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Impact of calcium aluminate cement 
with additives on dental pulp-derived 
cells

Calcium aluminate cement (CAC) has been highlighted as a promising 
alternative for endodontic use aiming at periapical tissue repair. However, its 
effects on dental pulp cells have been poorly explored. Objective: This study 
assessed the impact of calcium chloride (CaCl2) and bismuth oxide (Bi2O3) or 
zinc oxide (ZnO) additives on odontoblast cell response to CAC. Methodology: 
MDPC-23 cells were exposed for up to 14 d: 1) CAC with 2.8% CaCl2 and 25% 
ZnO (CACz); 2) CAC with 2.8% CaCl2 and 25% Bi2O3 (CACb); 3) CAC with 
10% CaCl2 and 25% Bi2O3 (CACb+); or 4) mineral trioxide aggregate (MTA), 
placed on inserts. Non-exposed cultures served as control. Cell morphology, 
cell viability, gene expression of alkaline phosphatase (ALP), bone sialoprotein 
(BSP), and dentin matrix protein 1 (DMP-1), ALP activity, and extracellular 
matrix mineralization were evaluated. Data were compared using ANOVA 
(α=5%). Results: Lower cell density was detected only for MTA and CACb+ 
compared with Control, with areas showing reduced cell spreading. Cell 
viability was similar among groups at days one and three (p>0.05). CACb+ 
and MTA showed the lowest cell viability values at day seven (p>0.05). 
CACb and CACb+ promoted higher ALP and BSP expression compared with 
CACz (p<0.05); despite that, all cements supported ALP activity. Matrix 
mineralization were enhanced in CACb+ and MTA. Conclusion: In conclusion, 
CAC with Bi2O3, but not with ZnO, supported the expression of odontoblastic 
phenotype, but only the composition with 10% CaCl2 promoted mineralized 
matrix formation, rendering it suitable for dentin-pulp complex repair. 
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Introduction

Endodontic therapy comprises a set of procedures 

aimed at the elimination of inflammatory and 

infectious processes and the promotion of an 

adequate environment for tissue repair to ensure the 

maintenance of the tooth in its alveolar process.1,2 

Cement plays a fundamental role in this therapeutic 

approach as one of its desirable characteristics is the 

ability to stimulate the healing process of dental and 

periodontal tissues.3-6 Therefore, many research areas 

have focused on the development of and improvement 

in materials to achieve better therapeutic results.7,8

Calcium aluminate-based cement (CAC) represents 

a promising alternative since it exhibits favorable 

physicochemical characteristics such as its thermal 

coefficient of and chemical composition similar to the 

tooth and human bone9 – but also due to the bioactivity, 

i. e., its ability to form a biologically active apatite 

layer upon exposure to body fluids.10-12 This property, 

also observed in calcium silicate-based cements such 

as mineral trioxide aggregate (MTA), involves the 

calcium release and the pH raise in the milieu13,14 and is 

considered essential for the stimulating effect of these 

materials on cellular events that form mineralized 

tissues.13 In fact, exposure of osteoblastic cells to a 

CAC formulation developed for endodontic purposes 

(i.e., CACz with 2.8% CaCl2 and 25% ZnO) stimulated 

the gene expression of osteoblastic markers and the 

activity of alkaline phosphatase — an enzyme that 

contributes to matrix mineralization to values higher 

than those of the gold standard MTA.15 Evaluating the 

effects of different radiopacifier agents for CAC, all 

formulations exhibited low cytotoxicity on pulp cells, 

with behavior similar to MTA,16 although only Bi2O3 and 

ZrO2 (but not ZnO) conferred appropriate radiopacity 

on the CAC for its distinction from adjacent mineralized 

structures.17

Aiming to improve the biological and clinical 

properties of CACz, we proposed raising the CaCl2 

content to increase calcium release and enhancing 

its radiopacity by replacing ZnO by Bi2O3.17,18 In 

osteoblastic cells, CAC with Bi2O3 and increased CaCl2 

content supported cell differentiation and matrix 

mineralization.18 However, given that cell responses 

to a biomaterial might vary depending on the cell 

type and/or its differentiation stage,19,20 assessing 

the odontoblast response to the formulations of CAC 

proposed is much needed, aiming at defining the 

suitability of this material for dentin-pulp complex 

repair therapies. The null hypothesis tested was that 

the variations in the CAC formulation would not alter 

the odontoblastic cell response to the material.

