In vitro characterization of a novel resin-based restorative material containing alkaline fillers
DOI:
https://doi.org/10.1590/1678-7757-2023-0219%20Keywords:
Polymers, Acid-base, Bioactive, Glass ionomer, Composite resins, AlkasiteAbstract
Objective: In this study, a comparative evaluation of the physicochemical properties of Cention N and other direct restorative materials was performed. Three restorative materials—a resin-modified glass ionomer (Fuji II LC), an alkasite-based resinous material (Cention N), and a resin composite (Tetric N Ceram)—were characterized in terms of degree of conversion, Knoop hardness number (KHN) ratio, flexural strength, elastic modulus, water sorption, water solubility, microshear bond strength to dentin, immediate microleakage, and radiopacity. Methodology: The microshear bond strength to dentin and microleakage of Cention N were evaluated with and without the application of an adhesive system (Tetric N Bond Universal). A one-way ANOVA test was used to analyze the data in terms of degree of conversion, KHN ratio, water sorption, water solubility, microshear bond strength to dentin, and radiopacity. A two-way ANOVA test (carried out considering the material type and ethanol aging as factors) was used to analyze the data in terms of flexural strength and elastic modulus. The Kruskal–Wallis test was used to statistically analyze the data on microleakage. A significance level of α=0.05 was used for all tests. Results: Fuji II LC was found to have the highest degree of conversion, water sorption, and microleakage, as well as the lowest flexural strength. Cention N had the highest solubility; when used with an adhesive system, it achieved bond strength and microleakage similar to those of the Tetric N Ceram composite. Tetric N Ceram had the highest degree of conversion, KHN ratio, and radiopacity. Conclusion: The properties of Cention N validate its efficacy as an alternative direct restorative material when used in conjunction with an adhesive system.
Downloads
References
Sidhu SK, Nicholson JW. A review of glass-ionomer cements for clinical dentistry. J Funct Biomater. 2016;7(3):16. doi: 10.3390/jfb7030016
Menezes-Silva R, Cabral RN, Pascotto RC, Borges AFS, Martins CC, Navarro MF, et al. Mechanical and optical properties of conventional
restorative glass-ionomer cements-a systematic review. J Appl Oral Sci. 2019;27e2018357. doi: 10.1590/1678-7757-2018-0357
Veiga AM, Cunha AC, Ferreira DM, Fidalgo TK, Chianca TK, Reis KR, et al. Longevity of direct and indirect resin composite restorations in
permanent posterior teeth: a systematic review and meta-analysis. J Dent. 2016;54:1-12. doi: 10.1016/j.jdent.2016.08.003
Meshram P, Meshram V, Palve D, Patil S, Gade V, Raut A. Comparative evaluation of microleakage around Class V cavities restored with
alkasite restorative material with and without bonding agent and flowable composite resin: an in vitro study. Indian J Dent Res. 2019;30(3):403-7. doi: 10.4103/ijdr.IJDR_767_17
Tiskaya M, Al-Eesa N, Wong F, Hill R. Characterization of the bioactivity of two commercial composites. Dent Mater. 2019;35(12):1757-68. doi: 10.1016/j.dental.2019.10.004
Iftikhar N, Srivastava B, Gupta N, Ghambir N. A comparative evaluation of mechanical properties of four different restorative
materials: an in vitro study. Int J Clin Pediatr Dent. 2019;12(1):47-9. doi: 10.5005/jp-journals-10005-1592
Sharma H, Suprabha B, Shenoy R, Rao A, Kotian H. Clinical effectiveness of alkasite versus nanofilled resin composite in the
restoration of occlusal carious lesions in permanent molar teeth of children: a randomized clinical trial. Eur Arch Paediatr Dent.
