Can the combination of proanthocyanidin and vitamin E or palm oil effectively protect enamel against in vitro erosive and abrasive challenges?
DOI:
https://doi.org/10.1590/1678-7757-2024-0100Keywords:
Vitamin E, Polyphenols, Palm oil, Dental pellicle, Tooth erosion, Tooth abrasion, Erosive toothAbstract
This study aimed to assess the effect of proanthocyanidin, palm oil and vitamin E against erosive and erosive+abrasive challenges in vitro after enamel pellicle formation in situ. Methodology: Bovine enamel blocks (n=84) were obtained and divided into the following treatment groups: negative control (NC) - deionized water; positive control (PC) - SnCl2/NaF/AmF-containing solution; palm oil (PO); 2% proanthocyanidin (P2); vitamin E (VitE); 2% proanthocyanidin+palm oil (P2PO); and 2% proanthocyanidin+vitamin E (P2VitE). For 5 days, one half of the sample from each group was subjected to erosion and the other half was subjected to erosion+abrasion. The acquired enamel pellicle (AEP) was pre-formed in situ for 30 minutes. The specimens were then treated in vitro with solutions (500 µl, 30s for each group). Subsequently, the blocks were left in the oral cavity for another hour to obtain the modified AEP. The blocks were immersed in 0.5% citric acid (pH=2.5) for 90s, 4×/day. AEP formation and treatment were carried out before the first and third erosive challenges, and after these challenges, abrasive cycles (15s) were performed on half of the samples. Enamel wear was quantified by profilometry and data were analyzed by two-way ANOVA and Tukey’s test (p<0.05). Results:All groups showed higher wear when exposed to erosion+abrasion than when exposed to erosion alone (p=0.0001). PO, P2VitE, P2, and P2PO showed enamel wear similar to the PC group, but only PC, PO and P2VitE differed from the NC group. The other groups behaved similarly to NC. Conclusion: It was concluded that the combination of proanthocyanidin and vitamin E was effective in reducing wear in the face of in vitro erosive and erosive+abrasive challenges.
Downloads
References
Huysmans MC, Chew HP, Ellwood RP. Clinical studies of dental erosion and erosive wear. Caries Res. 2011;45:60-8. doi: 10.1159/000325947
Shellis RP, Ganss C, Ren Y, Zero DT, Lussi A. Methodology and models in erosion research: discussion and conclusions. Caries Res. 2011;45:69-77. doi: 10.1159/000325971
Schlueter N, Amaechi BT, Bartlett D, Buzalaf MA, Carvalho TS, Ganss C, et al. Terminology of erosive tooth wear: consensus report of a workshop organized by the orca and the cariology research group of the IADR. Caries Res. 2020;54(1):2-6. doi: 10.1159/000503308
Hara AT, Lussi A, Zero DT. Biological factors. Monogr Oral Sci. 2006;20:88-99. doi: 10.1159/000093355
Hannig M, Joiner A. The structure, function and properties of the acquired pellicle, Monogr Oral Sci. 2006;19:29-64. doi:10.1159/000090585
Hara AT, Zero DT. The potential of saliva in protecting against dental erosion. Monogr Oral Sci. 2014;25:197-205. doi: 10.1159/000360372
Hannig M, Hannig C. The pellicle and erosion. Monogr Oral Sci. 2014;25:206-14. doi: 10.1159/000360376
Lucchese A, Bertacci A, Chersoni S, Portelli M. Primary enamel permeability: a SEM evaluation in vivo. Eur J Paediatr Dent. 2012;13(3):231-5.
Carvalho TS, Lussi A. Susceptibility of enamel to initial erosion in relation to tooth type, tooth surface and enamel depth. Caries Res. 2015;49:109-15. doi: 10.1159/000369104
Hara AT, Ando M, González-Cabezas C, Cury JA, Serra MC, Zero DT. Protective effect of the dental pellicle against erosive challenges in situ. J Dent Res. 2006;85:612-6. doi: 10.1177/154405910608500706
Ionta FQ, Alencar CR, Val PP, Boteon AP, Jordão MC, Honório HM, et al. Effect of vegetable oils applied over acquired enamel pellicle on initial erosion. J Appl Oral Sci. 2017;25:420-6. doi: 10.1590/1678-7757-2016-0436
Ionta FQ, Alencar CR, Santos NM, Bergantin BT, Val PP, Honorio HM, et al. Effect of palm oil alone or associated to stannous solution on enamel erosive: abrasive wear: a randomized in situ/ex vivo study. Arch Oral Biol. 2018;95:68-73. doi: 10.1016/j.archoralbio.2018.07.013
Boteon AP, Dallavilla GG, Cardoso F, Wang L, Rios D, Honorio HM. Proanthocyanidin protects the enamel against initial erosive challenge when applied over acquired pellicle. Am J Dent. 2020;33:239-42.
