The use of multiple-point statistics as post-processing for ordinary kriging

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v24-207271

Keywords:

Geostatistics, FILTERSIM, Copper synthetic deposit, Smoothing effect, Multipoint simulation

Abstract

Kriging smoothing represents a major drawback for mineral resources and reserves calculations, since high values are underestimated and low values are overestimated. Smoothing out local details of spatial variation in the analyte, makes patterns of high values more difficult to detect. This article proposes the use of multiple-point statistics as post-processing of ordinary kriging results, in order to mitigate this smoothing. The proposal uses the block model estimated by kriging as the training image. For the tests, a synthetic copper deposit was used in order to check the results obtained in relation to the real values. Visual, statistical and block-by-block analyzes were performed between geostatistical estimates and multiple-point simulations with the synthetic deposit, in order to understand whether the use of Multiple-point Statistic (MPS) as post-processing is valid. The MPS results were subtly more similar to the synthetic deposit, mainly in lower grade ranges. Thus, it was considered that the use of MPS as post-processing of ordinary kriging generates positive results, although not very expressive, making it possible to apply the methodology in the analysis of resources and reserves routine.

Downloads

Download data is not yet available.

References

Caers, J., Zhang, T. (2004). Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models. AAPG Special Volumes, Memoir 80, 383-394. https://doi.org/10.1306/M80924C18

Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Lawrence, Kansas: Oxford University Press. https://doi.org/10.1023/A:1007530422454

Guardiano, F. B., Srivastava, R. M. (1993). Multivariate geostatistics: beyond bivariate moments, Geostatistics Troia’92. Dordrecht: Springer, 133-144. https://doi.org/10.1007/978-94-011-1739-5_12

Journel, A. G., Huijbregts, C. J. (1978). Mining Geostatistics. Londres: Academic Press.

Mariethoz, G., Caers, J. (2015). Multiple-point geostatistics: stochastic modeling with training images. New York: John Wiley & Sons. https://doi.org/10.1002/9781118662953

Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58 (8), 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246

Matheron, G. (1971). The theory of regionalised variables and its applications. Les Cahiers du Centre de Morphologie Mathématique, De Fontainebleau, n.5. Paris: École Nationale Supérieure des Mines. Disponível em: https://cg.ensmp.fr/bibliotheque/public/MATHERON_Ouvrage_00167.pdf. Acesso em: 28 jun 2024.

Olea, R. A. (1974). Optimal contour mapping using universal kriging. Journal of Geophysical Research, 79(5), 695-702. https://doi.org/10.1029/JB079i005p00695

Rezaee, H., Asghari, O., Yamamoto, J. K. (2011). On the reduction of the ordinary kriging smoothing effect. Journal of Mining and Environment, 2(2), 102-117. https://doi.org/10.22044/jme.2011.538

Remy, N., Boucher, A., Wu, J. (2009). Applied geostatistics with SGeMS: A user's guide. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139150019

Rossi, M. E., Deustsch, C. V. (2014). Mineral resource estimation. Dordrecht: Springer Science & Business Media. https://doi.org/10.1007/978-1-4020-5717-5

Strebelle, S. (2002). Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34(1), 1-21. https://doi.org/10.1023/A:1014009426274

Tahmasebi, P. (2018). Multiple point statistics: a review. In: B.S. Daya Sagar, Q. Cheng, F. Agterberg (Ed). Handbook of Mathematical Geosciences, 613-643. Suíça: Springer Cham. https://doi.org/10.1007/978-3-319-78999-6_30

Takafuji, E. H. M. (2015). Estudo comparativo entre a Simulação Sequencial Gaussiana e a Simulação Baseada em Wavelets aplicado a quantificação de minério de Cu em um depósito sintético. Dissertação (Mestrado). São Paulo: Instituto de Geociências – USP. https://www.doi.org/10.11606/D.44.2015.tde-22092015-145130

Takafuji, E. H. M., Rocha, M. M., Ramos, G. Z., Silva, L. A. U. (2017). Simulação estocástica aplicada a um banco de dados sintético de cobre. Geologia USP. Série Científica, 17, 247-256. https://doi.org/10.11606/issn.2316-9095.v17-432

Yamamoto, J. K. (2005) Correcting the smoothing effect of ordinary kriging estimates. Mathematical Geology, 37, 69-94. https://doi.org/10.1007/s11004-005-8748-7

Yamamoto, J. K., Landim, P. M. B. (2013). Geoestatística: conceitos e aplicações. São Paulo: Oficina de Textos.

Zhang, T. (2006). Filter-based training pattern classification for spatial pattern simulation. Tese (Doutorado). Stanford: Stanford University. Disponível em: https://www.proquest.com/dissertations-theses/filter-based-training--pattern-classification/docview/304982590/se-2?accountid=14643. Acesso em: 28 jun 2024.

Published

2024-08-12

Issue

Section

Articles

How to Cite

Salaroli, R. M., & Rocha, M. M. da. (2024). The use of multiple-point statistics as post-processing for ordinary kriging. Geologia USP. Série Científica, 24(2), 39-51. https://doi.org/10.11606/issn.2316-9095.v24-207271