Niobium oxyhydroxide as a bioactive agent and reinforcement to a high-viscosity bulk-fill resin composite

Authors

  • Ana Zélia Falcão Almeida Universidade Federal da Paraíba, Cidade Universitária, Departamento de Química, Centro de Pesquisa de Combustíveis e Materiais (NPE-LACOM) https://orcid.org/0000-0003-1369-7540
  • Tatiana Rita de Lima Nascimento Universidade Federal da Paraíba, Cidade Universitária, Departamento de Química, Centro de Pesquisa de Combustíveis e Materiais (NPE-LACOM) https://orcid.org/0000-0002-3461-2318
  • Alyssa Teixeira Obeid Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos https://orcid.org/0000-0001-9298-1114
  • Ana Carolina Agassi Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos https://orcid.org/0009-0005-5171-469X
  • Ana Paula de Melo Alves Guedes Universidade Federal da Paraíba, Cidade Universitária, Departamento de Química, Centro de Pesquisa de Combustíveis e Materiais (NPE-LACOM) https://orcid.org/0000-0003-0022-2861
  • João Marco Alves Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos https://orcid.org/0000-0002-0412-9077
  • Juliana Fraga Soares Bombonatti Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos https://orcid.org/0000-0002-4046-8375
  • Marilia Mattar de Amoêdo Campos Velo Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos https://orcid.org/0000-0001-7841-9459

DOI:

https://doi.org/10.1590/1678-7757-2023-0278

Keywords:

Niobium, Composite resins, Dental caries, Nanotechnology, Nanoparticles

Abstract

The present in vitro study incorporated niobium oxyhydroxide fillers into an experimental high-viscosity bulk-fill resin composite to improve its mechanical performance and provide it a bioactive potential. Methodology:  Scanning electron microscopy synthesized and characterized 0.5% niobium oxyhydroxide fillers, demonstrating a homogeneous morphology that represented a reinforcement for the feature. Fillers were weighed, gradually added to the experimental resin composite, and homogenized for one minute, forming three groups: BF (experimental high-viscosity bulk-fill resin composite; control), BF0.5 (experimental high-viscosity bulk-fill resin composite modified with 0.5% niobium oxyhydroxide fillers), and BFC (commercial bulk-fill resin composite Beautifil Bulk U, Shofu; positive control). In total, 10 specimens/groups (8 × 2 × 2 mm) underwent flexural strength (FS) tests in a universal testing machine (Instron) (500N). Resin composites were also assessed for Knoop hardness (KH), depth of cure (DoC), degree of conversion (DC), elastic modulus (E), and degree of color change (ΔE). The bioactive potential of the developed resin composite was evaluated after immersing the specimens into a simulated body fluid in vitro solution and assessing them using a Fourier-transformed infrared spectroscope with an attenuated total reflectance accessory. One-way ANOVA, followed by the Tukey’s test (p<0.05), determined FS, DC, KH, and ΔE. For DoC, ANOVA was performed, which demonstrated no significant difference between groups (p<0.05). Conclusions: The high-viscosity bulk-fill resin composite with 0.5% niobium oxyhydroxide fillers showed promising outcomes as reinforcement agents and performed well for bioactive potential, although less predictable than the commercial resin composite with Giomer technology.

Downloads

Download data is not yet available.

References

Melo MA, Collares F, Sauro S. Developing bioactive materials for dental applications. Front Mater. 2021;8:751618. doi: 10.3389/fmats.2021.751618

Raghip AG, Comisi JC, Hamama HH, Mahmoud S. In vitro elemental and micromorphological analysis of the resin-dentin interface of bioactive and bulk-fill composites. Am J Dent. 2023;36(1):3-7

Balbinot GS, Leitune VC, Ogliari FA, Collares FM. Niobium silicate particles as bioactive fillers for composite resins. Dent Mater. 2020;36(12):1578-85. doi: 10.1016/j.dental.2020.09.01

Obeid AT, Garcia LH, Nascimento TR, Castellano LR, Bombonatti JF, Honório HM, et al. Effects of hybrid inorganic-organic nanofibers on the properties of enamel resin infiltrants: an in vitro study. J Mech Behav Biomed Mater. 2022;126:105067. doi: 10.1016/j.jmbbm.2021.105067

Arbildo-Vega HI, Lapinska B, Panda S, Lamas-Lara C, Khan AS, Lukomska-Szymanska M. Clinical effectiveness of bulk-fill and conventional resin composite restorations: systematic review and meta-analysis. Polymers (Basel). 2020;12(8):1786. doi: 10.3390/polym12081786

Soares CJ, Faria-E-Silva AL, Rodrigues MP, Vilela AB, Pfeifer CS, Tantbirojn D, et al. Polymerization shrinkage stress of composite resins and resin cements: What do we need to know? Braz Oral Res. 2017;31(suppl 1):e62. doi: 10.1590/1807-3107BOR-2017.vol31.0062