Methodology

Odontoblast-like cell cultures
MDPC-23 cells were grown in T-75 flasks (Corning 

Inc., Corning, NY, USA) with 15 mL of expansion 

medium composed of Dulbecco’s modified Eagle’s 

medium (DMEM; Invitrogen/Thermo Fisher Scientific, 

Waltham, MA, USA), 10% fetal bovine serum 

(Invitrogen/Thermo Fisher Scientific, Waltham, 

MA, USA), 100 ug/mL streptomycin, and 100 UI/

mL penicillin (Gibco/Thermo Fisher Scientific, 

Waltham, MA, USA). The cells were maintained in 

a humidified environment at 37°C with 5% CO2 and 

95% atmospheric air. At subconfluence, the cells were 

removed with ethylenediaminetetraacetic acid (EDTA 

solution – 1 mM, Gibco/Thermo Fisher Scientific, 

Waltham, MA, USA) and trypsin (0.25%, Gibco/Thermo 

Fisher Scientific, Waltham, MA, USA), plated at 10 000 

cells/well on Thermanox® coverslips (Nunc, Rochester, 

NY, USA) in 24-well polystyrene plates (Corning Inc., 

Corning, NY, USA), and cultured in expansion medium 

supplemented with 7 mM β-glycerophosphate (Sigma-

Aldrich, St. Louis, MO, USA) and 50 µg/mL ascorbic 

acid (Sigma-Aldrich, St. Louis, MO, USA) for 24 h 

before exposure to the cements. The culture medium 

was changed every three days (1 mL/well).

Cement manipulation and culture exposure
The following cements were used: 1) CACz15,18; 

2) CACb with Bi2O3 and 2.8% CaCl2; 3) CACb+ with 

Bi2O3 and 10% CaCl2; and 4) MTA (Angelus, Londrina, 

PR, Brazil). The CAC powders were mixed with sterile 

water (3:1, v/v). MTA was handled according to the 

manufacturer’s instructions. Samples (cylindrically 

shaped, 2 mm in height and 4 mm in diameter) were 

prepared in silicon templates (Silatec, DMG Chemisch-

Pharmazeutische Fabrik, Hamburg, Germany) under 

sterile conditions for 4 h. Then CAC or MTA samples 

were transferred on polycarbonate inserts (pore size 

3 µm, Transwell®, Corning Inc, Corning, NY, USA) for 

cell exposure. Non-exposed cultures served as control.

Impact of calcium aluminate cement with additives on dental pulp-derived cells
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Cell morphology
Cultures were fixed on days one and three with 4% 

paraformaldehyde in 0.1 M sodium phosphate buffer 

(PB; pH 7.2) for 10 min at room temperature (~25°C; 

RT), washed in PB (3x), and treated with 0.5% Triton 

X-100 in PB for 10 min for cell permeabilization. 

Cells were incubated with Alexa Fluor™ 488 (green 

fluorescence)-conjugated phalloidin (1:200, Molecular 

Probes/Invitrogen, Eugene, OR, USA) for 60 min at 

RT for actin cytoskeleton labeling. Cells were washed 

with deionized water and cell nuclei marked with 300 

nM 4’,6-diamidino-2-phenylindole, dihydrochloride 

(DAPI, Molecular Probes, Eugene, OR, USA) for 5 min. 

The Thermanox® coverslips were mounted in Prolong 

Antifade reagent (Molecular Probes, Eugene, OR, USA) 

and the cells were observed under epifluorescence 

using an AxioImager M2 Zeiss light microscope (Carl 

Zeiss Inc., Oberkochen, Germany) outfitted with 

an AxioCam MRM digital camera (Carl Zeiss Inc., 

Oberkochen, Germany).

