In vitro characterization of a novel resin-based restorative material containing alkaline fillers

Authors

DOI:

https://doi.org/10.1590/1678-7757-2023-0219%20

Keywords:

Polymers, Acid-base, Bioactive, Glass ionomer, Composite resins, Alkasite

Abstract

Objective: In this study, a comparative evaluation of the physicochemical properties of Cention N and other direct restorative materials was performed. Three restorative materials—a resin-modified glass ionomer (Fuji II LC), an alkasite-based resinous material (Cention N), and a resin composite (Tetric N Ceram)—were characterized in terms of degree of conversion, Knoop hardness number (KHN) ratio, flexural strength, elastic modulus, water sorption, water solubility, microshear bond strength to dentin, immediate microleakage, and radiopacity. Methodology: The microshear bond strength to dentin and microleakage of Cention N were evaluated with and without the application of an adhesive system (Tetric N Bond Universal). A one-way ANOVA test was used to analyze the data in terms of degree of conversion, KHN ratio, water sorption, water solubility, microshear bond strength to dentin, and radiopacity. A two-way ANOVA test (carried out considering the material type and ethanol aging as factors) was used to analyze the data in terms of flexural strength and elastic modulus. The Kruskal–Wallis test was used to statistically analyze the data on microleakage. A significance level of α=0.05 was used for all tests. Results: Fuji II LC was found to have the highest degree of conversion, water sorption, and microleakage, as well as the lowest flexural strength. Cention N had the highest solubility; when used with an adhesive system, it achieved bond strength and microleakage similar to those of the Tetric N Ceram composite. Tetric N Ceram had the highest degree of conversion, KHN ratio, and radiopacity. Conclusion: The properties of Cention N validate its efficacy as an alternative direct restorative material when used in conjunction with an adhesive system.

Downloads

Download data is not yet available.

References

Sidhu SK, Nicholson JW. A review of glass-ionomer cements for clinical dentistry. J Funct Biomater. 2016;7(3):16. doi: 10.3390/jfb7030016

Menezes-Silva R, Cabral RN, Pascotto RC, Borges AFS, Martins CC, Navarro MF, et al. Mechanical and optical properties of conventional

restorative glass-ionomer cements-a systematic review. J Appl Oral Sci. 2019;27e2018357. doi: 10.1590/1678-7757-2018-0357

Veiga AM, Cunha AC, Ferreira DM, Fidalgo TK, Chianca TK, Reis KR, et al. Longevity of direct and indirect resin composite restorations in

permanent posterior teeth: a systematic review and meta-analysis. J Dent. 2016;54:1-12. doi: 10.1016/j.jdent.2016.08.003

Meshram P, Meshram V, Palve D, Patil S, Gade V, Raut A. Comparative evaluation of microleakage around Class V cavities restored with

alkasite restorative material with and without bonding agent and flowable composite resin: an in vitro study. Indian J Dent Res. 2019;30(3):403-7. doi: 10.4103/ijdr.IJDR_767_17

Tiskaya M, Al-Eesa N, Wong F, Hill R. Characterization of the bioactivity of two commercial composites. Dent Mater. 2019;35(12):1757-68. doi: 10.1016/j.dental.2019.10.004

Iftikhar N, Srivastava B, Gupta N, Ghambir N. A comparative evaluation of mechanical properties of four different restorative

materials: an in vitro study. Int J Clin Pediatr Dent. 2019;12(1):47-9. doi: 10.5005/jp-journals-10005-1592

Sharma H, Suprabha B, Shenoy R, Rao A, Kotian H. Clinical effectiveness of alkasite versus nanofilled resin composite in the

restoration of occlusal carious lesions in permanent molar teeth of children: a randomized clinical trial. Eur Arch Paediatr Dent.

;24(3):301-11. doi: 10.1007/s40368-023-00788-0

Oz FD, Meral E, Gurcan S. Clinical performance of an alkasite-based bioactive restorative in class II cavities: a randomized clinical trial. J Appl Oral Sci. 2023;31:e20230025. doi: 10.1590/1678-7757-2023-0025

Derchi G, Marchio V, Giuca MR, Lardani L. Clinical performance of centiontm alkasite restorative material vs. glass ionomer cement used

in deciduous teeth: one-year evaluation. Appl Sci. 2022;12(21):10845. doi: 10.3390/app122110845

Verma V, Mathur S, Sachdev V, Singh D. Evaluation of compressive strength, shear bond strength, and microhardness values of

glass-ionomer cement Type IX and Cention N. J Conserv Dent. 2020;23(6):550-3. doi: 10.4103/JCD.JCD_109_19

Sujith R, Yadav TG, Pitalia D, Babaji P, Apoorva K, Sharma A. Comparative evaluation of mechanical and microleakage properties of Cention-N, composite, and glass ionomer cement restorative materials. J Contemp Dent Pr. 2020;21(6):691-5.