Gonçalves F, Campos LM, Rodrigues-Júnior EC, Costa FV, Marques PA, Francci CE, et al. A comparative study of bulk-fill composites: degree of conversion, post-gel shrinkage and cytotoxicity. Braz Oral Res. 2018;32:e17. doi: 10.1590/1807-3107bor-2018.vol32.0017

Comba A, Scotti N, Maravić T, Mazzoni A, Carossa M, Breschi L, et al. Vickers hardness and shrinkage stress evaluation of low and high viscosity bulk-fill resin composite. Polymers (Basel). 2020;12(7):1477. doi: 10.3390/polym12071477

Tsujimoto A, Barkmeier WW, Takamizawa T, Latta MA, Miyazaki M. Mechanical properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin composite. Dent Mater J. 2016;35(3):418-24. doi: 10.4012/dmj.2015-280

Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J, Leloup G. Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent. 2014;42(8):993-1000. doi: 10.1016/j.jdent.2014.05.009

Fonseca RB, Almeida LN, Mendes GA, Kasuya AV, Favarão IN, Paula MS. Effect of short glass fiber/filler particle proportion on flexural and diametral tensile strength of a novel fiber-reinforced composite. J

Wang X, Cai Q, Zhang X, Wei Y, Xu M, Yang X, et al. Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers. Mater Sci Eng C Mater Biol Appl. 2016;59:464-70. doi: 10.1016/j.msec.2015.10.044

Yang DL, Sun Q, Niu H, Wang RL, Wang D, Wang JX. The properties of dental resin composites reinforced with silica colloidal nanoparticle clusters: effects of heat treatment and filler composition. Compos B Eng. 2020;186:107791. doi: 10.1016/j.compositesb.2020.107791

Ruddell DE, Maloney MM, Thompson JY. Effect of novel filler particles on the mechanical and wear properties of dental composites. Dent Mater. 2002;18(1):72-80. doi: 10.1016/s0109-5641(01)00022-7

Shortall AC, Palin WM, Burtscher P. Refractive index mismatch and monomer reactivity influence composite curing depth. J Dent Res. 2008;87(1):84-8. doi: 10.1177/154405910808700115

Tsujimoto A, Barkmeier WW, Takamizawa T, Latta MA, Miyazaki, M. Depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites. Dent Mater J. 2017;36(2):205-13. doi: 10.4012/dmj.2016-131

Al-Ahdal K, Ilie N, Silikas N, Watts DC. Polymerization kinetics and impact of post polymerization on the degree of conversion of bulk-fill resin-composite at clinically relevant depth. Dent Mater. 2015;31(10):1207-13.doi: 10.1016/j.dental.2015.07.004

Safavi MS, Walsh FC, Visai L, Khalil-Allafi J. Progress in niobium oxide-containing coatings for biomedical applications: a critical review. ACS Omega. 2022;7(11):9088-107. doi: 10.1021/acsomega.2c00440

Shan Y, Zheng Z, Liu J, Yang Y, Li Z, Huang Z, et al. Niobium pentoxide: A promising surface-enhanced Raman scattering active semiconductor substrate. NPJ Comput Mater. 2017;3(11). doi: 10.1038/s41524-017-0008-0

Velo MM, Nascimento TR, Scotti CK, Bombonatti JF, Furuse AY, Silva VD, et al. Improved mechanical performance of self-adhesive resincement filled with hybrid nanofibers-embedded with niobium pentoxide. Dent Mater. 2019;35(11):e272-85. doi: 10.1016/j.dental.2019.08.102

Guimarães GM, Bronze-Uhle ES, Lisboa-Filho PN, Fugolin AP, Borges AF, Gonzaga CC, et al. Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites. Dent Mater. 2020;36(12):1544-56. doi: 10.1016/j.dental.2020.09.013

Tanabe K, Okazaki S. Various reactions catalyzed by niobium compounds and materials. Appl Catal A Gen. 1995;133(2):191-218. doi: 10.1016/0926-860X(95)00205-7

Queiroga LN, Pereira MB, Silva LS, Silva EC Filho, Santos IM, Fonseca MG, et al. Microwave bentonite silylation for dye removal: Influence of the solvent. Appl Clay Sci. 2019;168:478-87. doi:10.1016/j.clay.2018.11.027

Santin DC, Velo MM, Camim FS, Brondino NC, Honório HM, Mondelli RF. Effect of thickness on shrinkage stress and bottom-to-top hardness ratio of conventional and bulk-fill composites. Eur J Oral Sci. 2021;129(6):e12825. doi: 10.1111/eos.12825

Atai M, Nekoomanesh M, Hashemi SA, Amani S. Physical and mechanical properties of an experimental dental composite based on a new monomer. Dent Mater. 2004;20(7):663-8. doi: 10.1016/j.dental.2003.08.008

Furuse AY, Santana LO, Rizzante FA, Ishikiriama SK, Bombonatti JF, Correr GM, et al. Delayed light activation improves color stability of dual-cured resin cements. J Prosthodont. 2018;27(5):449-55. doi: 10.1111/jopr.12509

Obeid AT, Kojic DD, Felix C, Velo MM, Furuse AY, Bombonatti JF. Effects of radiant exposure and distance on resin-based composite polymerization. Am J Dent. 2022;35(4):172-77.

