (2005). Reconstruction of short-term palaeoceanographic changes during the formation of the Late Albian ‘Niveau Breistroffer’ black shales (Oceanic Anoxic Event 1d, SE France). Journal of the Geological Society, 162(4), 623-639. https://doi.org/10.1144/0016-764903-171
Boulila, S., Peters, S. E., Müller, R. D., Haq, B. U., Hara, N. (2023). Earth’s interior dynamics drive marine fossil diversity cycles of tens of millions of years. Proceedings of the National Academy of Sciences, 120(29), e2221149120. https://doi.org/10.1073/pnas.2221149120
Bown, P. R. (1998). Calcareous Nannofossil Biostratigraphy. London: Kluwer Academic, 315 pp. https://doi.org/10.1007/978-94-011-4902-0
Bown, P. R. (2005). Calcareous nannoplankton evolution: a tale of two oceans. Micropaleontology, 51, 299-308, https://doi.org/10.2113/gsmicropal.51.4.299.
Bown, P. R., Young, J. R. (2019). The fossil record of coastal coccolithophores. Journal of Nannoplankton Research, (Special issue 4), 73-80.
Bown, P. R., Lees, J. A., Young, J. R. (2004). Calcareous nannoplankton evolution and diversity through time. Coccolithophores: from molecular processes to global impact, 481-508. https://doi.org/10.1007/978-3-662-06278-4_18
Bralower, T. J., Arthur, M. A., Leckie, R. M., Sliter, W. V., Allard, D. J., Schlanger, S. O. (1994). Timing and paleoceanography of oceanic dysoxia/anoxia in the late Barremian to early Aptian (Early Cretaceous). Palaios, 335-369. https://doi.org/10.2307/3515055
Browning, E. L., Watkins, D. K. (2008). Elevated primary productivity of calcareous nannoplankton associated with ocean anoxic event 1b during the Aptian/Albian transition (Early Cretaceous). Paleoceanography, 23(2). https://doi.org/10.1029/2007PA001413
Bruno, M. D. R., Fauth, G., Watkins, D. K., Savian, J. F. (2020). Albian–Cenomanian calcareous nannofossils from DSDP Site 364 (Kwanza Basin, Angola): Biostratigraphic and paleoceanographic implications for the South Atlantic. Cretaceous Research, 109, 104377. https://doi.org/10.1016/j.cretres.2020.104377
Bruno, M. D. R., Fauth, G., Watkins, D. K., Caramez, M. G. S., Nauter-Alves, A., Savian, J. F. (2022). Paleoceanographic evolution in the South Atlantic Ocean (Kwanza Basin, Angola) during its post-salt foundering. Marine and Petroleum Geology, 144, 105852. https://doi.org/10.1016/j.marpetgeo.2022.105852
Büggisch, W. (1991). The global Frasnian-Famennian »Kellwasser Event«. Geologische Rundschau, 80, 49-72. https://doi.org/10.1007/BF01828767
Burgess, S. (2019). Deciphering mass extinction triggers. Science, 363(6429), 815-816. https://doi.org/10.1126/science.aaw0473
Bush, A. M., Bambach, R. K. (2011). Paleoecologic megatrends in marine metazoa. Annual Review of Earth and Planetary Sciences, 39, 241-269. https://doi.org/10.1146/annurev-earth-040809-152556
Caetano-Filho, S., Dias-Brito, D., Rodrigues, R., Azevedo, R. L. M. (2017). Carbonate microfacies and chemostratigraphy of a late Aptian–early Albian marine distal section from the primitive South Atlantic (SE Brazilian continental margin): Record of global ocean-climate changes? Cretaceous Research, 74, 23-44. https://doi.org/10.1016/j.cretres.2017.02.011
Cagliari, J., Serratt, H., Cassel, M. C., Schmitz, M. D., Chemale Jr., F. (2022). New high-precision U-Pb zircon age of the Irati Formation (Paraná Basin) and implications for the timing of the Kungurian anoxic events recorded in southern Gondwana. Gondwana Research, 107, 134-145. https://doi.org/10.1016/j.gr.2022.03.004
Carmichael, S. K., Waters, J. A., Koenigshof, P., Suttner, T. J., Kido, E. (2019). Paleogeography and paleoenvironments of the Late Devonian Kellwasser Event: A review of its sedimentological and geochemical expression. Global and Planetary Change, 183, 102984. https://doi.org/10.1016/j.gloplacha.2019.102984
Cavalheiro, L., Wagner, T., Steinig, S., Bottini, C., Dummann, W., Esegbue, O., Gambacorta, G., Giraldo-Gómez, V., Farnsworth, A., Flögel, S., Hofmann, P., Lunt, D. J., Rethemeyer, J., Torricelli, S., Erba, E. (2021). Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event. Nature Communications, 12, 5411. https://doi.org/10.1038/s41467-021-25706-0
Clapham, M. E., Renne, P. R. (2019). Flood Basalts and Mass Extinctions. Annual Review of Earth and Planetary Sciences, 47, 275-303. https://doi.org/10.1146/annurev-earth-053018
Coccioni, R., Galeotti, S. (1993). Orbitally induced cycles in benthonic foraminiferal morphogroups and trophic structure distribution patterns from the Late Albian “Amadeus Segment” (Central Italy). Journal of Micropalaeontolgy, 12(2), 227-239.
