Apatita como indicador petrogenético em rochas magmáticas: evidências em catodoluminescência e microanálise química
DOI:
https://doi.org/10.11606/issn.2316-9095.v25-234593Palavras-chave:
Mineralogia, Rochas ígneas, Proveniência tectônica, Química mineralResumo
Cristais de apatita magmática analisados por meio de catodoluminescência (CL) e análise química semiquantitativa (MEV-EDS) apresentam padrões indicativos da sua proveniência tectônica. Nesse artigo são examinadas apatitas de granitos de tendência cálcio-alcalina tipo I (Complexo Granítico Cunhaporanga - PR e Suíte Granítica Valsungana - SC) e tipo S (Supersuíte G2 - MG), e alcalina tipo A (Granito Serra Branca - GO), além de rochas alcalinas (Sienito Tunas, Gabro José Fernandes e Carbonatito Jacupiranga, no estado de São Paulo). Em CL a apatita é verde amarelada intenso, cujos ativadores são o Mn2+ e o Ce3+, e picos em 570 nm e 360 nm, respectivamente. Observa-se menor luminescência gerada por outros ETRL, além de emissões de CL distintas do núcleo à borda dos cristais, resultado de alterações composicionais intercristalinas. Ao se comparar os espectros de CL entre todas as rochas, vê-se que a ativação relacionada ao íon Ce3+ é mais intensa nas alcalinas em comparação às graníticas, consequência de maior disponibilidade deste cátion em magma alcalino. A análise química (EDS-MEV) de apatitas do granito alcalino e do sienito presentam os menores valores de CaO, gradando para valores intermediários em granitos I e para o gabro, até elevados no granito tipo S e no carbonatito. A análise estatística da variância permite a separação em grupos semelhantes (cluster analysis), em termos de CaO são correspondentes: i) os granitos cálcio-alcalinos (I e S) e o gabro; ii) o sienito e o granito alcalino; e iii) isolado o carbonatito. Em relação a Na2O, o agrupamento correspondente: i) granitos I (Cunhaporanga) e S; ii) granitos I (Valsungana), A e carbonatito; e iii) sienito e gabro.
Downloads
Referências
Almeida, V. V. (2016). Petrologia do Gabro José Fernandes e sua relação temporal com o Magmatismo Mesozoico toleítico e alcalino no Arco de Ponta Grossa. Tese (Doutorado). São Paulo: Instituto de Geociências, Universidade de São Paulo, 261p. https://doi.org/10.11606/T.44.2017.tde-30032017-083933
Barbarand, J., Pagel, M. (2001). Cathodoluminescence study of apatite crystals. American Mineralogist, 86(4), 473-484. https://doi.org/10.2138/am-2001-0411
Barbarin, B. (1990). Granitoids: main petrogenetic classifications in relation to origin and tectonic setting. Geological Journal, 25(3-4), 227-238. https://doi.org/10.1002/gj.3350250306
Basei, M. A. S., Campos Neto, M. C., Castro, N. A., Nutman, A. P., Wemmer, K., Yamamoto, M. T., Hueck, M., Osako, L., Siga, O., Passarelli, C. R. (2011). Tectonic evolution of the Brusque Group, Dom Feliciano belt, Santa Catarina, Southern Brazil. Journal of South America Earth Sciences, 32(4), 324-350. https://doi.org/10.1016/j.jsames.2011.03.016
Belousova, E. A., Walters, S., Griffin, W. L., O’reilly, S. Y. (2001). Trace-element signature of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal of Earth Sciences, 48(4), 603-619. https://doi.org/10.1046/j.1440-0952.2001.00879.x
Bouzari, F., Hart, C. J. R., Bissig, T., Barker, S. (2015). Hydrothermal alteration revealed by apatite luminescence and chemistry: a potential indicator mineral for exploring covered porphyry copper deposits. Economic Geology, 111(6), 1397-1410p. https://doi.org/10.2113/econgeo.111.6.1397
Bruand, E., Fowler, M., Storey, C., Darling, J. (2017). Apatite trace element and isotope applications to petrogenesis and provenance. American Mineralogist, 102(1), 75-84. https://doi.org/10.2138/am-2017-5744
Bruand, E., Storey, C., Fowler, M. (2014). Accerrory Mineral Chemistry of High Ba-Sr Granites from Northern Scotland: Contraints on Petrogenesis and Records of Whole-rock Signature. Journal of Petrology, 55(8), 1619-1651. https://doi.org/10.1093/petrology/egu037
Chakhmouradian, A. R., Reguir, E. P., Zaitsev, A. N., Couëslan, C., Xu, C., Kynický, J., Mumin, A. H., Yand, P. (2017). Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos, 274-275, 188-213. https://doi.org/10.1016/j.lithos.2016.12.037
Chmyz, L. (2017). Geocronologia e petrogênese do Complexo Ultramáfico Alcalino Carbonatítico de Jacupiranga (SP). Tese (Doutorado). Curitiba: Departamento de Geologia, Universidade Federal do Paraná, 196p. Disponível em: https://hdl.handle.net/1884/47362. Acessado em: 25 abr. 2025.
