Proposição de um Método para Estimar Razões Geomorfológicas em Bacias Hidrográficas: Redução de Incertezas por meio da Dispersão dos Parâmetros Morfométricos
DOI:
https://doi.org/10.11606/issn.2316-9095.v25-207054Palavras-chave:
Razões geomorfológicas, Hidrograma unitário instantâneo, Incerteza, Regressão não linear, Bacia hidrográficaResumo
A modelagem hidrológica de bacias hidrográficas de pequeno e médio porte frequentemente depende da estimativa de razões geomorfológicas, fundamentais para parametrizações de modelos como o Hidrograma Unitário Instantâneo Geomorfológico (HUIG). No entanto, os métodos tradicionais de estimativa baseiam-se em médias agregadas, desconsiderando a dispersão natural dos dados morfométricos, o que pode induzir a incertezas significativas. Este estudo propõe um novo método para estimar razões geomorfológicas, incorporando a dispersão dos dados ao ajuste de regressão, o que proporciona maior representatividade física e estatística. Foram analisadas quatorze bacias hidrográficas com diferentes características fisiográficas, comparando-se três métodos de estimativa: média aritmética simples (Método 1), regressão sobre médias agregada por ordem (Método 2) e regressão sobre os dados dispersos (Método 3). Os resultados demonstram que o Método 3 reduz a incerteza nas estimativas de RL e RA, mantendo robustez estatística, especialmente em bacias com alta variabilidade morfométrica. Conclui-se que o método proposto é mais adequado para representar a complexidade das bacias e pode melhorar significativamente a performance de modelos hidrológicos que utilizam razões geomorfológicas como entrada.
Downloads
Referências
Al-Ghamdi, K. A., Elzahrany, R. A., Mirza, M. N., Dawod, G. M. (2012). Impacts of urban growth on flood hazards in Makkah City, Saudi Arabia. International Journal of Water Resources and Environmental Engineering, 4(2), 23-34. Disponível em: https://academicjournals.org/article/article1379509325_Al-Ghamdi%20et%20al.pdf. Acesso em: 20 fev. 2024.
Al-Saud, M. (2010). Assessment of flood hazard of Jeddah area 2009, Saudi Arabia. Journal of Water Resource and Protection, 2, 839-847. https://doi.org/10.4236/jwarp.2010.29099
Bajracharya, P., Jain, S. (2020). Estimation of watershed width function: a statistical approach using LiDAR data. Stochastic Environmental Research and Risk Assessment, 34, 1997-2011. https://doi.org/10.1007/s00477-020-01846-5
Bates, D. M., Watts, D. G. (2007). Nonlinear Regression Analysis and Its Applications. New York: Wiley. https://doi.org/10.1002/9780470316757
Bierkens, M. F. P., Bell, V. A., Burek, P., Chaney, N., Condon, L., David, C., Roo, A. D., Doell, P., Drost, N., Famigli-Etti, J. S., Flörke, M., Gochis, D. J., Houser, P., Hut, R., Keune, J., Kollet, S., Maxwell, R., Reager, J. T., Samaniego, L., Wood, E. F.. (2014). Hyper-resolution global hydrolog-ical modelling: What is next? Hydrological Processes, 29, 310-320. Disponível em: https://www.researchgate.net/publication/303205772_Hyper-resolution_global_hydrolog-ical_modelling_What_is_next. Acesso em: 20 fev. 2024.
Biron, P. M., Choné, G., Buffin-Bélanger, T., Demers, S., Olsen, T. (2013). Improvement of Streams Hydro-geomorphological Assessment Using LiDAR DEMs. Earth Surf Process Landf, 38(15), 1808-1821. https://doi.org/10.1002/esp.3425
Bisht, S., Chaudhry, S., Sharma, S., Soni, S. (2018). Assessment of flash flood hazard zonation through geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India. Remote Sensing Applications: Society and Environment, 12, 35-47. https://doi.org/10.1016/j.rsase.2018.09.001
Chavan, V. T., Gadge, P. S. (2013). Morphometric Analysis of Junana Mini Watershed Nandgoan (Kh.), Dist. Amravati, Maharashtra Using GIS. International Journal of Science, Environment and Technology, 2(5), 1072-1079. Disponível em: https://www.researchgate.net/publication/230757411_Morphometric_Analysis_at_Miniwatershed_Level_using_GIS. Acesso em: 20 fev. 2024.