Courtillot, V. E., Renne, P. R. (2003). On the ages of flood basalt events. Comptes Rendus - Geoscience, 335(1), 113-1140. https://doi.org/10.1016/S1631-0713(03)00006-3
Cramer, B. D., Jarvis, I. (2020). Carbon isotope stratigraphy. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), Geologic time scale 2020, vol. 1, Chapter 11, 309-343. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00011-5
Cui, X., Wignall, B., Freeman, K. H., Summons, R. E. (2023). Early Cretaceous marine incursions into South Atlantic rift basins originated from the south. Communications Earth and Environment, 4(1), 6. https://doi.org/10.1038/s43247-022-00668-3
Dummann, W., Steinig, S., Hofmann, P., Flögel, S., Osborne, A. H., Frank, M., Herrle, J. O., Bretschneider, L., Sheward, R. M., Wagner, T. (2020). The impact of Early Cretaceous gateway evolution on ocean circulation and organic carbon burial in the emerging South Atlantic and Southern Ocean basins. Earth and Planetary Science Letters, 530. https://doi.org/10.1016/j.epsl.2019.115890
Dummann, W., Steinig, S., Hofmann, P., Lenz, M., Kusch, S., Flögel, S., Herrle, J. O., Hallmann, C., Rethemeyer, J., Kasper, H. U., Wagner, T. (2021a). Driving mechanisms of organic carbon burial in the Early Cretaceous South Atlantic Cape Basin (DSDP Site 361). Climate of the Past, 17(1), 469-490. https://doi.org/10.5194/cp-17-469-2021
Dummann, W., Hofmann, P., Herrle, J. O., Wennrich, V., Wagner, T. (2021b). A refined model of Early Cretaceous South Atlantic–Southern Ocean gateway evolution based on high-resolution data from DSDP Site 511 (Falkland Plateau). Palaeogeography, Palaeoclimatology, Palaeoecology, 562, 110113. https://doi.org/10.1016/j.palaeo.2020.110113
Dummann, W., Hofmann, P., Herrle, J. O., Frank, M., Wagner, T. (2023). The early opening of the Equatorial Atlantic Gateway and the evolution of Cretaceous peak warming. Geology. https://doi.org/10.1130/G50842.1
Dummann, W., Wennrich, V., Schröder-Adams, C. J., Leicher, N., Herrle, J. O. (2024). Ash deposits link Oceanic Anoxic Event 2 to High Arctic volcanism. Geology, 52(12), 927-932. https://doi.org/10.1130/G52368.1
Erba, E. (1994). Nannofossils and superplumes: the early Aptian “nannoconid crisis”. Paleoceanography, 9(3), 483-501. https://doi.org/10.1029/94PA00258
Erba, E. (2004). Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology, 52(1-4), 85-106. https://doi.org/10.1016/j.marmicro.2004.04.007
Erba, E. (2006). The first 150 million years history of calcareous nannoplankton: biosphere–geosphere interactions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2-4), 237-250. https://doi.org/10.1016/j.palaeo.2005.09.013
Erba, E., Premoli-Silva, I. (1994). Orbitally driven cycles in trace-fossil distribution from the Piobicco core (late Albian, Central Italy). In: De Boer, P. L. e Smith, D. G. (Eds.), Orbital Forcing and Cyclic Sequences. International Association of Sedimentologists Special Publication, 19, 211-225. https://doi.org/10.1002/9781444304039.ch16
Erba, E., Castradori, D., Guasti, G., Ripepe, M. (1992). Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Clay Formation (southern England). Palaeogeography, Palaeoclimatology, Palaeoecology, 93(1-2), 47-69. https://doi.org/10.1016/0031-0182(92)90183-6
Erba, E., Bartolini, A., Larson, R. L. (2004). Valanginian Weissert Oceanic Anoxic Event. Geology, 32(2), 149-152. https://doi.org/10.1130/G20008.1
Erba, E., Bottini, C., Weissert, H. J., Keller, C. E. (2010). Calcareous Nannoplankton Response to Surface-Water Acidification Around Oceanic Anoxic Event 1a. Science, 329(5990). 428-432. https://doi.org/10.1126/science.1188886
Erba, E., Bottini, C., Faucher, G., Gambacorta, G., Visentin, S. (2019). The response of calcareous nannoplankton to oceanic anoxic events: The Italian pelagic record. Bollettino Della Societa Paleontologica Italiana, 58(1), 51-71. https://doi.org/10.4435/BSPI.2019.08
Erbacher, J., Thurow, J. (1997). Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Marine Micropaleontology, 30(1-3), 139-158. https://doi.org/10.1016/S0377-8398(96)00023-0
Erbacher, J., Thurow, J., Littke, R. (1996). Evolution patterns of radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology, 24(6), 499-502. https://doi.org/10.1130/0091-7613(1996)024<0499:EPORAO>2.3.CO;2
Erbacher, J., Hemleben, C., Huber, B. T., Markey, M. (1999). Correlating environmental changes during early Albian oceanic anoxic event 1B using benthic foraminiferal paleoecology. Marine Micropaleontology, 38(1), 7-28. https://doi.org/10.1016/S0377-8398(99)00036-5
Erbacher, J., Huber, B. T., Norris, R. D., Markey, M. (2001). Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous Period. Nature, 409(6818), 325-327. https://doi.org/10.1038/35053041
Ernst, R. E., Youbi, N. (2017). How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 30-52. https://doi.org/10.1016/j.palaeo.2017.03.014
Ernst, R. E., Bond, D. P. G., Zhang, S. H. (2020). Influence of Large Igneous Provinces. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., Ogg, G. M. (Eds.), Geologic Time Scale 2020, vol. 1, Chapter 12, 345-356. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00012-7
Ernst, R. E., Bond, D. P., Zhang, S. H., Buchan, K. L., Grasby, S. E., Youbi, N., Bilali, H. E., Bekker, A., Doucet, L. S. (2021). Large igneous province record through time and implications for secular environmental changes and geological time‐scale boundaries. Large igneous provinces: A driver of global environmental and biotic changes, 1-26.