Cell viability
Cell viability/proliferation was evaluated at 

days one, three, and seven by the mitochondrial 

tetrazolium test (MTT; Sigma-Aldrich, St. Louis, MO, 

USA).15 Briefly, MTT solution (5 mg/mL) was added 

to the culture medium at 10%, and the cells were 

maintained in a humidified environment at 37°C 

with 5% CO2 and 95% atmospheric air for 4 h. The 

solution was removed, and acid isopropanol (0.04 M 

HCl in 2-propanol; Sigma-Aldrich, St. Louis, MO, USA) 

was added (1 mL/well). The plates were shaken for 5 

min. Absorbance was detected at 570 nm (μQuant™; 

BioTek, Winooski, VT, USA). 

Gene expression
At day seven, the culture medium was removed 

from the wells, and TRIzol LS reagent (Invitrogen/

Thermo Fisher Scientific, Waltham, MA, USA) was 

added by pipetting at 25°C under agitation for 5 min. 

Total RNA extraction was performed with the SV Total 

RNA Isolation System kit (Promega, Madison, WI, 

USA) as indicated by the manufacturer. Then total 

RNA was quantified (260, 280, 230, and 320 nm) on 

a spectrophotometer (GE Healthcare Life Sciences, 

Marlborough, MA, USA). The cDNA was made from 1 

μg of total RNA. The procedure was performed in a 

Mastercycler Gradient Cycler (Eppendorf, Hamburg, 

Germany) using the GoScript™ Reverse Transcriptase 

(Promega, Madison, WI, USA) kit following the 

manufacturer’s instructions. For the real-time PCR 

reaction, the GoTaq® qPCR Master Mix reagent 

(Promega, Madison, WI, USA) and the StepOnePlus™ 

Real-Time PCR System (Applied Biosystems/Thermo 

Fisher Scientific, Foster City, CA, USA) were used. The 

sequences of the primers used in this study were: 1) 

alkaline phosphatase (ALP) forward ATC TTT GGT CTG 

GCT CCC ATG, reverse TTT CCC GTT CAC CGT CCA C; 

2) dentin matrix protein 1 (DMP-1) forward GGA GCA 

AGG TGA CAG CGA GT, reverse GAG ACT GGA GGC CTT 

CCT GG; 3) bone sialoprotein (BSP) forward GAC TGC 

TTT AAT CTT GCT CTG CAT, reverse GTA GCG TGG CCG 

GTA CTT AAA; and 4) β-actin (ACT) forward GCT GAC 

AGG ATG CAG AAG GA, reverse TGG ACA GTG AGG 

CCA GGA TA. Reactions were performed in triplicate 

with a final volume of 10 µL containing 12.5 ng of 

cDNA. Amplification reactions were performed under 

the following cycling conditions: 2 min at 95°C followed 

by 40 cycles of 15 s at 95°C and 1 min at 60°C. The 

β-actin gene was used as an endogenous control. The 

comparative 2–∆∆Ct method was used to compare the 

gene expression levels of cultures from the different 

experimental groups. The results were expressed as 

gene expression relative to the control group.

ALP activity
ALP activity was evaluated in situ at days 7 and 

10 using fast red TR dye. After culture medium 

was removed, the wells were washed with PBS and 

incubated in a humidified environment at 37°C with 

5% CO2 and 95% atmospheric air for 30 min with 1 

mL of Tris-buffered solution (120 mM, pH 8.4, Sigma-

Aldrich, St. Louis, MO, USA) containing naphthol-AS-

MX-phosphate (0.9 mM; Sigma-Aldrich, St. Louis, MO, 

USA) fast red TR (1.8 mM; Sigma-Aldrich, St. Louis, 

MO, USA), and dimethylformamide (1:9; Sigma-

Aldrich, St. Louis, MO, USA). ALP activity was assessed 

from the macroscopic images of the cultures.

Mineralized bone-like nodule formation
Matrix mineralization was evaluated by alizarin red 

staining (ARS) at day 14. The cultures were fixed in 

70% ethanol for 60 min at 4°C, washed in PB, and 

stained for 15 min with 2% ARS (Sigma-Aldrich, St. 