;24(3):301-11. doi: 10.1007/s40368-023-00788-0
Oz FD, Meral E, Gurcan S. Clinical performance of an alkasite-based bioactive restorative in class II cavities: a randomized clinical trial. J Appl Oral Sci. 2023;31:e20230025. doi: 10.1590/1678-7757-2023-0025
Derchi G, Marchio V, Giuca MR, Lardani L. Clinical performance of centiontm alkasite restorative material vs. glass ionomer cement used
in deciduous teeth: one-year evaluation. Appl Sci. 2022;12(21):10845. doi: 10.3390/app122110845
Verma V, Mathur S, Sachdev V, Singh D. Evaluation of compressive strength, shear bond strength, and microhardness values of
glass-ionomer cement Type IX and Cention N. J Conserv Dent. 2020;23(6):550-3. doi: 10.4103/JCD.JCD_109_19
Sujith R, Yadav TG, Pitalia D, Babaji P, Apoorva K, Sharma A. Comparative evaluation of mechanical and microleakage properties of Cention-N, composite, and glass ionomer cement restorative materials. J Contemp Dent Pr. 2020;21(6):691-5.
Panpisut P, Toneluck A. Monomer conversion, dimensional stability, biaxial flexural strength, and fluoride release of resin-based restorative material containing alkaline fillers. Dent Mater J. 2020;39(4):608-15. doi: 10.4012/dmj.2019-020
Pérez-Mondragón AA, Cuevas-Suárez CE, González-López JA, Trejo- Carbajal N, Meléndez-Rodríguez M, Herrera-González AM. Preparation
and evaluation of a BisGMA-free dental composite resin based on a novel trimethacrylate monomer. Dent Mater. 2020;36(4):542-50. doi:
1016/j.dental.2020.02.005
Nayak M, Shenoy V. Sorption and solubility of alkasite restorative material-an in vitro study. IOSR J Dent Med Sci. 2019;18(5):69-73.
doi: 10.9790/0853-1805166973
Balci M, Turkun L, Boyacıoglu H, Guneri P, Ergucu Z. Radiopacity of posterior restorative materials: a comparative in vitro study. Oper
Dent. 2023;48(3):337-46. doi: 10.2341/22-042-L
Herrera-González AM, Caldera-Villalobos M, Pérez-Mondragón AA, Cuevas-Suárez CE, González-López JA. Analysis of double bond
conversion of photopolymerizable monomers by FTIR-ATR spectroscopy. J Chem Educ. 2019;96(8):1786-9. doi: 10.1021/acs.jchemed.8b00659
International Organization for Standardization. ISO 4049:2019: polymer based materials. Geneva: ISO; 2019. 29 p.
International Organization for Standardization. ISO/TS11405:2003: dental materials — testing of adhesion to tooth structure. Geneva: ISO; 2003. 16 p.
Cuevas-Suárez CE, Pimentel-García B, Rivera-Gonzaga A, Álvarez-Gayosso C, Ancona-Meza AL, Grazioli G, et al. Examining the effect
of radiant exposure on commercial photopolimerizable dental resin composites. Dent J. 2018;6(4):55. doi: 10.3390/dj6040055
Collares FM, Ogliari FA, Zanchi CH, Petzhold CL, Piva E, Samuel S. Influence of 2-hydroxyethyl methacrylate concentration on polymer
network of adhesive resin. J Adhes Dent. 2011;13(2):125-9. doi: 10.3290/j.jad.a18781
Sanay B, Strehmel B, Strehmel V. Photoinitiated polymerization of methacrylates comprising phenyl moieties. J Polym Sci.
;58(22):3196-208. doi: 10.1002/pol.20200483
Fugolin AP, Paula AB, Dobson A, Huynh V, Consani R, Ferracane JL, et al. Alternative monomer for BisGMA-free resin composites
formulations. Dent Mater. 2020;36(7):884-92. doi: 10.1016/j. dental.2020.04.009
Ogliari FA, Ely C, Zanchi CH, Fortes CB, Samuel SM, Demarco FF, et al. Influence of chain extender length of aromatic dimethacrylates
on polymer network development. Dent Mater. 2008;24(2):165-71. doi: 10.1016/j.dental.2007.03.007
Tauscher S, Angermann J, Catel Y, Moszner N. Evaluation of alternative monomers to HEMA for dental applications. Dent Mater. 2017;33(7):857-65. doi: 10.1016/j.dental.2017.04.023
Bakkal M, Yılmaz B, Durmus A, Durmus Z, Ozalp S. Polymerization characteristics of colored compomers cured with different LED units. J Appl Biomater Funct Mater. 2019;17(1):2280800019827805. doi: 10.1177/2280800019827805
International Organization for Standardization. ISO 9917-2:2017 Dentist- water-based cements — Part 2: Resin-modified cements. Geneva: ISO; 2017. 21 p.