Esmeray-Senlet, S. (2020). Three major mass extinctions and evolutionary radiations in their aftermath. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), Geologic Time Scale 2020, vol. 1, Subchapter 3L, p. 125-137. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00003-6
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., Taylor, F. J. R. (2004). The evolution of modern eukaryotic phytoplankton. Science, 305(5682), 354-360. https://doi.org/10.1126/science.1095964
Faucher, G., Erba, E., Bottini, C., Gambacorta, G. (2017). Calcareous nannoplankton response to the latest Cenomanian Oceanic Anoxic Event 2 perturbation. Rivista Italiana di Paleontologia e Stratigrafia, 123(1), 159-176. https://doi.org/10.13130/2039-4942/8092
Fauth, G., Krahl, G., Kochhann, K. G. D., Bom, M. H. H., Baecker-Fauth, S., Bruno, M. D. R., Guerra, R. M., Ceolin, D., Santos, A., Villegas-Martin, J., Strohschoen Jr., O., Savian, J. F., Leandro, C. G., Mello, R. G., Lima, F. H. O. (2022). Astronomical calibration of the latest Aptian to middle Albian in the South Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 602, 111175. https://doi.org/10.1016/j.palaeo.2022.111175
Föllmi, K. B. (2012). Early Cretaceous life, climate and anoxia. Cretaceous Research, 35, 230-257. https://doi.org/10.1016/j.cretres.2011.12.005
Friedrich, O., Norris, R. D., Erbacher, J. (2012). Evolution of middle to Late Cretaceous oceans-a 55 my record of Earth's temperature and carbon cycle. Geology, 40(2), 107-110. https://doi.org/10.1130/G32701.1
Galeotti, S., Sprovieri, M., Coccioni, R., Bellanca, A., Neri, R. (2003). Orbitally modulated black shale deposition in the upper Albian Amadeus Segment (central Italy): a multi-proxy reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 441-458. https://doi.org/10.1016/S0031-0182(02)00618-1
Gambacorta, G., Malinverno, A., Erba, E. (2019). Orbital forcing of carbonate versus siliceous productivity in the late Albian–early Turonian (Umbria-Marche Basin, central Italy). Newsletters on Stratigraphy, 52(2), 197-220. https://doi.org/10.1127/nos/2018/0456
Giorgioni, M., Weissert, H., Bernasconi, S. M., Hochuli, P. A., Coccioni, R., Keller, C. E. (2012). Orbital control on carbon cycle and oceanography in the mid‐Cretaceous greenhouse. Paleoceanography, 27(1), PA1204. https://doi.org/10.1029/2011PA002163
Giorgioni, M., Weissert, H., Bernasconi, S. M., Hochuli, P. A., Keller, C. E., Coccioni, R., Petrizzo, M. R., Lukeneder, A., Garcia, T. I. (2015). Paleoceanographic changes during the Albian–Cenomanian in the Tethys and North Atlantic and the onset of the Cretaceous chalk. Global and Planetary Change, 126, 46-61. https://doi.org/10.1016/j.gloplacha.2015.01.005
Giorgioni, M., Tiraboschi, D., Erba, E., Hamann, Y., Weissert, H. (2017). Sedimentary patterns and palaeoceanography of the Albian Marne a Fucoidi Formation (Central Italy) revealed by high‐resolution geochemical and nannofossil data. Sedimentology, 64(1), 111-126. https://doi.org/10.1111/sed.12288
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., Ogg, G.M. (2020). Geologic Time Scale 2020. Amsterdam: Elsevier. https://doi.org/10.1016/C2020-1-02369-3
Haig, D. W., Lynch, D. A. (1993). A late early Albian marine transgressive pulse over northeastern Australia, precursor to epeiric basin anoxia: foraminiferal evidence. Marine Micropaleontology, 22(4), 311-362. https://doi.org/10.1016/0377-8398(93)90020-X
Hallam, A., Wignall, P. B. (1997). Mass extinctions and their aftermath. Oxford: Oxford University Press, UK. (Versão online: 31 Out. 2023 - https://doi.org/10.1093/oso/9780198549178.002.0001)
Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary Change, 113, 44-58. https://doi.org/10.1016/j.gloplacha.2013.12.007
Hay, W. W. (2008). Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29(5-6), 725-753. https://doi.org/10.1016/j.cretres.2008.05.025
Hay, W. W. (2017). Toward understanding Cretaceous climate–An updated review. Science China Earth Sciences, 60, 5-19. https://doi.org/10.1007/s11430-016-0095-9
Hay, W. W., Floegel, S. (2012). New thoughts about the Cretaceous climate and oceans. Earth-Science Reviews, 115(4), 262-272. https://doi.org/10.1016/j.earscirev.2012.09.008
Hay, W. W., DeConto, R. M., Wold, C. N., Wilson, K. M., Voigt, S., Schulz, M., Wold, A. R., Dullo, W. C., Ronov, A. B., Balukhovsky, A. N., Söding, E. (1999). Alternative global Cretaceous paleogeography. In: Barrera, E., Johnson, C. C. (Eds.), Evolution of the Cretaceous Ocean-Climate System. Geological Society of America Special Paper, 332, 1-47. https://doi.org/10.1130/0-8137-2332-9.1.
Hay, W. W., DeConto, R. M., de Boer, P., Flögel, S., Song, Y., Stepashko, A. (2019). Possible solutions to several enigmas of Cretaceous climate. International Journal of Earth Sciences, 108, 587-620. https://doi.org/10.1007/s00531-018-1670-2
Herbert, T. D., Fischer, A. G. (1986). Milankovitch climatic origin of mid-Cretaceous black shale rhythms in Central Italy. Nature, 321(6072), 739-743. https://doi.org/10.1038/321739a0
Herbin, J. P., Müller, C., Graciansky, P. C., Jacquin, T., Magniez-Jannin, F. (1987). Cretaceous Anoxic Events in the South Atlantic. Revista Brasileira de Geociências, 17(2), 92-99.
Herrle, J. O. (2003). Reconstructing nutricline dynamics of mid-Cretaceous oceans: evidence from calcareous nannofossils from the Niveau Paquier black shale (SE France). Marine Micropaleontology, 47(3-4), 307-321. https://doi.org/10.1016/S0377-8398(02)00133-0
Herrle, J. O., Mutterlose, J. (2003). Calcareous nannofossils from the Aptian–Lower Albian of southeast France: palaeoecological and biostratigraphic implications. Cretaceous Research, 24(1), 1-22. https://doi.org/10.1016/S0195-6671(03)00023-5
Herrle, J. O., Pross, J., Friedrich, O., Kößler, P., Hemleben, C. (2003). Forcing mechanisms for mid-cretaceous black shale formation: evidence from the upper Aptian and lower Albian of the Vocontian Basin (SE France). Palaeogeography Palaeoclimatology, Palaeoecology, 190, 399-426. https://doi.org/10.1016/S0031-0182(02)00616-8
Herrle, J. O., Kößler, P., Friedrich, O., Erlenkeuser, H., Hemleben, C. (2004). High-resolution carbon isotope records of the Aptian to Lower Albian from SE France and the Mazagan Plateau (DSDP Site 545): a stratigraphic tool for paleoceanographic and paleobiologic reconstruction. Earth and Planetary Science Letters, 218(1-2), 149-161. https://doi.org/10.1016/S0012-821X(03)00646-0