Louis, MO, USA) at pH 4.2 at RT. Macroscopic images 

were obtained for qualitative evaluation of matrix 

mineralization. 
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Statistical analysis
	 Data (n=4) were carried out using ANOVA 

followed by the Student-Newman-Keuls post hoc test 

when appropriate (α=5%).

Results

Cytotoxicity of CAC formulations on odontoblast-
like cells

Epifluorescence revealed lower cell density in 

cultures of MDPC-23 cells exposed to the endodontic 

cements compared with control cultures at day one, 

particularly in MTA (Figure 1, E) and CACb+ (Figure 

1, Q). In both cases, the cultures exhibited a central 

region devoid of cells in areas closer to the cement 

samples. Also, cells exposed to MTA and CACb+ 

showed reduced cell spreading compared with control 

cells (Figure 1: compare B with F and R). At day three, 

only cultures exposed to MTA exhibited a central area 

devoid of cells (Figure 1, G), while the other cultures 

presented morphological aspects similar to those of 

the control cultures.

Cell viability increased over time for all groups, with 

1 < 3 < 7 days (two-way ANOVA, p<0.001, Table 1). 

The comparisons between groups indicated statistical 

similarity for cell viability values obtained at days 1 

and 3 (p>0.05, Table 1) and lower cell viability for MTA 

and CACb+ groups compared with the other groups 

at day 7 (p<0.05, Table 1).

Effects of CAC formulations on odontoblast 
phenotype acquisition

ALP gene expression was higher for CACb+ 

compared with MTA, CACz, and control (one-way 

ANOVA, p<0.05, Table 2), but not compared with 

CACb (p>0.05, Table 2). The DMP-1 gene expression 

was higher for MTA and CACb+ compared with CACb, 

control, and CACz (p<0.05, Table 2). CACb+ showed 

the highest BSP gene expression levels, followed by 

CACb (p<0.05), whereas MTA, CACz, and control 

exhibited similar BSP expression levels (p>0.05, 

Table 2). 

Qualitative evaluation by fast red labeling revealed 

that all cultures exhibited ALP activity in situ at days 

7 and 10, particularly at day 7 (Figure 2). At day 7, 

Figure 1- Morphological aspects of MDPC-23 odontoblast-like cell cultures exposed or not (Control, A-D) to MTA (E-H), CACz (I-L), CACb 
(M-P), or CACb+ (Q-T) cements at days 1 (A, B, E, F, I, J, M, N, Q, R) and 3 (C, D, G, H, K, L, O, P, S, T). Green fluorescence (grayscale 
mode) indicates the actin cytoskeleton, and blue fluorescence, cell nuclei. Scale bar= 800 μm for A, C, E, G, I, K, M, O, Q, and S; 100 μm 
for B, D, F, H, J, L, N, P, R, and T
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CACz and Control presented a larger positive area for 

ALP activity (Figure 2). Cultures exposed to the other 

cements exhibited a central area devoid of fast red 

labeling in areas closer to the cement samples (Figure 

2). At 10 days, this unmarked central area for ALP 

activity was still evident for MTA and CACb, whereas 

for control, CACz, and CACb+, the fast red-positive 

areas were more homogeneously distributed by the 

substrate (Figure 2).

At the end of 14 days, calcium deposits marked 

by alizarin red were observed for all groups and 

were more intense in the control, MTA, and CACb+ 

compared with the CACz and CACb (Figure 2). 

Cell viability

Day 1 Day 3 Day 7

Control 0.16±0.02Aa 0.56±0.02Ab 1,11±0.09Ac

MTA 0.14±0.02Aa 0.61±0.06Ab 0.82±0.11Bc

CACz 0.16±0.02Aa 0.58±0.04Ab 1.00±0.08Ac

CACb 0.17±0.03Aa 0.56±0.03Ab 1.08±0.12Ac

CACb+ 0.18±0.03Aa 0.66±0.05Ab 0.91±0.07Bc

Different upper-case letters indicate statistical significance between lines (p<0.05), while different lower-case letters, statistical difference 
between columns (p<0.05)