Masouras K, Silikas N, Watts DC. Correlation of filler content and elastic properties of resin-composites. Dent Mater. 2008;24(7):932-9. doi: 10.1016/j.dental.2007.11.007
Yoshida Y, Shirai K, Nakayama Y, Itoh M, Okazaki M, Shintani H, et al. Improved filler-matrix coupling in resin composites. J Dent Res.
Apr;81(4):270-3. doi: 10.1177/154405910208100409
Ilie N. Comparative Effect of self- or dual-curing on polymerization kinetics and mechanical properties in a novel, dental-resin-based
composite with alkaline filler. Materials (Basel). 2018;11(1):108. doi: 10.3390/ma11010108
Witzel MF, Calheiros FC, Gonçalves F, Kawano Y, Braga RR. Influence of photoactivation method on conversion, mechanical properties,
degradation in ethanol and contraction stress of resin-based materials. J Dent. 2005;33(9):773-9. doi: 10.1016/j.jdent.2005.02.005
Carvalho AA, Moreira FC, Fonseca RB, Soares CJ, Franco EB, Souza JB, et al. Effect of light sources and curing mode techniques on sorption,
solubility and biaxial flexural strength of a composite resin. J Appl Oral Sci. 2012;20(2):246-52. doi: 10.1590/s1678-77572012000200021
Müller JA, Rohr N, Fischer J. Evaluation of ISO 4049: water sorption and water solubility of resin cements. Eur J Oral Sci. 2017;125(2):141-
doi: 10.1111/eos.12339
Beriat NC, Nalbant D. Water absorption and HEMA release of resin- modified glass-ionomers. Eur J Dent. 2009;3(4):267-72.
Awad MM, Alshehri T, Alqarni AM, Magdy NM, Alhalabi F, Alotaibi D, et al. Evaluation of the bond strength and cytotoxicity of alkasite
restorative material. Appl Sci. 2020;10(18):6175. doi: 10.3390/app10186175
Rusin RP, Agee K, Suchko M, Pashley DH. Effect of a new desensitizing material on human dentin permeability. Dent Mater.
;26(6):600-7. doi: 10.1016/j.dental.2010.02.010
François P, Greenwall-Cohen J, Le Goff S, Ruscassier N, Attal JP, Dursun E. Shear bond strength and interfacial analysis of high-viscosity
glass ionomer cement bonded to dentin with protocols including silver diammine fluoride. J Oral Sci. 2020;62(4):444-8. doi: 10.2334/josnusd.20-0065
Kaczor‐Wiankowska K, Lipa S, Krasowski M, Sokołowski J, Lewusz‐ Butkiewicz K, Nowicka A. Evaluation of gap formation at the composite
resin‐tooth interface after using universal adhesives: in vitro SEM study using the replica technique. Microsc Res Tech. 2020;83(2):176-85. doi: 10.1002/jemt.23400
Correia A, Andrade MR, Tribst JP, Borges AL, Caneppele TM. Influence of bulk-fill restoration on polymerization shrinkage stress
and marginal gap formation in Class V restorations. Oper Dent. 2020;45(4):E207-16. doi: 10.2341/19-062-L
León Cáceres ME, Mederos Gómez M, Cuevas-Suárez CE, Maglione García F, Grazioli Pita GS. Estudio in vitro de la relación entre resistencia
de unión a esmalte dental y microfiltración en resinas compuestas fotopolimerizables. Odontoestomatología. 2020;22:38-49. doi: 10.22592/ode2020n35a6
Bayrak S, Sen Tunc E, Tuloglu N. The effects of surface pretreatment on the microleakage of resin-modified glass-ionomer
cement restorations. J Clin Pediatr Dent. 2012;36(3). doi: 10.17796/jcpd.36.3.h827442j74862742
Aoyagi Y, Takahashi H, Iwasaki N, Honda E, Kurabayashi T. Radiopacity of experimental composite resins containing radiopaque
materials. Dent Mater J. 2005;24(3):315-20. doi: 10.4012/dmj.24.315
Sabbagh J, Vreven J, Leloup G. Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). Oper Dent. 2004;29(6):677-84.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Applied Oral Science

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.