Herrle, J. O., Schröder-Adams, C. J., Davis, W., Pugh, A. T., Galloway, J. M., Fath, J. (2015). Mid-Cretaceous High Arctic stratigraphy, climate, and oceanic anoxic events. Geology, 43(5), 403-406. https://doi.org/10.1130/G36439.1
Herrmann, S., Thierstein, H. R. (2012). Cenozoic coccolith size changes-Evolutionary and/or ecological controls?. Palaeogeography, Palaeoclimatology, Palaeoecology, 333, 92-106. https://doi.org/10.1016/j.palaeo.2012.03.011
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R. C., Greene, S. E., Kiessling, W., Ries, J., Zacos, J. C., Royer, D. L., Barker, S., Marchitto Jr., T. M., Moyer, R., Pelejero, C., Ziveri, P., Forster, G. L., Williams, B. (2012). The geological record of ocean acidification. Science, 335(6072), 1058-1063. https://doi.org/10.1126/science.1208277
Hu, X., Li, J., Han, Z., Li, Y. (2020). Two types of hyperthermal events in the Mesozoic-Cenozoic: Environmental impacts, biotic effects, and driving mechanisms. Science China Earth Sciences, 63, 1041-1058. https://doi.org/10.1007/s11430-019-9604-4
Huber, B. T., Leckie, R. M. (2011). Planktic foraminiferal species turnover across deep-sea Aptian/Albian boundary sections. The Journal of Foraminiferal Research, 41(1), 53-95. https://doi.org/10.2113/gsjfr.41.1.53
Jahren, A. H., Arens, N. C., Sarmiento, G., Guerrero, J., Amundson, R. (2001). Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology, 29(2), 159-162. https://doi.org/10.1130/0091-7613(2001)029<0159:TROMHD>2.0.CO;2
Jenkyns, H. C. (1980). Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, 137(2), 171-188. https://doi.org/10.1144/gsjgs.137.2.0171
Jenkyns, H. C. (1985). The Early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts. Geologische Rundschau, 74, 505-518. https://doi.org/10.1007/bf01821208
Jenkyns, H. C. (1988). The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence. American Journal of Science, 288(2), 101-151. https://doi.org/10.2475/ajs.288.2.101
Jenkyns, H. C. (2010). Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11(3). https://doi.org/10.1029/2009GC002788
Jenkyns, H. C., Matthews, A., Tsikos, H., Erel, Y. (2007). Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian–Turonian oceanic anoxic event. Paleoceanography, 22(3). https://doi.org/10.1029/2006PA001355
Jones, C. E., Jenkyns, H. C. (2001). Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science 301, 112-149. https://doi.org/10.2475/ajs.301.2.112
Jones, M. M., Sageman, B. B., Selby, D., Jacobson, A. D., Batenburg, S. J., Riquier, L., MacLeod, K. G., Huber, B. T., Bogus, K. A., Tejada, M. L. G., Kuroda, J., Hobbs, R. W. (2023). Abrupt episode of mid-Cretaceous ocean acidification triggered by massive volcanism. Nature Geoscience, 16(2), 169-174. https://doi.org/10.1038/s41561-022-01115-w
Keller, G. (2008). Cretaceous climate, volcanism, impacts, and biotic effects. Cretaceous Research, 29(5-6), 754-771. https://doi.org/10.1016/j.cretres.2008.05.030
Klemme, H. D., Ulmishek, G. F. (1991). Effective Petroleum Source Rocks of the World: Stratigraphic Distribution and Controlling Depositional Factors. AAPG Bulletin, 75(12), 1809-1851. https://doi.org/10.1306/0C9B2A47-1710-11D7-8645000102C1865D
Knoll, A. H., Follows, M. J. (2016). A bottom-up perspective on ecosystem change in Mesozoic oceans. Proceedings of the Royal Society B: Biological Sciences, 283(1841), 20161755. https://doi.org/10.1098/rspb.2016.1755
Kochhann, K. G. D., Koutsoukos, E. A. M., Fauth, G. Sial, A. N. (2013). Aptian–Albian Planktic Foraminifera from DSDP Site 364 (Offshore Angola): Biostratigraphy, Paleoecology, and Paleoceanographic Significance. Journal of Foraminiferal Research, 43, 443-463. https://doi.org/10.2113/gsjfr.43.4.443.
Koutsoukos, E. A. M., Bengtson, P. (2024). Cretaceous palaeoceanographic events of the northern South Atlantic: an overview. Geological Society, London, Special Publications, 545(1), S545-2023. https://doi.org/10.1144/SP545-2023-81
Koutsoukos, E. A. M., Mello, M. R., Azambuja Filho, N. C., Hart, M. B., Maxwell, J. R. (1991). The upper Aptian–Albian succession of the Sergipe Basin, Brazil: an integrated paleoenvironmental assessment. AAPG Bulletin, 75(3), 479-498. https://doi.org/10.1306/0C9B2817-1710-11D7-8645000102C1865D
Kuypers, M. M., Pancost, R. D., Sinninghe Damsté, J. S. (1999). A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times. Nature, 399(6734), 342-345. https://doi.org/10.1038/20659
Kuypers, M. M., Blokker, P., Hopmans, E. C., Kinkel, H., Pancost, R. D., Schouten, S., Sinninghe Damsté, J. S. (2002). Archaeal remains dominate marine organic matter from the early Albian oceanic anoxic event 1b. Palaeogeography, Palaeoclimatology, Palaeoecology, 185(1-2), 211-234. https://doi.org/10.1016/S0031-0182(02)00301-2
Kuypers, M. M., Lourens, L. J., Rijpstra, W. I. C., Pancost, R. D., Nijenhuis, I. A., Sinninghe Damsté, J. S. (2004). Orbital forcing of organic carbon burial in the proto-North Atlantic during Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 228(3-4), 465-482. https://doi.org/10.1016/j.epsl.2004.09.037
Larson, R. L., Erba, E. (1999). Onset of the mid-Cretaceous greenhouse in the Barremian–Aptian: Igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography, 14, 663-678. https://doi.org/10.1029/1999PA900040
Leandro, C. G., Savian, J. F., Kochhann, M. V. L., Franco, D. R., Coccioni, R., Frontalini, F., Gardin, S., Jovane, L., Figueiredo, M., Tedeschi, L. R., Janikian, L., Almeida, R. P., Trindade, R. I. F. (2022). Astronomical tuning of the Aptian stage and its implications for age recalibrations and paleoclimatic events. Nature Communications, 13(1), 2941. https://doi.org/10.1038/s41467-022-30075-3
Leckie, R. M., Bralower, T. J., Cashman, R. (2002). Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid‐Cretaceous. Paleoceanography, 17(3), 13-1-13-29. https://doi.org/10.1029/2001PA000623
Lees, J. A., Bown, P. R., Mattioli, E. (2005). Problems with proxies? Cautionary tales of calcareous nannofossil paleoenvironmental indicators. Micropaleontology, 51(4), 333-343. https://doi.org/10.2113/gsmicropal.51.4.333
Liu, C., Jarochowska, E., Du, Y., Munnecke, A., Dai, X. (2017). Prevailing anoxia in the Kungurian (Permian) of South China: Possible response to divergent climate trends between the tropics and Gondwana. Gondwana Research, 49, 81-93. https://doi.org/10.1016/j.gr.2017.05.011
Lübke, N., Mutterlose, J. (2016). The impact of OAE 1a on marine biota deciphered by size variations of coccoliths. Cretaceous Research, 61, 169-179. https://doi.org/10.1016/j.cretres.2016.01.006.
