Effects of HMGB1/TLR4 on secretion IL-10 and VEGF in human jaw bone-marrow mesenchymal stem cells

Authors

  • Jingjing Kong Jinan Stomatological Hospital, Department of Prosthodontics, Shandong Province http://orcid.org/0000-0003-3370-9756
  • Wei Cheng Jinan Stomatological Hospital, Department of Prosthodontics, Shandong Province
  • Lianzhen Chang Jinan Stomatological Hospital, Department of Prosthodontics, Shandong Province
  • Jingyi Yu Jinan Stomatological Hospital, Department of Prosthodontics, Shandong Province
  • Ronglin Wang Jinan Stomatological Hospital, Department of Prosthodontics, Shandong Province
  • Jianli Xie Jinan Stomatological Hospital, Department of Prosthodontics, Shandong Province

DOI:

https://doi.org/10.1590/1678-7757-2023-0304%20

Keywords:

HMGB1, JBMSCs, TLR4, IL-10, VEGF, Peri-implantitis

Abstract

Objective: We aimed to investigate the regulatory effects of HMGB1/TLR4 signaling pathway on the expression of IL-10 and VEGF in human bone marrow mesenchymal stem cells. Methodology: Human JBMSCs were isolated and cultured. Then, HMGB1 was added into the JBMSCs culture medium, and the protein and mRNA expression levels of IL-10 and VEGF were assessed. Moreover, cells were pretreated with a specific TLR4 inhibitor (TAK-242), and the expression changes of IL-10 and VEGF were compared. Results: Compared with the control group, exposure to HMGB1 in human JBMSCs up-regulated TLR4, IL-10, and VEGF secretion at both protein and mRNA levels (P<0. 05). In addition, the increased expression of IL-10 and VEGF could be restrained in TAK-242 group compared with the HMGB1 group (P<0.05). Conclusions: The results indicated that HMGB1 activate TLR4 signaling pathway in Human JBMSCs, which plays a regulatory role in cytokines expression.

Downloads

Download data is not yet available.

References

He SJ, Cheng J, Feng X, Yu Y, Tian L, Huang Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget.

;8(38):64534-50. doi: 10.18632/oncotarget.17885

Ge Y, Huang M, Yao YM. The effect and regulatory mechanism of high mobility group Box-1 protein on immune cells in inflammatory diseases. Cells. 2021;10(5):1044. doi: 10.3390/cells10051044

Charoonpatrapong K, Shah R, Robling AG, Alvarez M, Clapp DW, Chen S, et al. HMGB1 expression and release by bone cells. J Cell

Physiol. 2006;207(2):480-90. doi: 10.1002/jcp.20577

Müller S, Ronfani L, Bianchi ME. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine

function. J Intern Med. 2004;255(3):332-43. doi: 10.1111/j.1365-2796.2003.01296.x

Li L, Lu YQ. The regulatory role of high-mobility group protein 1 in sepsis-related immunity. Front Immunol. 2021;11:601815. doi: 10.3389/fimmu.2020.601815

Mohamed ME, Abduldaium YS, Younis NS. Ameliorative effect of linalool in cisplatin-induced nephrotoxicity: the role of HMGB1/TLR4/

NF-κB and NRF2/HO1 pathways. Biomolecules. 2020;10(11):1488. doi: 10.3390/biom10111488

Yasinska IM, Silva IG, Sakhnevych SS, Ruegg L, Hussain R, Siligardi G, et al. High mobility group box 1 (HMGB1) acts as an “alarmin” to

promote acute myeloid leukaemia progression. Oncoimmunology. 2018;7(6):e1438109. doi: 10.1080/2162402X.2018.1438109.

Wang M, Gauthier A, Daley LA, Dial K, Wu J, Woo J, et al. The Role of HMGB1, a nuclear damage-associated molecular pattern molecule, in the pathogenesis of lung diseases. Antioxid Redox Signal. 2019;31(13):954-93. doi: 10.1089/ars.2019.7818

Paudel YN, Angelopoulou E, Piperi C, Balasubramaniam VR, Othman I, Shaikh MF. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling. Eur J Pharmacol. 2019;858:172487. doi: 10.1016/j.ejphar.2019.172487

Albrektsson T, Dahlin C, Jemt T, Sennerby L, Turri A, Wennerberg A. Is marginal bone loss around oral implants the result of a provoked

foreign body reaction? Clin Implant Dent Relat Res. 2014;16(2):155-65. doi: 10.1111/cid.12142

Li Z, Jiang CM, An S, Cheng Q, Huang YF, Wang YT, et al. Immunomodulatory properties of dental tissue-derived mesenchymal

stem cells. Oral Dis. 2014;20(1):25-34. doi: 10.1111/odi.12086

Cao C, Tarlé S, Kaigler D. Characterization of the immunomodulatory properties of alveolar bone-derived mesenchymal stem cells. Stem Cell Res Ther. 2020;11(1):102. doi: 10.1186/s13287-020-01605-x

Akintoye SO. The distinctive jaw and alveolar bone regeneration. Oral Dis. 2018;24(1-2):49-51. doi: 10.1111/odi.12761

Nakajima R, Ono M, Hara ES, Oida Y, Shinkawa S, Pham HT, et al. Mesenchymal stem/progenitor cell isolation from tooth

extraction sockets. J Dent Res. 2014;93(11):1133-40. doi: 10.1177/0022034514549377

Abduljabbar T, Vohra F, Ullah A, Alhamoudi N, Khan J, Javed F. Relationship between self-rated pain and peri-implant clinical,

radiographic and whole salivary inflammatory markers among patients with and without peri-implantitis. Clin Implant Dent Relat Res.