Chopra, R., Dhiman, R. D., Sharma, P. K. (2005). Morphometric Analysis Of Sub-Watersheds In Gurdaspur District, Punjab Using Remote Sensing And Gis Techniques. Journal of the Indian Society of Remote Sensing, 33(4), 531-539. https://doi.org/10.1007/BF02990738
Dar, R. A., Chandra, R., Romshoo, S. A. (2013). Morphotectonic and lithostratigraphic analysis of intermontane Karewa basin of Kashmir Himalayas, India. Journal of Mountain Science, 10(1), 731-741. https://doi.org/10.1007/s11629-013-2494-y
Dawod, G. M., Mirza, M. N., Khalid, A., Al-Ghamdi, K. A. (2011). GIS-based spatial mapping of flash flood hazard in Makkah City, Saudi Arabia. Journal of Geographic Information System, 3, 217-223. https://doi.org/10.4236/jgis.2011.33019
Degetto, M., Gregoretti, C., Bernard, M. (2015). Comparative analysis of the differences between using LiDAR and contour-based DEMs for hydrological modeling of runoff generating debris flows in the Dolomites. Frontiers in Earth Science, 3(21). https://doi.org/10.3389/feart.2015.00021
Eze, E. B., Joel, E. (2010). Morphometric parameters of the Calabar River Basin: implication for hydrologic processes. Journal of Geography and Geology, 2(1), 19-26. https://doi.org/10.5539/jgg.v2n1p18
Fontana, G. T., Pumi, G. (2015) Regressão Linear Robusta: O Método de TELBS e uma Aplicação a Dados de e-Commerce. Trabalho de Conclusão de Curso. Porto Alegre: Universidade Federal do Rio Grande do Sul, Instituto de Matemática, Departamento de Estatística. Disponível em: https://lume.ufrgs.br/bitstream/handle/10183/133722/000986118.pdf?sequence. Acessado em: 09 abr. 2024.
Gaucherel, C., Frelat, R., Salomon, L., Rouy, B., Pandey, N., Cudennec, C. (2017). Regional Watershed Characterization and Classification With River Network Analyses. Earth Surface Processes and Landforms, 42(13), 2068-2081. https://doi.org/10.1002/esp.4172
Geena, G. B., Ballukraya, P. N. (2011). Morphometric analysis of Korattalaiyar River Basin, Tamil Nadu, India: a GIS approach. International journal of Geomatics and Geosciences, 2(2), 383-391. Disponível em: https://www.semanticscholar.org/paper/Morphometric-analysis-of-Korattalaiyar-River-basin%2C/3250cb1ac135075af70800c9d6b857de576cff57. Acessado em: 20 fev. 2024.
Grohmann, C. H., Riccomini, C., Alves, F. M. (2007). Srtm-Based Morphotectonic Analysis Of The Poços De Caldas Alkaline Massif, Southeastern Brazil. Computers & Geosciences, 33, 10-19. https://doi.org/10.1016/j.cageo.2006.05.002
Hajam, R. A., Hamid, A., Dar, N. A., Bhat, S. U. (2013). Morphometric Analysis Of Vishav Drainage Basin Using Geo-Spatial Technology (GST). International Research Journal of Geology and Mining, 3(3), 136-146. Disponível em: https://www.interesjournals.org/abstract/morphometric-analysis-of-vishav-drainage-basin-using-geospatial-technology-gst-16671.html. Acessado em: 20 fev. 2024.
Hamdan, A., Khozyem, H. (2018). Morphometric, Statistical, and Hazard Analyses Using ASTER Data and GIS Technique of WADI El-Mathula Watershed, Qena, Egypt. Arabian Journal of Geosciences, 11(722). https://doi.org/10.1007/s12517-018-4068-3
Horton, R. E. (1945). Erosional Development Of Streams And Their Drainage Basins: Hydrophysical Approach To Quantitative Morphology. Bulletin of the Geological Society of America, 56, 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
Ifabiyi, I. P. A. (2004). A Reduced Rank Model Of Drainage Basin Response To Runoff In Upper Kaduna Catchment Of Northern Nigeria. Geo-Studies Forum, 2(1), 109-117.
INPE – Instituto Nacional de Pesquisas Espaciais (2008). Projeto TOPODATA, Banco de Dados Geomorfométricos do Brasil. Disponível em: http://www.dsr.inpe.br/topodata/. Acessado em 13 ag. 2025.