Andreatta LM, Furuse AY, Prakki A, Bombonatti JF, Mondelli RF. Pulp Chamber heating: an in vitro study evaluating different light sources and resin composite layers. Braz Dent J. 2016;27(6):675-80. doi: 10.1590/0103-6440201600328

Souza TE, Padula ID, Teodoro MM, Chagas P, Resende JM, Souza PP, et al. Amphiphilic property of niobium oxyhydroxide for waste glycerol conversion to produce solketal. Catal Today. 2015;254:83-9. doi: 10.1016/j.cattod.2014.12.027

Oliveira LC, Silva AC, Pereira MC. Peroxo-niobium oxyhydroxide sensitized TiO 2 crystals. RSC Advances. 2015;5:44567-70. doi: 10.1039/C5RA07343J

Batista LM, Santos AJ, Silva DR, Alves AP, Garcia-Segura S, Martínez-Huitle CA. Solar photocatalytic application of NbO 2 OH as alternative photocatalyst for water treatment. Sci Total Environ. 2017;596-7:79-86. doi: 10.1016/j.scitotenv.2017.04.019

Rodrigues MC, Chiari MD, Alania Y, Natale LC, Arana-Chavez VE, Meier MM, et al. Ion-releasing dental restorative composites containing functionalized brushite nanoparticles for improved mechanical strength. Dent Mater. 2018;34(5):746-55. doi: 10.1016/j.dental.2018.01.026

Neves RM, Ornaghi HL, Zattera AJ, Amico SC. The influence of silane surface modification on microcrystalline cellulose characteristics. Carbohydr Polym. 2020;230:115595. doi: 10.1016/j.carbpol.2019.115595

Jlassi K, Chandran S, Mičušik M, Benna-Zayani M, Yagci Y, Thomas S, et al. Poly(glycidyl methacrylate)-grafted clay nanofiller for highly transparent and mechanically robust epoxy composites. Eur Polym J. 2015;72:89-101. doi: 10.1016/j.eurpolymj.2015.09.004

Cilingir A, Özsoy A, Mert-Eren M, Behram Ö, Dikmen B, Özcan M. Mechanical properties of bulk-fill versus nanohybrid composites: effect of layer thickness and application protocols. Braz Dent Sci. 2019;22(2):234-42. doi: 10.14295/bds.2019.v22i2.1719

Ozer F, Irmak O, Yakymiv O, Mohammed A, Pande R, Saleh N, et al. Three-year clinical performance of two giomer restorative materials in restorations. Oper Dent. 2021;46(1):E60-7. doi: 10.2341/17-353-C

Shah PK, Stansbury JW. Role of filler and functional group conversion in the evolution of properties in polymeric dental restoratives. Dent Mater. 2014;30(5):586-93. doi: 10.1016/j.dental.2014.02.015

Di Francescantonio M, Aguiar TR, Arrais CA, Cavalcanti AN, Davanzo CU, Giannini M. Influence of viscosity and curing mode on degree of conversion of dual-cured resin cements. Eur J Dent. 2013;7(1):81-5.

Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385-8. doi: 10.1126/science.1157996

Mu HL, Tian FC, Wang XY, Gao XJ. [Evaluation of wear property of Giomer and universal composite in vivo]. Beijing Da Xue Xue Bao Yi Xue Ban. 2020;53(1):120-5. Chinese. doi: 10.19723/j.issn.1671-167X.2021.01.018

Yu B, Lee YK. Comparison of the color stability of flowable and universal resin composites. Am J Dent. 2009;22(3):160–4.

Zhou W, Chen H, Weir MD, Oates TW, Zhou X, Wang S, et al. Novel bioactive dental restorations to inhibit secondary caries in enamel and dentin under oral biofilms. J Dent. 2023;133:104497. doi: 10.1016/j.jdent.2023.104497

Vallittu PK, Boccaccini AR, Hupa L, Watts DC. Bioactive dental materials: Do they exist and what does bioactivity mean? Dent Mater. 2018;34(5):693-4. doi: 10.1016/j.dental.2018.03.001

Velo MM, Nunes FG Filho, Nascimento TR, Obeid AT, Castellano LC, Costa RM, et al. Enhancing the mechanical properties and providing bioactive potential for graphene oxide/montmorillonite hybrid dental resin composites. Sci Rep. 2022;12(1):10259. doi: 10.1038/s41598-022-13766-1

Downloads

Published

2024-03-25

Issue

Section

Original Articles

How to Cite

Almeida, A. Z. F., Nascimento, T. R. de L. ., Obeid, A. T., Agassi, A. C., Guedes, A. P. de M. A., Alves, J. M., Bombonatti, J. F. S., & Velo, M. M. de A. C. (2024). Niobium oxyhydroxide as a bioactive agent and reinforcement to a high-viscosity bulk-fill resin composite. Journal of Applied Oral Science, 32, e20230278. https://doi.org/10.1590/1678-7757-2023-0278