Table 1- Mean ± standard deviation of cell viability at days 1, 3, and 7 in odontoblast-like cell cultures exposed or not (Control) to mineral 
trioxide aggregate (MTA) and calcium aluminate cement (CAC) formulations

Gene expression

ALP BSP DMP-1

Control 1.02±0.26A 1.08±0.42A 1.00±0.13A

MTA 2.38±0.51AB 0.69±0.30A 2.46±0.42B

CACz 1.79±0.70A 3.67±3.79A 0.15±0.06C

CACb 3.72±0.89BC 16.87±8.20B 0.69±0.02AC

CACb+ 5.08±0.26C 30.19±3.87C 1.89±0.18B

Different upper-case letters indicate statistical significance between lines (p<0.05)

Table 2- Mean ± standard deviation of gene expression of alkaline phosphatase (ALP), bone sialoprotein (BSP) and dentin matrix protein 
1 (DMP-1) at day 7 in odontoblast-like cell cultures exposed or not (Control) to mineral trioxide aggregate (MTA) and calcium aluminate 
cement (CAC) formulations

Figure 2- Macroscopic aspects of fast red labeling for in situ ALP activity (A-J) at days 7 (A-E) and 10 (F-J) or of alizarin red labeling for 
calcium deposits at day 14 (K-O) in MDPC-23 odontoblast-like cell cultures exposed or not (Control, A, F, K) to MTA (B, G, L), CACz (C, 
H, M), CACb (D, I, N), or CACb+ (E, J, O). Scale bar= 3 mm
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Discussion

This study evaluated the effects of three CAC 

formulations developed as an alternative to MTA on 

dental pulp cell growth and differentiation. The null 

hypothesis was rejected, since the additives used in 

the CAC formulation altered the odontoblastic cell 

response to the material. We verified that replacing 

zinc oxide by bismuth oxide in the CAC formulations 

promoted gene expression of odontoblast cell markers. 

However, only the association of bismuth oxide with 

a higher CaCl2 content in CAC stimulated mineralized 

matrix formation.

Aiming to improve CAC formulations, modifications 

of its original additives were proposed:11 1) substitution 

of the zinc oxide (ZnO) radiopacifying agent with 

bismuth oxide (Bi2O3); and 2) increase in the CaCl2 

content to 10%, aiming for higher calcium release,18 

which is considered to be accountable for the biological 

properties of MTA.21

By evaluating the impact of the different CAC 

formulations on cell growth, we found, in general, the 

cements were not cytotoxic and promoted viability 

values similar to those of MTA. Furthermore, we 

found replacing the radiopacifying agent by bismuth 

did not affect the cell viability or proliferation of the 

cultures even after 7 d. These findings corroborate 

those reported by other authors,16 with similar cell 

viability values observed after exposure of odontoblast 

cells to CAC with different radiopacifiers such as zinc 

oxides, bismuth, and zirconia. In addition, this study 

showed cell viability is maintained throughout the 

proliferative period of the culture until the seventh 

day. A previous study conducted by our research group 

showed different results in osteoblastic cultures, in 

which the incorporation of bismuth oxide increased 

the CAC cytotoxicity, promoting a significant reduction 

in cell viability and proliferation. These differences 

are likely due to the differential response between 

osteoblasts and odontoblasts to zinc and bismuth. In 

fact, in pulp-derived cells, bismuth oxide has been 

stimulated the expression of heme oxygenase-1,22 

which exhibits antiapoptotic effects23 and stimulates 

cell growth,24 while in osteoblasts, bismuth has been 

related to the reduction in biocompatibility of MTA by 

inhibiting cell proliferation, osteoblastic differentiation, 

and extracellular matrix mineralization.25,26

The association of bismuth oxide with a higher 

CaCl2 content in CAC promoted a significant reduction 

in cellular viability and spreading, with results similar 

to those observed for MTA. These findings corroborate 

the results of previous investigation conducted by our 

research group for osteoblastic cultures.18 In both 

cases, the increased release of calcium and hydroxyl 

ions promoted by the cements12 may be involved 

both in the reduction in cell spreading and in the 

occurrence of cell-free areas near the cement, which 

were reflected in a lower absolute cell viability value. 

