Preventive effects of systemic Pistacia eurycarpa Yalt. administration on alveolar bone loss and oxidative stress in rats with experimental periodontitis
DOI:
https://doi.org/10.1590/1678-7757-2023-0344Keywords:
Alveolar bone loss, Periodontitis, Plant extracts, Oxidative stressAbstract
Objective: This study aimed to investigate the effects of systemic administration of P. eurycarpa Yalt. plant extract on alveolar bone loss and oxidative stress biomarkers in gingival tissue in a rat model of experimental periodontitis. Methodology: 32 male Wistar albino rats, weighing 200–250 g, were divided into four groups (n=8): Healthy control (HC), Experimental periodontitis control (EPC), Experimental periodontitis 400 mg/kg (EP400), Experimental periodontitis 800 mg/kg (EP800). Experimental periodontitis was induced using the ligating method. Distilled water was administered to the HC and EPC groups and the plant extract was administered to the EP400 and EP800 groups by oral gavage at doses of 400 mg/kg and 800 mg/kg, respectively. The rats were sacrificed on the 15th day. The values of glutathione peroxidase GSH-Px, malondialdehyde (MDA), superoxide dismustase (SOD), interleukin-1β (IL-1β), interleukin-10 (IL-10), total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI) in the gingival tissues were analyzed by ELISA tests. Alveolar bone loss was assessed using micro-CT images of the maxilla. Results: Although the IL-1β, TOS, OSI results of the healthy control group were lower than those of the other groups, the TAS values were higher (p<0.05). No significant difference was found in the biochemical parameters among the EPC, EP400, and EP800 groups (p>0.05). Alveolar bone loss was significantly reduced in the extract groups compared to the EPC group (p<0.001). Conclusion: Within the limitations of this study, it was observed that the systemic P. eurycarpa extract application reduced alveolar bone loss in a rat model of experimental periodontitis. Further studies are needed to elucidate the beneficial effects of P. eurycarpa.
Downloads
References
Dumitrescu AL. Editorial: periodontal disease – a public health problem. Front Public Health. 2016;3:278. doi:10.3389/fpubh.2015.00278
Elangovan S, Lee CT, Kotsakis GA, Dragan IF, Newman MG. Clinical periodontology and ımplantology in the era of precision medicine. In: Newman MG, Klokkevold PR, Elangovan S, Hernandez-Kapila YL, Takei HH (eds). Newman and Carranza’s clinical periodontology and Implantology. 14th ed. St. Louis: Elsevier; 2023. p 1-9.
Slots J. Periodontitis: facts, fallacies and the future. Periodontol 2000. 2017;75(1):7-23. doi: 10.1111/prd.12221
Dinarello CA. Proinflammatory cytokines. Chest. 2000;118:503-8. doi:10.1378/chest.118.2.503
Reis C, Costa AV, Guimarães JT, Tuna D, Braga AC, Pacheco JJ, et al. Clinical improvement following therapy for periodontitis: association with a decrease in IL-1 and IL-6. Exp Ther Med 2014;8:323-7. doi:10.3892/etm.2014.1724
Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci. 2019;11(3):30. doi: 10.1038/s41368-019-0064-z
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1245049. doi: 10.1155/2016/1245049
Otan Özden F, Lütfioğlu M, Demir E, Bilgici B. Antioxidant effect of caffeic acid phenethyl ester in experimentally induced periodontitis. Clin Oral Investig. 2021;25(8):4959-66. doi: 10.1007/s00784-021-03805-y
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. doi:10.1155/2014/360438
Yoshinaga K, Hawkins RA, Stocker JF. Estrogen secretion by the rat ovary in vivo during the estrous cycle and pregnancy. Endocrinology. 1969;85(1):103-12. doi: 10.1210/endo-85-1-103
Toker H, Ozan F, Ozer H, Ozdemir H, Eren K, Yeler H. A morphometric and histopathologic evaluation of the effects of propolis on alveolar bone loss in experimental periodontitis in rats. J Periodontol. 2008;79(6):1089-94. doi: 10.1902/jop.2008.070462
Demirci F, Baser KH, Calis I, Gokhan E. Essential oil and antimicrobial evaluation of the pistacia eurycarpa. Khimiya Prirodnykh Soedinenii. 2001;37:282-4.