;21(6):1218-24. doi: 10.1111/cid.12866

Neumann C, Scheffold A, Rutz S. Functions and regulation of T cell-derived interleukin-10. Semin Immunol. 2019;44:101344. doi:

1016/j.smim.2019.10134417- Bellamri N, Viel R, Morzadec C, Lecureur V, Joannes A, de Latour B, et al. TNF-α and IL-10 Control CXCL13 Expression in Human Macrophages. J Immunol. 2020;204(9):2492-502. doi: 10.4049/jimmunol.1900790

Chloe P, Viviane M, Maria A, Diana A, Stephen H, Laura K, et al. Molecular Pharmacology of VEGF-A isoforms: binding and signalling at

VEGFR2. Int J Mol Sci. 2018;19(4):1264. doi: 10.3390/ijms19041264

Chen R, Lee C, Lin X, Zhao C, Li X. Novel function of VEGF-B as an antioxidant and therapeutic implications. Pharmacol Res. 2019;143:33-

doi: 10.1016/j.phrs.2019.03.002

Meng X, Chen M, Su W, Tao X, Sun M, Zou X, et al. The differentiation of mesenchymal stem cells to vascular cells regulated by the HMGB1/

RAGE axis: its application in cell therapy for transplant arteriosclerosis. Stem Cell Res Ther. 2018;9(1):85. doi: 10.1186/s13287-018-0827-z

Akintoye SO, Boyce AM, Collins MT. Dental perspectives in fibrous dysplasia and McCune-Albright syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(3):e149-55. doi: 10.1016/j.oooo.2013.05.023

Du Y, Jiang F, Liang Y, Wang Y, Zhou W, Pan Y, et al. The angiogenic variation of skeletal site-specific human BMSCs from same alveolar

cleft patients: a comparative study. J Mol Histol. 2016;47(2):153-68. doi: 10.1007/s10735-016-9662-7

Li X, Zheng Y, Hou L, Zhou Z, Huang Y, Zhang Y, et al. Exosomes derived from maxillary BMSCs enhanced the osteogenesis in iliac

BMSCs. Oral Dis. 2020;26(1):131-44. doi: 10.1111/odi.13202

Davis HM, Valdez S, Gomez L, Malicky P, White FA, Subler MA, et al. High mobility group box 1 protein regulates osteoclastogenesis

through direct actions on osteocytes and osteoclasts in vitro. J Cell Biochem. 2019;120(10):16741-9. doi: 10.1002/jcb.28932

Teo Hansen Selnø A, Schlichtner S, Yasinska IM, Sakhnevych SS, Fiedler W, Wellbrock J, et al. High Mobility Group Box 1 (HMGB1) induces Toll-Like Receptor 4-mediated production of the immunosuppressive protein Galectin-9 in human cancer cells. Front Immunol. 2021;12:675731. doi: 10.3389/fimmu.2021.675731

Bangert A, Andrassy M, Müller AM, Bockstahler M, Fischer A, Volz CH, et al. Critical role of RAGE and HMGB1 in inflammatory heart

disease. Proc Natl Acad Sci U S A. 2016;113(2):E155-64. doi: 10.1073/pnas.1522288113

Fujita R, Tamai K, Aikawa E, Nimura K, Ishino S, Kikuchi Y, et al. Endogenous mesenchymal stromal cells in bone marrow are required

to preserve muscle function in mdx mice. Stem Cells. 2015;33(3):962-75. doi: 10.1002/stem.1900

Berglundh T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, et al. Peri-implant diseases and conditions: consensus

report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin

Periodontol. 2018;45 Suppl 20:S286-S291. doi: 10.1111/jcpe.12957

Derks J, Tomasi C. Peri-implant health and disease: a systematic review of current epidemiology. J Clin Periodontol. 2015;42 Suppl

:S158-71. doi: 10.1111/jcpe.12334DOI:10.1111/jcpe.12334

Renvert S, Lindahl C, Persson GR. Occurrence of cases with peri-implant mucositis or peri-implantitis in a 21-26 years follow-up study.

J Clin Periodontol. 2018;45(2):233-40. doi: 10.1111/jcpe.12822

Heitz-Mayfield LJA, Salvi GE, Mombelli A, Loup PJ, Heitz F, Kruger E, et al. Supportive peri-implant therapy following anti-infective surgical

peri-implantitis treatment: 5-year survival and success. Clin Oral Implants Res. 2018;29(1):1-6. doi: 10.1111/clr.12910

Carcuac O, Derks J, Abrahamsson I, Wennström JL, Berglundh T. Risk for recurrence of disease following surgical therapy of peri-implantitis: a prospective longitudinal study. Clin Oral Implants Res. 2020;31(11):1072-7. doi: 10.1111/clr.13653

Monje A, Pons R, Roccuzzo A, Salvi GE, Nart J. Reconstructive therapy for the management of peri-implantitis via submerged guided bone regeneration: a prospective case series. Clin Implant Dent Relat Res. 2020;22(3):342-50. doi: 10.1111/cid.12913.

Downloads

Published

2024-02-21

Issue

Section

Original Articles

How to Cite

Kong, J., Cheng, W., Chang, L. ., Yu, J., Wang, R., & Xie, J. (2024). Effects of HMGB1/TLR4 on secretion IL-10 and VEGF in human jaw bone-marrow mesenchymal stem cells. Journal of Applied Oral Science, 32, e20230304. https://doi.org/10.1590/1678-7757-2023-0304