In fact, in vivo, the high pH of calcium hydroxide-

based materials causes a superficial injury in the pulp 

tissue, promoting coagulation necrosis and tissue 

disorganization in the adjacent pulp tissue.27,28 The 

migration of pulp stem cells to the necrotic area can 

be observed only after resolution of inflammation, 

followed by their differentiation into odontoblast-like 

cells, and the deposition of a dentin-like tissue at the 

end of 4 weeks.27-30 Considering these observations, 

we also evaluated the effect of these preparations on 

the development of odontoblastic phenotype by the 

analysis of the gene expression of odontoblast-cell 

markers, ALP activity, and matrix mineralization.

The alkaline phosphatase enzyme is present in the 

early stages of differentiation of mineralized matrix-

producing cells (osteoblasts and odontoblasts) and 

is responsible for the release of inorganic phosphate 

to form hydroxyapatite during the biomineralization 

process.31 Furthermore, acidic proteins such as bone 

sialoprotein and dentin matrix protein 1 are known 

to play an essential role in matrix mineralization 

through the regulation of hydroxyapatite crystal size 

and morphology.32 In this study, cultures exposed 

to the preparations of CAC with bismuth oxide, and 

particularly CACb+ (with higher calcium chloride 

content), exhibited the most significant levels of 

odontoblast cell markers, whereas CAC with zinc 

oxide inhibited their expression. These results may 

be related to the differential response of pulp-derived 

cells to bismuth and zinc oxide, since the exposure of 

cells derived from pulp to zinc oxide has been reduced 

expression levels of genes related to odontoblastic 

differentiation, including ALP.33

Fast red labeling revealed that cultures exposed 

to all of the cements showed ALP activity, particularly 

at seven days. As mentioned previously, ALP activity 

plays a key role in the eventual extracellular matrix 

mineralization process.31 The results of this qualitative 

analysis verified that minimal fast red labeling occurred 

in the central areas of the culture where the cells grew 

Impact of calcium aluminate cement with additives on dental pulp-derived cells



J Appl Oral Sci. 2020;28:e201901057/8

in close contact with the cement samples, especially in 

the MTA group. These findings are likely related to the 

higher concentration of ionic dissolution products of 

the cements in these regions, which contribute to lower 

cell density; this phenomenon has also been described 

elsewhere.15,18 However, in the peripheral areas of 

the substrate, extensive fast red-positive areas were 

observed in cultures exposed to CAC formulations, 

revealing that they promote the expression of the 

odontoblastic phenotype. Corroborating these findings, 

the presence of deposits of the mineralized matrix in all 

experimental groups was verified after 14 d, although 

the lack of calcium deposits in the central areas of the 

cement groups persisted.

When examining the cement groups, we verified 

that the substitution of zinc oxide with bismuth oxide as 

radiopacifier agent in CAC improved cell differentiation 

at gene expression level, without interfering in 

its potential for promoting the formation of the 

mineralized matrix. In contrast, increasing calcium 

chloride content in the CAC significantly stimulated 

the extracellular matrix mineralization process. The 

matrix mineralization process involves the deposition 

of calcium phosphate crystals in a fibrous extracellular 

matrix.34 Calcium ions are recognized for their ability 

to regulate physiological cellular processes. For 

instance, calcium released from materials used as pulp 

capping participates in calcium carbonate formation, 

stimulating the expression of genes related to 

odontoblastic differentiation and the biomineralization 

process.35,36 Given that the inclusion of bismuth oxide 

in CAC reduces calcium release compared with the 

original formulation with zinc oxide,18 this association 

with higher calcium chloride content confers superior 

properties on the CAC cement, also allowing for its use 

in regenerative procedures of the dentin-pulp complex.

Conclusion

In conclusion, the addition of bismuth oxide to 

CAC associated with a higher concentration of calcium 

chloride enhanced odontoblast gene expression and 

function, offering a promising alternative to MTA for 

dentin-pulp complex regeneration. Nonetheless, in 

vivo studies are necessary to confirm the beneficial 

effects of CAC on dentin bridge formation and tissue 

repair.
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