AL-Saghir MG, Porter DM. Taxonomic revision of the Genus Pistacia L. (Anacardiaceae). Am J Plant Sci. 2012;3:12-32. doi:10.4236/ajps.2012.31002
Salehi B, Upadhyay S, Orhan IE, Jugran AK, Jayaweera SL, Dias DA, et al. Therapeutic potential of α-and β-pinene: a miracle gift of nature. Biomolecules. 2019;9:1-34. doi:10.3390/biom9110738
Khoshnazar M, Parvardeh S, Bigdeli MR. Alpha-pinene exerts neuroprotective effects via anti-inflammatory and anti-apoptotic mechanisms in a rat model of focal cerebral ischemia-reperfusion. J Stroke Cerebrovasc Dis. 2020;29(8):104977. doi: 10.1016/j.jstrokecerebrovasdis.2020.104977
Kara M, Kesim S, Aral CA, Elmali F. Effect of grape seed extract upon plasma oxidative status and alveolar bone, in ligature induced periodontitis. Biotechnol & Biotechnol Eq. 2013;27:4131-6. doi:10.5504/BBEQ.2013.0074
Sina Içen M, Gürbüz İ, Bedir E, Günbatan T, Demirci F. Isolation of rosmarinic acid and methyl rosmarinate as lipoxygenase inhibitors from Salvia palaestina Benth. by activity-guided fractionation. S Afr J Bot. 2021;141:177-82. doi:10.1016/j.sajb.2021.04.030
Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38:1103-11. doi:10.1016/j.clinbiochem.2005.08.008
Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37:112-9. doi:10.1016/j.clinbiochem.2003.10.014
Chen H, Xu X, Liu M, Zhang W, Ke H, Qin A, et al. Sclerostin antibody treatment causes greater alveolar crest height and bone mass in an ovariectomized rat model of localized periodontitis. Bone. 2015;76:141-8. doi:10.1016/j.bone.2015.04.002
Jeong-Hyon K, Bon-Hyuk G, Sang-Soo N, Yeon-Cheol P. A review of rat models of periodontitis treated with natural extracts. J Trad Chin Med Sci. 2020;7:95-103. doi:10.1016/j.jtcms.2020.05.005
Ara T, Nakatani S, Kobata K, Sogawa N, Sogawa C. The biological efficacy of natural products against acute and chronic inflammatory diseases in the oral region. Medicines. 2018;5:122. doi:10.3390/medicines5040122
Tanideh N. The effect of Pistacia atlantica and Hypericum perforatum as a healing accelerator remedy on ınduced oral mucositis in male golden hamster. Adv Dent & Oral Health 2017;4(1):555630. doi:10.19080/ADOH.2017.04.555630
Heidarian E, Jafari-Dehkordi E, Valipour P, Ghatreh-Samani K, Ashrafi-Eshkaftaki L. Nephroprotective and anti-Inflammatory effects of Pistacia atlantica leaf hydroethanolic extract against gentamicin-ınduced nephrotoxicity in rats. J Diet Suppl. 2017;14:489-502. doi:10.1080/19390211.2016.1267062
Azeez SH, Gaphor SM, Sha AM, Garib BT. Effect of Pistacia atlantica subsp. kurdica gum in experimental periodontitis ınduced in wistar rats by utilization of osteoclastogenic bone markers. Molecules. 2020;25:5819. doi:10.3390/molecules25245819
Arami S, Mojaddadi MA, Pourabbas R, Chitsaz MT, Delazar A, Mobayen H. The effect of Pistacia atlantica var. mutica mouthwash on dental plaque bacteria and subgingival microorganisms: a randomized and controlled triple-blind study. Drug Res. 2014;65:463-7. doi:10.1055/s-0034-1382051
Graves D. Cytokines that promote periodontal tissue destruction. J Periodontol. 2008;79:1585-91. doi:10.1902/jop.2008.080183
Keles GG, Acikgoz G, Ayas B, Sakallioglu E, Firatli E. Determination of systemically & locally induced periodontal defects in rats. Indian J Med Res. 2005;121:176-84.