Jain, V., Sinha, R. (2003). Derivation of Unit Hydrograph From GIUH Analysis For A Himalayan River. Water Resources Management, 17, 355-375. https://doi.org/10.1023/A:1025884903120
Jung, K., Niemann, J. D., Huang, X. (2011). Under what conditions do parallel river networks occur? Geomorphology, 132(3-4), 260-271. https://doi.org/10.1016/j.geomorph.2011.05.014
Jung, K., Ouarda, T. B. M. J. (2015). Analysis and Classification of Channel Network Types For Intermittent Streams In The United Arab Emirates And Oman. Journal of Civil & Environmental Engineering, 5(5). https://doi.org/10.4172/2165-784X.1000183
Kaliraj, S., Chandrasekar, N. (2015). Morphometric Analysis of the River Thamirabarani sub-basin in Kanyakumari District, South West Coast of Tamil Nadu, India, using remote sensing and GIS. Environmental Earth Sciences, 73, 7375-7401. https://doi.org/10.1007/s12665-014-3914-1
Kouli, M., Vallianatos, F., Soupios, P., Alexakis, D. (2007). GIS-based morphometric analysis of two major watersheds, Western Crete, Greece. Journal of Environmental Hydrology, 15(1), 1-17.
Kumar, R., Kumar, S., Lohni, A. K., Neema, R. K., Singh, A. D. (2000). Evaluation of Geomorphological Characteristics of a Catchment Using GIS. GIS India, 9(3), 13-17. Disponível em: https://www.researchgate.net/publication/267271380_Evaluation_of_geomorphological_characteristics_of_a_catchment_using_GIS. Acesso em: 20 fev. 2024.
Liu, X., Zhang, Z. (2011). Drainage Network Extraction Using LiDAR Derived DEM in Volcanic Plains. Area, 43(1), 42-52. https://doi.org/10.1111/j.1475-4762.2010.00955.x
Magesh, N. S., Chandrasekar, N. (2012). GIS Model-based Morphometric Evaluation of Tamiraparani Subbasin, Tirunelveli District, Tamil Nadu, India. Arabian Journal of Geosciences, 7, 131-141. https://doi.org/10.1007/s12517-012-0742-z
Magesh, N. S., Chandrasekar, N., Kaliraj, S. (2012). A GIS Based Automated Extraction Tool for the Analysis of Basin Morphometry. Bonfring International Journal of Industrial Engineering and Management Science. 2. 32-35. Disponível em: https://www.academia.edu/6522632/A_GIS_based_Automated_Extraction_Tool_for_the_Analysis_of_Basin_Morphometry. Acessado em: 20 fev. 2024.
Mesa, L. M. (2006). Morphometric Analysis of a Subtropical Andean basin (Tucuman, Argentina). Environmental Geology, 50, 235-1242. https://doi.org/10.1007/s00254-006-0297-y
Montgomery, D. C., Runger, G. C. (2010). Applied Statistics and Probability for Engineers (5th ed.). New York: Wiley. Disponível em: https://selvyblog.wordpress.com/wp-content/uploads/2015/10/buku-stat-montgomery-5.pdf. Acessado em: 03 out. 2025.
Motulsky, H., Christopoulos, A. (2004). Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. Oxford: Oxford University Press. https://doi.org/10.1093/oso/9780195171792.001.0001
Moussa, R. (2003). On Morphometric Properties of Basins, Scale Effects and Hydrological Response. Hydrological Processes, 17, 33-58. https://doi.org/10.1002/hyp.1114
Narendra, K., Nageswara, R. K. (2006). Morphometry of the Meghadrigedda Watershed, Visakhapatnam District, Andhra Pradesh using GIS and Resourcesat data. Journal of the Indian Society of Remote Sensing, 34, 101-110. https://doi.org/10.1007/BF02991815
Nautiyal, M. D. (1994). Morphometric Analysis of a Drainage Basin, District Dehradun, Uttar Pradesh. Journal of the Indian Society of Remote Sensing, 22(4), 251-261. https://doi.org/10.1007/BF03026526
Negri, R., Fill, H. (2023) Caracterização física de 14 bacias hidrográficas brasileiras: proposição do indicador da declividade média dos rios e do coeficiente de suscetibilidade de enchentes. Engenharia Sanitaria e Ambiental, 28. https://doi.org/10.1590/S1413-415220220194
Obi Reddy, G. P., Maji, A. K., Gajbhiye, K. S. (2002). GIS for Morphometric Analysis of Drainage Basins. GIS Índia, 11, 9-14. Disponível em: https://krishi.icar.gov.in/jspui/bitstream/123456789/36214/1/GIS%20for%20Morphometric%20Analysis%20of%20River%20basins.pdf. Acessado em: 20 fev. 2024.