Panpisut P, Toneluck A. Monomer conversion, dimensional stability, biaxial flexural strength, and fluoride release of resin-based restorative material containing alkaline fillers. Dent Mater J. 2020;39(4):608-15. doi: 10.4012/dmj.2019-020

Pérez-Mondragón AA, Cuevas-Suárez CE, González-López JA, Trejo- Carbajal N, Meléndez-Rodríguez M, Herrera-González AM. Preparation

and evaluation of a BisGMA-free dental composite resin based on a novel trimethacrylate monomer. Dent Mater. 2020;36(4):542-50. doi:

1016/j.dental.2020.02.005

Nayak M, Shenoy V. Sorption and solubility of alkasite restorative material-an in vitro study. IOSR J Dent Med Sci. 2019;18(5):69-73.

doi: 10.9790/0853-1805166973

Balci M, Turkun L, Boyacıoglu H, Guneri P, Ergucu Z. Radiopacity of posterior restorative materials: a comparative in vitro study. Oper

Dent. 2023;48(3):337-46. doi: 10.2341/22-042-L

Herrera-González AM, Caldera-Villalobos M, Pérez-Mondragón AA, Cuevas-Suárez CE, González-López JA. Analysis of double bond

conversion of photopolymerizable monomers by FTIR-ATR spectroscopy. J Chem Educ. 2019;96(8):1786-9. doi: 10.1021/acs.jchemed.8b00659

International Organization for Standardization. ISO 4049:2019: polymer based materials. Geneva: ISO; 2019. 29 p.

International Organization for Standardization. ISO/TS11405:2003: dental materials — testing of adhesion to tooth structure. Geneva: ISO; 2003. 16 p.

Cuevas-Suárez CE, Pimentel-García B, Rivera-Gonzaga A, Álvarez-Gayosso C, Ancona-Meza AL, Grazioli G, et al. Examining the effect

of radiant exposure on commercial photopolimerizable dental resin composites. Dent J. 2018;6(4):55. doi: 10.3390/dj6040055

Collares FM, Ogliari FA, Zanchi CH, Petzhold CL, Piva E, Samuel S. Influence of 2-hydroxyethyl methacrylate concentration on polymer

network of adhesive resin. J Adhes Dent. 2011;13(2):125-9. doi: 10.3290/j.jad.a18781

Sanay B, Strehmel B, Strehmel V. Photoinitiated polymerization of methacrylates comprising phenyl moieties. J Polym Sci.

;58(22):3196-208. doi: 10.1002/pol.20200483

Fugolin AP, Paula AB, Dobson A, Huynh V, Consani R, Ferracane JL, et al. Alternative monomer for BisGMA-free resin composites

formulations. Dent Mater. 2020;36(7):884-92. doi: 10.1016/j. dental.2020.04.009

Ogliari FA, Ely C, Zanchi CH, Fortes CB, Samuel SM, Demarco FF, et al. Influence of chain extender length of aromatic dimethacrylates

on polymer network development. Dent Mater. 2008;24(2):165-71. doi: 10.1016/j.dental.2007.03.007

Tauscher S, Angermann J, Catel Y, Moszner N. Evaluation of alternative monomers to HEMA for dental applications. Dent Mater. 2017;33(7):857-65. doi: 10.1016/j.dental.2017.04.023

Bakkal M, Yılmaz B, Durmus A, Durmus Z, Ozalp S. Polymerization characteristics of colored compomers cured with different LED units. J Appl Biomater Funct Mater. 2019;17(1):2280800019827805. doi: 10.1177/2280800019827805

International Organization for Standardization. ISO 9917-2:2017 Dentist- water-based cements — Part 2: Resin-modified cements. Geneva: ISO; 2017. 21 p.

Masouras K, Silikas N, Watts DC. Correlation of filler content and elastic properties of resin-composites. Dent Mater. 2008;24(7):932-9. doi: 10.1016/j.dental.2007.11.007

Yoshida Y, Shirai K, Nakayama Y, Itoh M, Okazaki M, Shintani H, et al. Improved filler-matrix coupling in resin composites. J Dent Res.