Luciani, V., Cobianchi, M., Jenkyns, H.C. (2004). Albian high-resolution biostratigraphy and isotope stratigraphy: the Coppa della Nuvola pelagic succession of the Gargano Promontory (Southern Italy). Eclogae Geologicae Helvetiae, 97, 77-92. https://doi.org/10.1007/s00015-004-1106-9
Luft-Souza, F., Fauth, G., Bruno, M. D. R., De Lira Mota, M. A., Vázquez-García, B., Santos Filho, M. A. B., Terra, G. J. S. (2022). Sergipe-Alagoas Basin, Northeast Brazil: A reference basin for studies on the early history of the South Atlantic Ocean. Earth-Science Reviews, 229, 104034. https://doi.org/10.1016/j.earscirev.2022.104034
Machado, M. C., Chemale Jr., F., Kawashita, K., Rey, O., Moura, C. A. V. (2016). Isotope studies of carbonate rocks of La Luna Formation (Venezuela) to constrain the Oceanic Anoxic Event 3 (OAE3). Journal of South American Earth Sciences, 72, 38-48. https://doi.org/10.1016/j.jsames.2016.07.001
Mansour, A., Wagreich, M. (2022). Earth system changes during the cooling greenhouse phase of the Late Cretaceous: Coniacian–Santonian OAE3 subevents and fundamental variations in organic carbon deposition. Earth-Science Reviews, 229, 104022. https://doi.org/10.1016/j.earscirev.2022.104022
Martinez, M., Deconinck, J. F., Pellenard, P., Riquier, L., Company, M., Reboulet, S., Moiroud, M. (2015). Astrochronology of the Valanginian–Hauterivian stages (Early Cretaceous): Chronological relationships between the Paraná-Etendeka large igneous province and the Weissert and the Faraoni events. Global and Planetary Change, 131, 158-173. https://doi.org/10.1016/j.gloplacha.2015.06.001
Matsumoto, H., Kuroda, J., Coccioni, R., Frontalini, F., Sakai, S., Ogawa, N. O., Ohkouchi, N. (2020). Marine Os isotopic evidence for multiple volcanic episodes during Cretaceous Oceanic Anoxic Event 1b. Scientific Reports, 10(1), 12601. https://doi.org/10.1038/s41598-020-69505-x
Matsumoto, H., Coccioni, R., Frontalini, F., Shirai, K., Jovane, L., Trindade, R. I. F., Savian, J. F., Tejeda, M. L. G., Gardin, S., Kuroda, J. (2021). Long-term Aptian marine osmium isotopic record of Ontong Java Nui activity. Geology, 49(9), 1148-1152. https://doi.org/10.1130/G48863.1
Matsumoto, H., Coccioni, R., Frontalini, F., Shirai, K., Jovane, L., Trindade, R. I. F., Savian, J. F., Kuroda, J. (2022). Mid-Cretaceous marine Os isotope evidence for heterogeneous cause of oceanic anoxic events. Nature communications, 13(1), 239. https://doi.org/10.1038/s41467-021-27817-0
Matsumoto, H., Shirai, K., Huber, B. T., MacLeod, K. G., Kuroda, J. (2023). High-resolution marine osmium and carbon isotopic record across the Aptian–Albian boundary in the southern South Atlantic: Evidence for enhanced continental weathering and ocean acidification. Palaeogeography, Palaeoclimatology, Palaeoecology, 613, 111414. https://doi.org/10.1016/j.palaeo.2023.111414
Matsumoto, H., Shibuya, T., Shirai, K., Kuroda, J., Suzuki, K. (2024). Prolonged reducing and ferruginous oceanic conditions and abrupt global seawater oxidation after oceanic anoxic event 1a. Geological Society of America Bulletin, 137(3-4), 1133-1142. https://doi.org/10.1130/B37780.1
Mello, M. R., Koutsoukos, E. A. M., Hart, M. B., Brassell, S. C., Maxwell, J. R. (1989). Late Cretaceous anoxic events in the Brazilian continental margin. Organic Geochemistry, 14(5), 529-542. https://doi.org/10.1016/0146-6380(89)90033-8
Mello, M. R., Mohriak, W. U., Koutsoukos, E. A. M., Figueira, J. C. A. (1991). Brazilian and west African oils: generation, migration, accumulation and correlation. Proceedings of the Thirteenth World Petroleum Congress, 153-164.
Méndez-Dot, J. A. M., Baamonde, J. M., Reyes, D., Whilchy, R. (2015). The Cogollo Group and the oceanic anoxic events 1a and 1b, Maracaibo basin, Venezuela. Brazilian Journal of Geology, 45, 41-61. https://doi.org/10.1590/2317-4889201530192
Meyer, K. M., Kump, L. R. (2008). Oceanic euxinia in Earth history: causes and consequences. Annual Review of Earth and Planetary Sciences, 36, 251-288. https://doi.org/10.1146/annurev.earth.36.031207.124256
Möller, C., Bornemann, A., Mutterlose, J. (2020). Climate and paleoceanography controlled size variations of calcareous nannofossils during the Valanginian Weissert Event (Early Cretaceous). Marine Micropaleontology, 157, 101875. https://doi.org/10.1016/j.marmicro.2020.101875
Müller, T., Price, G. D., Bajnai, D., Nyerges, A., Kesjár, D., Raucsik, B., Varga, A., Judik, K., Fekete, J., May, Z., Pálfy, J. (2017). New multiproxy record of the Jenkyns Event (also known as the Toarcian Oceanic Anoxic Event) from the Mecsek Mountains (Hungary): Differences, duration and drivers. Sedimentology, 64(1), 66-86. https://doi.org/10.1111/sed.12332
Muscente, A. D., Prabhu, A., Zhong, H., Eleish, A., Meyer, M. B., Fox, P., Hazen, R. M., Knoll, A. H. (2018). Quantifying ecological impacts of mass extinctions with network analysis of fossil communities. Proceedings of the National Academy of Sciences, 115(20), 5217-5222. https://doi.org/10.1073/pnas.1719976115
Naafs, B. D. A., Pancost, R. D. (2014). Environmental conditions in the South Atlantic (Angola Basin) during the Early Cretaceous. Organic Geochemistry, 76, 184-193. https://doi.org/10.1016/j.orggeochem.2014.08.005.
Novacek, M. (2001). The biodiversity crisis: Losing what counts. New York: New Press.