Okoko, E. E., Olujinmi, J. A. B. (2003). The Role of Geomorphic Features in Urban Flooding: the Case of Ala River in Akure, Nigeria. International Journal of Environmental Issues, 1(1), 192-201.
Pareta, K., Pareta, U. (2012). Quantitative Geomorphological Analysis of a Watershed of a Ravi River Basin, H.P. India. International Journal of Remote Sensing and GIS, 1(1), 41-56. Disponível em: https://prod-qt-images.s3.amazonaws.com/indiawaterportal/import/sites/default/files/iwp2/quantitative_geomorphological_analysis_of_a_watershed_of_ravi_river_basin_himachal_pradesh_india_international_journal_of_remote_sensing_and_gis_2012.pdf. Acessado em: 20 fev. 2024.
Rawat, K. S., Mishra, A. K. (2016). Evaluation of Relief Aspects Morphometric Parameters Derived from Different Sources of DEMs and Its Effects Over Time of Concentration of Runoff (tc). Earth Science Informatics, 9, 409-424. https://doi.org/10.1007/s12145-016-0261-7
Rawat, K. S., Mishra, A. K., Tripathi, V. K. (2012). Hydro-morphometrical Analyses of Sub-himalyan Region in Relation to Small Hydro-electric Power. Arabian Journal of Geosciences, 6(8), 2889-2899. https://doi.org/10.1007/s12517-012-0586-6
Rigon, R., Bancheri, M., Formetta, G., e Lavenne, A. (2016). The Geomorphological Unit Hydrograph from a Historical-critical Perspective. Earth Surface Processes and Landforms, 41(1), 27-37. https://doi.org/10.1002/esp.3855
Rodriguez-Iturbe, I., Valdés, J. B. (1979). The Geomorphologic Structure Of Hydrologic Response. Water Resources Research, 15(6), 1409-1420. https://doi.org/10.1029/WR015i006p01409
Romshoo, S. A., Bhat, S. A., Rashid, I. (2012). Geoinformatics for Assessing the Morphometric Control on Hydrological Response at Watershed Scale in the Upper Indus Basin. Journal of Earth System Science, 12(3), 659-686. https://doi.org/10.1007/s12040-012-0192-8
Sahoo, R., Jain, V. (2018). Sensitivity of Drainage Morphometry Based Hydrological Response (GIUH) of a River Basin to the Spatial Resolution of DEM Data. Computers & Geosciences, 111, 78-86. https://doi.org/10.1016/j.cageo.2017.10.001
Santos, G. O., Hernandez, F. B. T. (2013). Uso do Solo e Monitoramento dos Recursos Hídricos no Córrego do Ipê, Ilha Solteira, SP. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(1), 60-68. https://doi.org/10.1590/S1415-43662013000100009
Santos, G. O., Silva, A. A., Braz, A. R. C., Carneiro, F. M. (2018). Morphometric characterization of hydrographic bodies inserted in the Municipality of Rio Verde, Goiás, as a tool for urban and agricultural planning. Geografia Ensino & Pesquisa, 22(17), 01-13. https://doi.org/10.5902/2236499426572
Sarangi, A., Madramootoo, C. A., Enright, P. (2003). Desenvolvimento de Interface de Usuário em ArcGIS para Estimativa de Geomorfologia de Bacias Hidrográficas. CSAE/SCGR 2003 Meeting, Paper, 3, 120-130.
Schumm, S. A. (1956). Evolution of Drainage Systems and Slopes in Badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597-646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
Seber, G. A. F., Wild, C. J. (2003). Nonlinear Regression. Hoboken: Wiley-Interscience. https://doi.org/10.1002/0471725315
Shen, Y., Liu, D., Yin, J., Xiong, L., Liu, P. (2020). Integrating Hybrid Runoff Generation Mechanism Into Variable Infiltration Capacity Model to Facilitate Hydrological Simulations. Stochastic Environmental Research and Risk Assessment, 34, 2139-2157. https://doi.org/10.1007/s00477-020-01878-x
Sivakumar, B., Singh, V. P., Berndtsson, R., Khan, S. K. (2013). Catchment Classification Framework in Hydrology: Challenges and Directions. Journal of Hydrologic Engineering, 20(1). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000837
Smart, J.S. (1978), The analysis of drainage network composition, Earth Surface Processes, 3, 129-171. Disponível em: https://pdodds.w3.uvm.edu/files/papers/others/1978/smart1978a.pdf. Acessado em: 09 abr. 2024.