Toker H, Poyraz O, Eren K. Effect of periodontal treatment on IL-1β, IL-1ra, and IL-10 levels in gingival crevicular fluid in patients with aggressive periodontitis. J Clin Periodontol. 2008;35:507-13. doi:10.1111/j.1600-051X.2008.01213.x
Al-Rasheed A, Scheerens H, Srivastava AK, Rennick DM, Tatakis DN. Accelerated alveolar bone loss in mice lacking interleukin-10: late onset. J Periodontal Res. 2004;39:194-8. doi:10.1111/j.1600-0765.2004.00724.x
Kurt S, Gürkan ÇG, Keleş Tezal GÇ, Çiftçi A, Gürgör PN, Güler Ş, et al. Histopathological and biochemical evaluation of the effect of Paeoniflorin on the periodontium during and after periodontitis formation in rats. Arch Oral Biol. 2019;102:135-40. doi:10.1016/j.archoralbio.2019.04.006
Kırzıoğlu FY, Tözüm Bulut M, Doğan B, Fentoğlu Ö, Özmen Ö, Çarsancaklı SA, et al. Anti-inflammatory effect of rosuvastatin decreases alveolar bone loss in experimental periodontitis. J Oral Sci. 2017;59:247-55. doi:10.2334/josnusd.16-0398
Silva DO, Lobato RV, Andrade EF, Orlando DR, Borges BD, Zangeronimo MG, et al. Effects of β-glucans ingestion on alveolar bone loss, intestinal morphology, systemic inflammatory profile, and pancreatic β-cell function in rats with periodontitis and diabetes. Nutrients. 2017;9:1016. doi:10.3390/nu9091016
Köse O, Arabacı T, Yemenoglu H, Ozkanlar S, Kurt N, Gumussoy I, et al. Influence of experimental periodontitis on cardiac oxidative stress in rats: a biochemical and histomorphometric study. J Periodontal Res. 2017;52:603-8. doi:10.1111/jre.12428
Oktay S, Chukkapalli SS, Rivera‐Kweh MF, Velsko IM, Holliday LS, Kesavalu L. Periodontitis in rats induces systemic oxidative stress that is controlled by bone‐targeted antiresorptives. J Periodontol.2015;86:137-45. doi:10.1902/jop.2014.140302
Yiğit U, Kırzıoğlu FY, Uğuz AC, Nazıroğlu M, Özmen Ö. Is caffeic acid phenethyl ester more protective than doxycycline in experimental periodontitis? Arch Oral Biol. 2017;81:61-8. doi:10.1016/j.archoralbio.2017.04.017
Tsai CC, Chen HS, Chen SL, Ho YP, Ho KY, Wu YM, et al. Lipid peroxidation: a possible role in the induction and progression of chronic periodontitis. J Periodontal Res. 2005;40:378-84. doi:10.1111/j.1600-0765.2005.00818.x
Govindaraj J, Emmadi P, Rajaram V, Prakash G, Puvanakrishnan R. Protective effect of proanthocyanidins on endotoxin induced experimental periodontitis in rats. Indian J Exp Biol. 2010;48(2):133-42
Ghallab N, Hamdy E, Shaker O. Malondialdehyde, superoxide dismutase and melatonin levels in gingival crevicular fluid of aggressive and chronic periodontitis patients. Aust Dent J. 2016;61:53-61. doi:10.1111/adj.12294
Yağan A, Kesim S, Liman N. Effect of low-dose doxycycline on serum oxidative status, gingival antioxidant levels, and alveolar bone loss in experimental periodontitis in rats. J Periodontol. 2014;85:478-89. doi:10.1902/jop.2013.130138.
Rao A, Prasad B, Kumari S, Thomas B. Serum levels of antioxidants and superoxide dismutase in periodontitis patients with diabetes type 2. J Indian Soc Periodontol. 2014;18:451. doi:10.4103/0972-124X.138686
Ma S, Guo J, You X, Xia W, Yan F. Expressions of Interleukin-1β and Interleukin-6 Within aortas and uteri of rats with various severities of ligature-ınduced periodontitis. Inflammation. 2011;34:260-8. doi:10.1007/s10753-010-9232-1
Rojas C, García MP, Polanco AF, González-Osuna L, Sierra-Cristancho A, Melgar-Rodríguez S, et al. Humanized mouse models for the study of periodontitis: an opportunity to elucidate unresolved aspects of ıts ımmunopathogenesis and analyze new ımmunotherapeutic strategies. Front Immunol. 2021;12:663328. doi:10.3389/fimmu.2021.663328
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Applied Oral Science
This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.