Chu, M., Wang, K., Griffin, W. L., Chung, S., O’reilly, S. Y., Pearson, N. J., Iizuka, Y. (2009). Apatite composition: tracing petrogenetic processes in Transhimalayan Granitoids. Journal of Petrology, 50(10), 1829-1855. https://doi.org/10.1093/petrology/egp054
CPRM/SGB – Serviço Geológico do Brasil. (2004). Carta Geológica do Brasil ao Milionésimo – Folhas SD-22, SE-24 e SG-22. Rio de Janeiro. Disponível em: <http://www.cprm.gov.br/publique/Geologia/Geologia-Basica/Carta-Geologica-do-Brasil-ao-Milionesimo-298.html>. Acesso em: 2 de junho de 2017.
De Campos, C., Mendes, J. C., Ludka, I. P., Medeiros, S. R., Costa-de-Moura, J., Wallfass, C. M. (2004). A review of the brasiliano magmatism in Southern Espírito Santo, Brazil, with emphasis on post-collisional magmatism. Journal of the Virtual Explorer, 17. https://www.doi.org/10.3809/jvirtex.2004.00106
Deer, W. A., Howie, R. A., Zussman, J. (2010). Minerais constituintes das rochas: uma introdução. Lisboa: Fundação Calouste Gulbenkian, 4ª edição, 727p.
Fitton, J. G., Upton, B. G. J. (1987). Alkaline Igneous Rocks. Geological Society, Special Publication, London, N. 30. 568p.
Hasui, Y., Carneiro, C. D. R., Almeida, F. F. M., Bartorelli, A. (org.). (2012). Geologia do Brasil. São Paulo: Beca, 900p.
Hueck, M., Basei, M. A. S., Castro, N. A. (2020). Tracking the sources and the evolution of the late Neoproterozoic granitic intrusions in the Brusque Group, Dom Feliciano Belt, South Brazil: LA-ICP-MS and SHRIMP geochronology coupled to Hf isotopic analysis. Precambrian Research, 338, 105566. https://doi.org/10.1016/j.precamres.2019.105566
Hueck, M., Basei, M. A. S., Castro, N. A. (2016). Origin and Evolution of the granitic intrusions in the Brusque Group of the Dom Feliciano Belt, south Brazil: Petrostructural analysis and whole-rock/isotope geochemistry. Journal of South America Earth Sciences, 69, 131-151. https://doi.org/10.1016/j.jsames.2016.04.004
Hughes, J. M., Rakovan, J. F. (2015). Structurally robust, chemically diverse: Apatite and Apatite Supergroup Minerals. Elements, 11(3), 165-170. https://doi.org/10.2113/gselements.11.3.165
Kempe, U., Goetze, J. (2002). Cathodoluminescence (CL) behavior and crystal chemistry of apatite from rare-metal deposits. Mineralogical Magazine, 66(1), 151-172. https://doi.org/10.1180/0026461026610019
Ketcham, R. A. (2015). Technical Note: Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. American Mineralogist, 100(7), 1620-1623. https://doi.org/10.2138/am-2015-5171
Kieffer, M. A., Dare, S. A. S., Namur, O. (2023). The use of trace elements in apatite to trace differentiation of a ferrobasaltic melt in the Sept-Iles Intrusive Suite, Quebec, Canada: Implications for provenance discrimination. Geochemica et Cosmochimica Acta, 342(1), 169-197. https://doi.org/10.1016/j.gca.2022.12.016
Lavrent’ev, Y. G., Karmanov, N. S., Usova, L. V. (2015). Electron probe microanalysis of minerals: microanalyzer or scanning electron microscope? Russian Geology and Geophysics, 56(8), 1154-1161. https://doi.org/10.1016/j.rgg.2015.07.006
Lisowiec, K., Slaby, E., Goetze, J. (2013). Cathodoluminescence (CL) of apatite as an insight into magma mixing in the granitoid pluton of Karkonosze, Poland. Conference of Raman and Luminescence Spectroscopy in the Earth Sciences (CORALS), University of Vienna, Áustria.