Apr;81(4):270-3. doi: 10.1177/154405910208100409

Ilie N. Comparative Effect of self- or dual-curing on polymerization kinetics and mechanical properties in a novel, dental-resin-based

composite with alkaline filler. Materials (Basel). 2018;11(1):108. doi: 10.3390/ma11010108

Witzel MF, Calheiros FC, Gonçalves F, Kawano Y, Braga RR. Influence of photoactivation method on conversion, mechanical properties,

degradation in ethanol and contraction stress of resin-based materials. J Dent. 2005;33(9):773-9. doi: 10.1016/j.jdent.2005.02.005

Carvalho AA, Moreira FC, Fonseca RB, Soares CJ, Franco EB, Souza JB, et al. Effect of light sources and curing mode techniques on sorption,

solubility and biaxial flexural strength of a composite resin. J Appl Oral Sci. 2012;20(2):246-52. doi: 10.1590/s1678-77572012000200021

Müller JA, Rohr N, Fischer J. Evaluation of ISO 4049: water sorption and water solubility of resin cements. Eur J Oral Sci. 2017;125(2):141-

doi: 10.1111/eos.12339

Beriat NC, Nalbant D. Water absorption and HEMA release of resin- modified glass-ionomers. Eur J Dent. 2009;3(4):267-72.

Awad MM, Alshehri T, Alqarni AM, Magdy NM, Alhalabi F, Alotaibi D, et al. Evaluation of the bond strength and cytotoxicity of alkasite

restorative material. Appl Sci. 2020;10(18):6175. doi: 10.3390/app10186175

Rusin RP, Agee K, Suchko M, Pashley DH. Effect of a new desensitizing material on human dentin permeability. Dent Mater.

;26(6):600-7. doi: 10.1016/j.dental.2010.02.010

François P, Greenwall-Cohen J, Le Goff S, Ruscassier N, Attal JP, Dursun E. Shear bond strength and interfacial analysis of high-viscosity

glass ionomer cement bonded to dentin with protocols including silver diammine fluoride. J Oral Sci. 2020;62(4):444-8. doi: 10.2334/josnusd.20-0065

Kaczor‐Wiankowska K, Lipa S, Krasowski M, Sokołowski J, Lewusz‐ Butkiewicz K, Nowicka A. Evaluation of gap formation at the composite

resin‐tooth interface after using universal adhesives: in vitro SEM study using the replica technique. Microsc Res Tech. 2020;83(2):176-85. doi: 10.1002/jemt.23400

Correia A, Andrade MR, Tribst JP, Borges AL, Caneppele TM. Influence of bulk-fill restoration on polymerization shrinkage stress

and marginal gap formation in Class V restorations. Oper Dent. 2020;45(4):E207-16. doi: 10.2341/19-062-L

León Cáceres ME, Mederos Gómez M, Cuevas-Suárez CE, Maglione García F, Grazioli Pita GS. Estudio in vitro de la relación entre resistencia

de unión a esmalte dental y microfiltración en resinas compuestas fotopolimerizables. Odontoestomatología. 2020;22:38-49. doi: 10.22592/ode2020n35a6

Bayrak S, Sen Tunc E, Tuloglu N. The effects of surface pretreatment on the microleakage of resin-modified glass-ionomer

cement restorations. J Clin Pediatr Dent. 2012;36(3). doi: 10.17796/jcpd.36.3.h827442j74862742

Aoyagi Y, Takahashi H, Iwasaki N, Honda E, Kurabayashi T. Radiopacity of experimental composite resins containing radiopaque

materials. Dent Mater J. 2005;24(3):315-20. doi: 10.4012/dmj.24.315

Sabbagh J, Vreven J, Leloup G. Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). Oper Dent. 2004;29(6):677-84.

Downloads

Published

2024-02-07

Issue

Section

Original Articles

How to Cite

Mederos, M., de León, E., García, A., Cuevas-Suárez, C. E., Hernández-Cabanillas, J. C., Rivera-Gonzaga, J. A. ., & Grazioli , G. . (2024). In vitro characterization of a novel resin-based restorative material containing alkaline fillers. Journal of Applied Oral Science, 32, e20230219. https://doi.org/10.1590/1678-7757-2023-0219