Núñez-Useche, F., Barragán, R., Moreno-Bedmar, J. A., Canet, C. (2014). Mexican archives for the major Cretaceous oceanic anoxic events. Boletín de la Sociedad Geológica Mexicana, 66(3), 491-505.
Ogg, J. G., Ogg, G. M., Gradstein, F. M. (2021). Time Scale Creator 8.0. Disponível em: https://engineering.purdue.edu/Stratigraphy/tscreator. Acessado em: 1 dez. 2023.
Oliveira, A. L., Hollanda, M. H. B., Schmitz, M. D., Macêdo Filho, A. A., Erba, E., Crowley, J. L. (2025). High-precision geochronology of the Equatorial Atlantic Magmatic Province (EQUAMP): Temporal correlations with the Paraná-Etendeka Magmatic Province and the Weissert Event. Earth and Planetary Science Letters, 658, 119330. https://doi.org/10.1016/j.epsl.2025.119330
Pancost, R. D., Crawford, N., Magness, S., Turner, A., Jenkyns, H. C., Maxwell, J. R. (2004). Further evidence for the development of photic-zone euxinic conditions during Mesozoic oceanic anoxic events. Journal of the Geological Society, 161(3), 353-364. https://doi.org/10.1144/0016764903-059
Pedersen, T., Calvert, S. E. (1990). Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?. AAPG Bulletin, 74(4), 454-466. https://doi.org/10.1306/0C9B232B-1710-11D7-8645000102C1865D
Percival, L. M., Matsumoto, H., Callegaro, S., Erba, E., Kerr, A. C., Mutterlose, J., Suzuki, K. (2025). Cretaceous large igneous provinces: From volcanic formation to environmental catastrophes and biological crises. Geological Society, London, Special Publications, 544(1), SP544-2023. https://doi.org/10.1144/SP544-2023-88
Pérez-Díaz, L., Eagles, G. (2017). South Atlantic paleobathymetry since Early Cretaceous. Scientific Reports, 7(1), 11819. https://doi.org/10.1038/s41598-017-11959-7
Perez-Infante, J., Farrimond, P., Furrer, M. (1996). Global and local controls influencing the deposition of the La Luna Formation (Cenomanian–Campanian), western Venezuela. Chemical Geology, 130(3-4), 271-288. https://doi.org/10.1016/0009-2541(96)00019-8
Petrizzo, M. R., Huber, B. T., Gale, A. S., Barchetta, A., Jenkyns, H. C. (2012). Abrupt planktic foraminiferal turnover across the Niveau Kilian at Col de Pré-Guittard (Vocontian Basin, southeast France): new criteria for defining the Aptian/Albian boundary. Newsletters on Stratigraphy, 45(1), 55. https://doi.org/10.1127/0078-0421/2012/0013
Peucker-Ehrenbrink, B., Ravizza, G. E. (2020). Osmium isotope stratigraphy. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., Ogg, G. M. (Eds.), Geologic Time Scale 2020, Vol. 1, Chapter 8, 239-257. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00008-5
Pietzsch, R., Tedeschi, L. R., Oliveira, D. M., dos Anjos, C. W. D., Vazquez, J. C., Figueiredo, M. F. (2020). Environmental conditions of deposition of the Lower Cretaceous lacustrine carbonates of the Barra Velha Formation, Santos Basin (Brazil), based on stable carbon and oxygen isotopes: A continental record of pCO2 during the onset of the Oceanic Anoxic Event 1a (OAE 1a) interval? Chemical Geology, 535, 119457. https://doi.org/10.1016/j.chemgeo.2019.119457
Pohl, A., Ridgwell, A., Stockey, R. G., Thomazo, C., Keane, A., Vennin, E., Scotese, C. R. (2022). Continental configuration controls ocean oxygenation during the Phanerozoic. Nature, 608, 7923, 523-527. https://doi.org/10.1038/s41586-022-05018-z
Poulsen, C. J., Barron, E. J., Johnson, C. C., Fawcett, P. (1999). Links between major climatic factors and regional oceanic circulation in the mid-Cretaceous. In: Barrera, E., Johnson, C.C. (Eds.), Evolution of the Cretaceous Ocean-Climate System. Geological Society of America Special Paper, 332, 73-89. https://doi.org/10.1130/0-8137-2332-9.73
Premoli-Silva, I., Sliter, W. V. (1999). Cretaceous paleoceanography: Evidence from planktonic foraminiferal evolution. In: Barrera, E., Johnson, C.C. (Eds.), Evolution of the Cretaceous Ocean-Climate System. Geological Society of America Special Paper, 332, 301-328. https://doi.org/10.1130/0-8137-2332-9.301
Premoli-Silva, I., Erba, E., Salvini, G., Locatelli, C., Verga, D. (1999). Biotic changes in Cretaceous oceanic anoxic events of the Tethys. Journal of Foraminiferal Research, 29(4), 352-370.
Reboulet, S., Mattioli, E., Pittet, B., Baudin, F., Olivero, D., Proux, O. (2003). Ammonoid and nannoplankton abundance in Valanginian (Early Cretaceous) limestone-marl successions from the southeast France Basin: Carbonate dilution or productivity?. Palaeogeography, Palaeoclimatology, Palaeoecology, 201, 113-139. https://doi.org/10.1016/S0031-0182(03)00541-8
Rey, O., Simo, J. A., Lorente, M. A. (2004). A record of long- and short-term environmental and climatic change during OAE3: La Luna Formation, Late Cretaceous (Santonian–early Campanian), Venezuela. Sedimentary Geology, 170(1-2), 85-105. https://doi.org/10.1016/j.sedgeo.2004.06.006
Robinson, S.A., Heimhofer, U., Hesselbo, S. P., Petrizzo, M. R. (2017). Mesozoic climates and oceans–a tribute to Hugh Jenkyns and Helmut Weissert. Sedimentology, 64(1), 1-15. https://doi.org/10.1111/sed.12349
Rocha, B. C., Janasi, V. A., Polo, L. A., Rocha, B. C., Davies, J. H. F. L., Schaltegger, U., Greber, N. D., Davies, J. H. F. L., Nardy, A. J. R., Lucchetti, A. C. F., Greber, N. D. (2020). Rapid eruption of silicic magmas from the Paraná magmatic province (Brazil) did not trigger the Valanginian event. Geology, 48(12), 1174-1178. https://doi.org/10.1130/G47766.1
Rodrigues, G. B., Fauth, G. (2013). Isótopos estáveis de carbono e oxigênio em ostracodes do Cretáceo: metodologias, aplicações e desafios. Terrae Didatica, 9(1), 34-49. https://doi.org/10.20396/td.v9i1.8637408
Rodríguez-Cuicas, M. E., Montero-Serrano, J. C., Garbán, G. (2019). Paleoenvironmental changes during the late Albian Oceanic Anoxic Event 1d: An example from the Capacho Formation, southwestern Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 521, 10-29. https://doi.org/10.1016/j.palaeo.2019.02.010
Rojas, A., Calatayud, J., Kowalewski, M., Neuman, M., Rosvall, M. (2021). A multiscale view of the Phanerozoic fossil record reveals the three major biotic transitions. Communications Biology, 4(1), 309. https://doi.org/10.1038/s42003-021-01805-y
Sabatino, N., Coccioni, R., Manta, D. S., Baudin, F., Vallefuoco, M., Traina, A., Sprovieri, M. (2015). High-resolution chemostratigraphy of the late Aptian–early Albian Oceanic Anoxic Event (OAE 1b) from the Poggio le Guaine section (Umbria–Marche Basin, central Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 426, 319-333. https://doi.org/10.1016/j.palaeo.2015.03.009
Schlanger, S. O., Jenkyns, H. C. (1976). Cretaceous oceanic anoxic events: causes and consequences. Geologie En Mijnbouw, 55(3-4), 179-184.