MacRae, C. M., Wilson, N. C. (2008). Luminescence database I - Minerals and Materials. Microscopy and Microanalysis, 14(2), 184-204. https://doi.org/10.1017/S143192760808029X
Mänd, K., Kirsimäe, K., Lepland, A., Crosby, C. H., Bailey, J. V., Konhauser, K. O., Wirth, R., Schreiber, A., Lumiste, K. (2018). Authigenesis of biomorphic apatite particles from Benguela upwelling zone sediments off Namibia: The role of organic matter in sedimentary apatite nucleation and growth. Geobiology, 16(6), 640-658. https://doi.org/10.1111/gbi.12309
McClellan, G. H., Van Kauwenbergh, S. J. (1990). Mineralogy of sedimentary apatites. Geological Society - Special Publications, London, 52, 23-31. https://doi.org/10.1144/GSL.SP.1990.052.01.03
Nathwani, C. L., Loader, M. A., Wilkinson, J. J., Buret, Y., Sievwright, R. H., Hollings, P. (2020). Multi-stage arc magma evolution recorded by apatite in volcanic rocks. Geology, 48(4), 323-327. https://doi.org/10.1130/G46998.1
O’Sullivan, G., Chew, D., Kenny, G., Henrichs, I., Mulligan, D. (2020). The trace element composition of apatite and its application to detrital provenance studies. Earth-Science Reviews, 201, 103044. https://doi.org/10.1016/j.earscirev.2019.103044
O’Reilly, S. Y., Griffin, W. L. (2000). Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos, 53(3-4), 217-232. https://doi.org/10.1016/S0024-4937(00)00026-8
Pan, Y., Fleet, M. E. (2002). Compositions of the Apatite-Group Minerals: Substition Mechanisms and Controlling Factors. In: Kohn, M.L., Rakovan, J., Hughes, J.M. (eds) Phosphates – Geochemical, Geobiological and Materials Importance. Reviews in Mineralogy & Geochemistry, (Mineralogical Society of America and Geochemical Society), 48(1), 13-49. https://doi.org/10.2138/rmg.2002.48.2
Patiño Douce, A. E., Roden, M. F., Chaumba, J., Fleisher, C., Yogodzinski, G. (2011). Compositional variability of terrestrial mantle apatites, thermodynamic modeling of apatite volatile contents, and the halogen and water budget of planetary mantles. Chemical Geology, 288(1-2), 14-31. https://doi.org/10.1016/j.chemgeo.2011.05.018
Pedrosa-Soares, A. C., Campos, C. P., Noce, C., Silva, L. C., Novo, T., Roncato, J., Medeiros, S., Castaneda, C., Queiroga, G., Dantas, E., Dussin, I., Alkmin, F. (2011). Late neoproterozoic-cambrian granitic magmatism in the Araçuai orogen (Brazil), the Eastern Brazilian Pegmatite Province and related mineral resources. In: Sial, A.N., Bettencourt, J.S., de Campos, C.P., Ferreira, V.P. (eds) Granite-Related Ore Deposits. Geological Society - Special Publications, London, 350, 25-51. https://doi.org/10.1144/SP350.3
Piccoli, P. M., Candela, P. A. (2002). Apatite in Igneous Systems. In: Kohn, M.L., Rakovan, J., Hughes, J.M. (eds) Phosphates – Geochemical, Geobiological and Materials Importance. Reviews in Mineralogy & Geochemistry (Mineralogical Society of America and Geochemical Society), 48(1) 255-292. https://doi.org/10.2138/rmg.2002.48.6
Pinto-Coelho, C. V. (2005). Comportamento geoquímico dos elementos terras raras durante processos de alteração hidrotermal: caso do Maciço Granítico da Serra Branca-GO. Boletim Paranaense de Geociências, 58, 105-117.
Pinto-Coelho, C. V. (1996). Evolution magmatique et hydrothermale du Massif Granitique de Serra Branca - Etat de Goias - Brésil: definition des processus d’altération tardi/post-magmatiques em liaison avec les minéralisations en Sn, Be et F. Thèse (Doctorat). Nancy: Vandoeuvre-les-Nancy, INPL, 269p. Disponível em: https://theses.fr/1996INPL103N. Acessado em: 16 set. 2025.
