miR-9-1 gene methylation and DNMT3B (rs2424913) polymorphism may contribute to periodontitis
DOI:
https://doi.org/10.1590/1678-7757-2019-0583Keywords:
Periodontitis, Epigenetic, DNA methylation, Polymorphism;, Oxidative stress, MicroRNAAbstract
Genetic and epigenetic changes have been associated with periodontitis in various genes; however, little is known about genes involved in epigenetic mechanisms and in oxidative stress. Objective: This study aims to investigate the association of polymorphisms C677T in MTHFR (rs1801133) and −149C→T in DNMT3B (rs2424913), as well as the methylation profiles of MTHFR, miR-9-1, miR-9-3, SOD1, and CAT with periodontitis. The association between polymorphisms and DNA methylation profiles was also analyzed. Methodology: The population studied was composed of 100 nonsmokers of both sexes, divided into healthy and periodontitis groups. Genomic DNA was extracted from the epithelial buccal cells, which were collected through a mouthwash. Polymorphism analysis was performed through polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), while methylation-specific PCR (MSP) or combined bisulfite restriction analysis techniques were applied for methylation analysis. Results: For DNMT3B, the T allele and the TT genotype were detected more frequently in the periodontitis group, as well as the methylated profile on the miR-9-1 promoter region. There was also a tendency towards promoter region methylation on the CAT sequence of individuals with periodontal disease. Conclusion: The polymorphism −149C→T in DNMT3B (rs2424913) and the methylated profile of the miR-9-1 promoter region are associated with periodontitis.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Journal of Applied Oral Science

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.