Schlanger, S. O., Arthur, M. A., Jenkyns, H. C., Scholle, P. A. (1987). The Cenomanian–Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. In: Fleet, A. J. e Brooks, J. (Eds.), Marine Petroleum Source Rocks, 26, 371-399. Geological Society, Special Publication. https://doi.org/10.1144/GSL.SP.1987.026.01.24
Scholle, P. A., Arthur, M. A. (1980). Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. AAPG Bulletin, 64(1), 67-87. https://doi.org/10.1306/2F91892D-16CE-11D7-8645000102C1865D
Scott, R. W., Rush, N., Hojnacki, R., Campbell, W., Wang, Y., Lai, X. (2020). Albian (Lower Cretaceous) carbon isotope chemozones, Texas Comanche Shelf and Mexican Chihuahua Trough: Implications for OAEs. Cretaceous Research, 112, 104453. https://doi.org/10.1016/j.cretres.2020.104453
Sepkoski, J. J. (1981). A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7(1), 36-53. https://doi.org/10.1017/s0094837300003778
Silva Jr., R., Erba, E., Rios-Netto, A. M., Silva, S. C., Alves, T. D., Motta, A. L. G., Valle, B., Borghi, L., Abbots-Queiroz, F. (2023). Oceanic Anoxic Event 2 in Sergipe-Alagoas Basin, Brazil: New paleoecological insights from calcareous nannofossils assemblages. Marine Micropaleontology, 178, 102197. https://doi.org/10.1016/j.marmicro.2022.102197
Slater, S. M., Bown, P. R., Twitchett, R. J., Danise, S., Vajda, V. (2022). Global record of “ghost” nannofossils reveals plankton resilience to high CO2 and warming. Science, 376(6595), 853-856. https://doi.org/10.1126/science.abm7330
Soua, M. (2016). Cretaceous Oceanic Anoxic Events (OAEs) recorded in the northern margin of Africa as possible oil and gas shale potential in Tunisia: an overview. International Geology Review, 58(3), 277-320. https://doi.org/10.1080/00206814.2015.1065516
Suchéras-Marx, B., Mattioli, E., Allemand, P., Giraud, F., Pittet, B., Plancq, J., Escarguel, G. (2019). The colonization of the oceans by calcifying pelagic algae. Biogeosciences, 16(12), 2501-2510. https://doi.org/10.5194/bg-16-2501-2019
Tedeschi, L. R., Jenkyns, H. C., Robinson, S. A., Sanjinés, A. E., Viviers, M. C., Quintaes, C. M., Vazquez, J. C. (2017). New age constraints on Aptian evaporites and carbonates from the South Atlantic: Implications for Oceanic Anoxic Event 1a. Geology, 45(6), 543-546. https://doi.org/10.1130/G38886.1
Tedeschi, L. R., Jenkyns, H. C., Robinson, S. A., Lana, C. C., Tognoli, F. M. W. (2020). Aptian carbon-isotope record from the Sergipe-Alagoas Basin: New insights into Oceanic Anoxic Event 1a and the timing of seawater entry into the South Atlantic. Newsletters on Stratigraphy, 53(3), 333-364. https://doi.org/10.1127/nos/2019/0529
Teixeira, K. M., Savian, J. F., Mello, R. G., Leandro, C. G., Kochhann, M. V. L., Giorgioni, M., Vidal, P. H. P. C., Martini, A. P., Jovane, L., Frontalini, F., Coccioni, R., Figueiredo, M., Tedeschi, L. R., Matsumoto, H., Kuroda, J., Trindade, R. I. F. (2023). Environmental magnetic characterization for the Pialli Level and the Cretaceous Oceanic Red Bed 7 (late Albian, Poggio le Guaine core, central Italy). Global and Planetary Change, 230, 104281. https://doi.org/10.1016/j.gloplacha.2023.104281
Tiraboschi, D., Erba, E., Jenkyns, H. C. (2009). Origin of rhythmic Albian black shales (Piobbico core, central Italy): Calcareous nannofossil quantitative and statistical analyses and paleoceanographic reconstructions. Paleoceanography, 24(2), PA2222. https://doi.org/10.1029/2008PA001670
Tissot, B., Demaison, G. J., Masson, P., Delteil, J. R., Combaz, A. (1980). Paleoenvironment and petroleum potential of middle Cretaceous black shales in Atlantic basins. AAPG Bulletin, 12, 2051-2063. https://doi.org/10.1306/2F919738-16CE-11D7-8645000102C1865D.