Prazeres Filho, H. J. (2000). Litogeoquímica, geocronologia (U-Pb) e geologia isotópica dos complexos graníticos Cunhaporanga e Três Córregos, Estado do Paraná. Dissertação (Mestrado). São Paulo: Pós-Graduação em Geoquímica e Geotectônica, Instituto de Geociências, Universidade de São Paulo, 180p. https://doi.org/10.11606/D.44.2000.tde-28092015-155909
Prazeres Filho, H. J., Harara, O. M., Basei, M. A. S., Passarelli, C. R. Siga JR, O. (2003). Litogeoquímica, geocronologia U-Pb e Geologia Isotópica (Sr-Nd-Pb) das rochas graníticas dos Batólitos Cunhaporanga e Três Córregos na Porção Sul do Cinturão Ribeira, Estado do Paraná. Geologia USP. Série Científica, 3, 51-70. https://doi.org/10.5327/S1519-874X2003000100005
Scott, A. J., Knott, M. A. (1974). A cluster analysis method for grouping means in the analysis of variance. Biometrics, 30(3), 507-512. https://doi.org/10.2307/2529204
Soltys, A., Giuliani, A., Phillips, D. (2020). Apatite compositions and groundmass mineralogy record divergent melt/fluid evolution trajectories in coherent kimberlites caused by differing emplacement mechanisms. Contrib Mineral Petrol, 175, 49. https://doi.org/10.1007/s00410-020-01686-0
Siga JR., O., Gomes, C. B., Sato, K., Passarelli, C. R. (2007). O maciço alcalino de Tunas, PR: novos dados geocronológicos. Geologia USP. Série Científica, 7(2), 71-80. https://doi.org/10.5327/Z1519-874x2007000200005
SISVAR. Sisvar versão 5.6 (Build 86). (2015). Copyright Daniel Furtado Ferreira, DEX/UFLA. Disponível em: https://des.ufla.br/~danielff/sisvar.html. Acessado em: 16 set. 2025.
Spear, F. S., Pyle, J. M. (2002). Apatite, Monazite, and Xenotime in Metamorphic Rocks. Reviews in Mineralogy and Geochemistry, 48, 293-335. https://doi.org/10.2138/rmg.2002.48.7
Steadman, J. A., Goemann, K., Thompson, J. M., MacRae, C. M., Belousov, I., Hohl, M. (2022). Hyperspectral cathodoluminescence, trace element, and U-Pb geochronological characterization of apatite from the Ernest Henry iron oxide copper-gold (IOCG) deposit, Cloncurry district, Queensland. Frontiers in Earth Science, 10, 926114. https://doi.org/10.3389/feart.2022.926114
Tacker, R. C. (2004). Hydroxyl ordering in igneous apatite. American Mineralogist, 89, 1411-1421. https://doi.org/10.2138/am-2004-1008
Vasconcellos, E. M. G. (1991). Investigações geológicas e petrográficas das brechas vulcânicas do maciço alcalino de Tunas, PR. Dissertação (Mestrado). São Paulo: Instituto de Geociências, USP, 128p. https://doi.org/10.11606/D.44.1991.tde-18092015-174124
Wang, L., Marks, A. W., Wenzel, T., Von Der Handt, A., Keller, J., Teiber, H., Markl, G. (2014). Apatites from Kaiserstuhl Volcanic Complex, Germany: new constraints on the relationship between carbonatite and associated silicate rocks. European Journal of Mineralogy, 26, 397-414. https://doi.org/10.1127/0935-1221/2014/0026-2377
Warr, L. N. (2021). IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. https://doi.org/10.1180/mgm.2021.43
Waychunas, G. A. (2002). Apatite Luminescence. In: Kohn, M. L., Rakovan, J., Hughes, J. M. (eds) Reviews in Mineralogy & Geochemistry, Vol. 48, Phosphates – Geochemical, Geobiological and Materials Importance. Colorado: Mineralogical Society of America and Geochemical Society, 701-742. https://doi.org/10.2138/rmg.2002.48.19
Webster, J. D., Piccoli, P. M. (2015). Magmatic Apatite: A Powerful, Yet Deceptive, Mineral. Elements, 11, 177-182. https://doi.org/10.2113/gselements.11.3.177
Xavier, F. C. B. (2016). Assinatura geoquímica de feldspatos alcalinos dos sienitos do Complexo Alcalino de Tunas - PR: influência dos processos tardi e pós-magmáticos na assembleia mineral primária. Dissertação (Mestrado). Curitiba: Departamento de Geologia, UFPR, 138p. Disponível em: https://hdl.handle.net/1884/43580. Acessado em: 25 abr. 2025.
Zirner, A. L. K., Marks, M. A. W., Wenzel, T., Jacob, D. E., Markl, G. (2015). Rare Earth Elements in apatite as a monitor of magmatic and metasomatic processes: The Illimaussaq complex, South Greenland. Lithos, 228-229, 12-22. https://doi.org/10.1016/j.lithos.2015.04.013
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Alberto Caixeta Botelho, Cristina Valle Pinto-Coelho

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista Geologia USP. Série Científica, o direito de primeira publicação, com o trabalho sob a licença Creative Commons BY-NC-SA (resumo da Licença: https://creativecommons.org/licenses/by-nc-sa/4.0 | texto completo da licença: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode) que permite o compartilhamento do trabalho de forma não comercial e conferindo os devidos créditos autorais da primeira publicação nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (publicar em repositório institucional ou como capítulo de livro), conferindo os devidos créditos autorais da primeira publicação nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, uma vez que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O efeito do Acesso Aberto e downloads no impacto das citações).