Soni, S. K., Tripathi, S., Maurya, A. K. (2013). GIS Based Morphometric Characterization of Mini-watershed—Rachhar Nala of Anuppur District Madhya Pradesh. International Journal of Advanced Technology and Engineering Research, 3(3), 32-38. Disponível em: https://www.researchgate.net/publication/303880422_GIS_BASED_MORPHOMETRIC_CHARACTERIZATION_OF_MINI_WATERSHED_-RACHHAR_NALA_OF_ANUPPUR_DISTRICT_MADHYA_PRADESH. Acessado em: 20 fev. 2024.
Soni, S. (2017). Assessment of Morphometric Characteristics of Chakrar Watershed in Madhya Pradesh, India Using Geospatial Technique. Applied Water Science. https://doi.org/10.1007/s13201-016-0395-2
Steffen, J. L., Andrade, A. C. De Souza, Alves Sobrinho, T., Oliveira, P. T. S., Rodrigues, D. B. B. (2009) Hidrograma unitário instantâneo geomorfológicoaplicado a bacias desprovidas de dados hidrológicos. Geociências, 28 (3) 247-254. Disponível em: https://www.periodicos.rc.biblioteca.unesp.br/index.php/geociencias/article/view/3510/3199. Acessado em: 09 abr. 2024.
Strahler, A. N. (1957). Quantitative Analysis of Watershed Geomorphology. EOS, Transactions American Geophysical Union, 38, 913-920. https://doi.org/10.1029/TR038i006p00913
Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In: Chow VT (ed) Handbook of applied hydrology. New York: McGraw Hill Book Company, Section, 4-11.
Tripathi, S., Soni, S. K., Maurya, A. K. (2013). Morphometric Characterization & Prioritization of Sub-watersheds of Seoni River in Madhya Pradesh, Through Remote Sensing & GIS Technique. Int. J. Remote Sens. Geosci., 2(3), 46-54. Disponível em: https://api.semanticscholar.org/CorpusID:130869449. Acessado em: 20 fev. 2024.
Vandana, M. (2013). Morphometric analysis and watershed prioritization: a case study of Kabani River Basin, Wayanad District, Kerala, India. Indian Journal of Geo-Marine Sciences, 42(2), 211-222. Disponível em: https://www.researchgate.net/publication/332186957_Morphometric_analysis_and_watershed_prioritisation_A_case_study_of_Kabani_river_basin_Wayanad_District_Kerala_India. Acessado em: 20 fev. 2024.
Vestena, L. R., Kobiyama, M.. (2010). A geometria fractal da rede de drenagem da bacia hidrográfica do Caeté, Alfredo Wagner-SC. Revista Árvore, 34(4), 661-668. https://doi.org/10.1590/S0100-67622010000400010
Vijith, H., Satheesh, R. (2006). GIS Based Morphometric Analysis of Two Major Upland Sub Watersheds of Meenachil River in Kerala. Journal of the Indian Society of Remote Sensing, 34, 181-185. https://doi.org/10.1007/BF02991823
Vittala, S. S., Govindaiah, S., Honne Gowda, H. (2004). Morphometric Analysis of Sub-watersheds in the Pavagada Area of Tumkur District, South India Using Remote Sensing and GIS Techniques. Journal of the Indian Society of Remote Sensing, 32(4), 351-362. https://doi.org/10.1007/BF03030860
Wu, Q., Lane, C. R. (2017). Delineating Wetland Catchments and Modeling Hydrologic Connectivity Using LiDAR Data and Aerial Imagery. Hydrology and Earth System Sciences, 21(7), 3579-3595. https://doi.org/10.5194/hess-21-3579-2017
Yang, P., Ames, D. P., Fonseca, A., Anderson, D., Shrestha, R., Glenn, N. F., Cao, Y. (2014). What is the Effect of LiDAR-derived DEM Resolution on Large-scale Watershed Model Results? Environmental Modelling & Software, 58, 48-57. https://doi.org/10.1016/j.envsoft.2014.04.005
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Robison Negri, Heinz Dieter Oskar August Fill

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista Geologia USP. Série Científica, o direito de primeira publicação, com o trabalho sob a licença Creative Commons BY-NC-SA (resumo da Licença: https://creativecommons.org/licenses/by-nc-sa/4.0 | texto completo da licença: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode) que permite o compartilhamento do trabalho de forma não comercial e conferindo os devidos créditos autorais da primeira publicação nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (publicar em repositório institucional ou como capítulo de livro), conferindo os devidos créditos autorais da primeira publicação nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, uma vez que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O efeito do Acesso Aberto e downloads no impacto das citações).