Trabucho Alexandre, J., Tuenter, E., Henstra, G. A., van der Zwan, K. J., van de Wal, R. S., Dijkstra, H. A., de Boer, P. L. (2010). The mid‐Cretaceous North Atlantic nutrient trap: black shales and OAEs. Paleoceanography, 25(4), PA4201. https://doi.org/10.1029/2010PA001925
Trabucho Alexandre, J., van Gilst, R. I., Rodríguez‐López, J. P., De Boer, P. L. (2011). The sedimentary expression of Oceanic Anoxic Event 1b in the North Atlantic. Sedimentology, 58(5):1217–1246. https://doi.org/10.1111/j.1365-3091.2010.01202.x
Tremolada, F., Erba, E., Bralower, T. J. (2007). A review of calcareous nannofossil changes during the early Aptian Oceanic Anoxic Event 1a and the Paleocene–Eocene Thermal Maximum: The influence of fertility, temperature, and pCO2. Special Paper of the Geological Society of America, 424, 87-96. https://doi.org/10.1130/2007.2424(05)
Tsikos, H., Jenkyns, H. C., Walsworth-Bell, B., Petrizzo, M. R., Forster, A., Kolonic, S., Erba, E., Premoli Silva, I., Baas, M., Wagner, T., Sinninghe Damsté, J. S. (2004). Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: Correlation and implications based on three key localities. Journal of the Geological Society, 161(4), 711-719. https://doi.org/10.1144/0016-764903-077
Tungo, E. J. F., Bruno, M. D. R., Fauth, G., Watkins, D. K. (2021). Caracterização preliminar do Evento Anóxico Oceânico 2 (OAE2) na Bacia do Kwanza (Site 364 - Angola) - Atlântico Sul. In:. XV Congresso de Geoquímica dos Países de Língua Portuguesa e XVIII Congresso Brasileiro de Geoquímica, Anais v. 1. Porto de Galinhas: SBGq.
Valle, B., Dal’ Bó, P. F. F., Mendes, M., Favoreto, J., Rigueti, A. L., Borghi, L., de Oliveira Mendonça, J., Silva Jr., R. (2019). The expression of the Oceanic Anoxic Event 2 (OAE2) in the northeast of Brazil (Sergipe-Alagoas Basin). Palaeogeography, Palaeoclimatology, Palaeoecology, 529, 12-23. https://doi.org/10.1016/j.palaeo.2019.05.029
Vermeij, G. J. (1977). The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology, 3(3), 245-258. https://doi.org/10.1017/S0094837300005352
Veron, J. E. (2008). Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs, 27(3), 459-472. https://doi.org/10.1007/s00338-008-0381-8
Wagner, T., Pletsch, T. (1999). Tectono-sedimentary controls on Cretaceous black shale deposition along the opening Equatorial Atlantic Gateway (ODP Leg 159). Geological Society Special Publication, 153, 241-265. https://doi.org/10.1144/GSL.SP.1999.153.01.15
Wagner, T., Herrle, J. O., Sinninghe Damsté, J. S., Schouten, S., Stüsser, I., Hofmann, P. (2008). Rapid warming and salinity changes of Cretaceous surface waters in the subtropical North Atlantic. Geology, 36(3), 203-206. https://doi.org/10.1130/G24523A.1
Wagreich, M. (2009). Coniacian–Santonian Oceanic Red Beds and their link to Oceanic Anoxic Event 3. In: X. Hu, C. Wang, R. W. Scott, M. Wagreich, L. Jansa (Eds.), Cretaceous Ocean Red Beds: Stratigraphy, Composition, and Paleoceanographic and Paleoclimatic Significance, 91st ed., pp. 235-242. SEPM Special Publication. https://doi.org/10.2110/sepmsp.091.225
Wagreich, M. (2012a). OAE 3 – a low- to mid-latitude Atlantic oceanic event during the Coniacian–Santonian. Climate of the Past, 8(2), 1209-1227. https://doi.org/10.5194/cpd-8-1209-2012
Wagreich, M. (2012b). “OAE 3”- Regional Atlantic organic carbon burial during the Coniacian–Santonian. Climate of the Past, 8(5), 1447-1455. https://doi.org/10.5194/cp-8-1447-2012
Wang, Y., Bodin, S., Blusztajn, J. S., Ullmann, C., Nielsen, S. G. (2022). Orbitally paced global oceanic deoxygenation decoupled from volcanic CO2 emission during the middle Cretaceous Oceanic Anoxic Event 1b (Aptian–Albian transition). Geology, 50(11), 1324-1328. https://doi.org/10.1130/G50553.1
Watkins, D. K., Cooper, M. J., Wilson, P. A. (2005). Calcareous nannoplankton response to late Albian Oceanic Anoxic Event 1d in the western North Atlantic. Paleoceanography, 20, 1-14. https://doi.org/10.1029/2004PA001097
Watkins, D. K., Raffi, I. (2020). Calcareous nannofossils. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., Ogg, G. M. (Eds.), Geologic Time Scale 2020, (V.1, Chapter 3, Subchapter 3F, p. 69-73. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00003-6)
Weissert, H. (1989). C-isotope stratigraphy, a monitor of paleoenvironmental change: a case study from the Early Cretaceous. Surveys in Geophysics, 10, 1-61. https://doi.org/10.1007/BF01901664
Weissert, H., Lini, A., Föllmi, K. B., Kuhn, O. (1998). Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link? Palaeogeography, Palaeoclimatology, Palaeoecology, 137(3-4), 189-203. https://doi.org/10.1016/S0031-0182(97)00109-0
Whiteside, J. H., Grice, K. (2016). Biomarker records associated with mass extinction events. Annual Review of Earth and Planetary Sciences, 44, 581-612. https://doi.org/10.1146/annurev-earth-060115-012501
Wilson, P. A., Norris, R. D. (2001). Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature, 412(6845), 425-429. https://doi.org/10.1038/35086553
Winter, A., Siesser, W. G. (2006). Coccolithophores. Cambridge: Cambridge University Press.
Xu, X. T., Shao, L. Y., Eriksson, K. A., Pang, B., Wang, S., Yang, C. X., Hou, H. H. (2022). Terrestrial records of the early Albian Ocean Anoxic Event: Evidence from the Fuxin lacustrine basin, NE China. Geoscience Frontiers, 13(1):101275. https://doi.org/10.1016/j.gsf.2021.101275
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Mauro Daniel Rodrigues Bruno Rodrigues Bruno, Edna De Jesus Francisco Tungo, Fernanda Luft-Souza, Victória Herder Sander, Gerson Fauth

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista Geologia USP. Série Científica, o direito de primeira publicação, com o trabalho sob a licença Creative Commons BY-NC-SA (resumo da Licença: https://creativecommons.org/licenses/by-nc-sa/4.0 | texto completo da licença: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode) que permite o compartilhamento do trabalho de forma não comercial e conferindo os devidos créditos autorais da primeira publicação nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (publicar em repositório institucional ou como capítulo de livro), conferindo os devidos créditos autorais da primeira publicação nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, uma vez que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O efeito do Acesso Aberto e downloads no impacto das citações).
Como Citar
Dados de financiamento
-
Instituto Nacional de Ciência e Tecnologia da Criosfera
Números do Financiamento 405679/2022-0;402804/2022-8;308087/2019-4;#406898/2022-7 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Números do Financiamento 88887.091703/2014-01;88881.062157/2014-01