Rios D, Boteon AP, Di Leone CC, Castelluccio TT, Mendonça FL, Ionta FQ, et al. Vitamin E: a potential preventive approach against dental erosion-an in vitro short-term erosive study. J Dent. 2021;113:103781. doi: 10.1016/j.jdent.2021.103781
Oliveira AA, Xavier AL, Silva TT, Debortolli AL, Ferdin AC, Boteon AP, et al. Acquired pellicle engineering with the association of cystatin and vitamin E against enamel erosion. J Dent. 2023;138:104680. doi: 10.1016/j.jdent.2023.104680
Boteon AP, Prakki A, Buzalaf MA, Rios D, Honorio HM. Effect of different concentrations and application times of proanthocyanidin gels on dentin erosion. Am J Dent. 2017;30:96-100.
Boteon AP, Kato MT, Buzalaf MA, Prakki A, Wang L, Rios D, et al. Effect of Proanthocyanidin-enriched extracts on the inhibition of wear and degradation of dentin demineralized organic matrix. Arch Oral Biol. 2017;84:118-24. doi: 10.1016/j.archoralbio.2017.09.027
Cardoso F, Boteon AP, Silva TA, Prakki A, Wang L, Honório HM. In situ effect of a proanthocyanidin mouthrinse on dentin subjected to erosion. J Appl Oral Sci. 2020;28:e20200051. doi: 10.1590/1678-7757-2020-0051
Han B, Jaurequi J, Tang BW, Nimni ME. Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res. 2003;65A:118-24. doi: 10.1002/jbm.a.10460
Hagerman AE, Butler LG. The specificity of proanthocyanidin-protein interactions. J Biol Chem. 1981;256:4494-7. doi: 1016/S0021-9258(19)69462-7
Joiner A, Muller D, Elofsson UM, Malmsten M, Arnebrant T. Adsorption from black tea and red wine onto in vitro salivary pellicles studied by ellipsometry. Eur J Oral Sci 2003;111:417-22. doi: 10.1034/j.1600-0722.2003.00073.x
Ku CS, Sathishkumar M, Mun SP. Binding affinity of proanthocyanidin from waste Pinus radiata bark onto proline-rich bovine achilles tendon collagen type I. Chemosphere. 2007;67:1618-27. doi: 10.1016/j.chemosphere.2006.11.037
Castellan CS, Pereira PN, Grande RH, Bedran-Russo AK. Mechanical characterization of proanthocyanidin–dentin matrix interaction. Dent Mater. 2010;26:968-73. doi: 10.1016/j.dental.2010.06.001
Cao N, Fu Y, He J. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids. 2007;21:575-84. doi: 10.1016/j.foodhyd.2006.07.001
Taira EA, Ventura TM, Cassiano LP, Silva CM, Martini T, Leite AL, et al. Changes in the proteomic profile of acquired enamel pellicles as a function of their time of formation and hydrochloric acid exposure. Caries Res. 2018;52:367-77. doi: 10.1159/000486969
Hannig M, Hess NJ, Hoth-Hannig W, De Vrese M. Influence of salivary pellicle formation time on enamel demineralization – an in situ pilot study. Clin Oral Invest. 2003;7:158-61. doi: 10.1007/s00784-003-0219-2
Hannig C, Wagenschwanz C, Pötschke S, Kümmerer K, Kensche A, Hoth-Hannig W, et al. Effect of safflower oil on the protective properties of the in situ formed salivary pellicle. Caries Res. 2012;46:496-506. doi: 10.1159/000339924
Kensche A, Reich M, Kümmerer K, Hannig M, Hannig C. Lipids in preventive dentistry. Clin Oral Invest 2013;17:669-85. doi: 10.1007/s00784-012-0835-9
Sundram K, Sambanthamurthi R, Tan YA. Palm fruit chemistry and nutrition. Asia Pac J Clin Nutr. 2003;12:355-62.
Hantikainen E, Lagerros YT. Vitamin E - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res. 2023;67. doi: 10.29219/fnr.v67.10238
Absalome MA, Massara CC, Alexandre AA, Gervais K, Chantal GG, Ferdinand D, et al. Biochemical properties, nutritional values, health benefits and sustainability of palm oil. Biochimie. 2017;178:81-95. doi:10.1016/j.biochi.2020.09.019
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-4. doi: 10.1001/jama.2013.281053
Attin T, Wegehaupt FJ. Methods for assessment of dental erosion. Monogr Oral Sci. 2014;25:123-42. doi: 10.1159/000360355
Mendonça FL, Jordão MC, Ionta FQ, Buzalaf MA, Honório HM, Wang L, et al. In situ effect of enamel salivary exposure time and type of intraoral appliance before an erosive challenge. Clin Oral Invest. 2017;21:2465-71. doi: 10.1007/s00784-016-2043-5
Joiner A, Elofsson UM, Arnebrant T. Adsorption of chlorhexidine and
black tea onto in vitro salivary pellicles, as studied by ellipsometry. Eur J Oral Sci. 2006;114:337-42. doi: 10.1111/j.1600-0722.2006.00364.x36-
ISO 14569-1:1999, “Dental materials — Guidance on testing of wear — Part 1: Wear by toothbrushing” International Organization for Standardization, 1999.
Heath JR, Wilson HJ. Forces and rates observed during in vivo toothbrushing. Biomed Eng. 1974;9.
Voronets J, Jaeggi T, Buergin W, Lussi A. Controlled toothbrush abrasion of softened human enamel. Caries Res. 2008;42:286-90. doi: 10.1159/000148160
Mosquim V, Souza BM, Forato GA Jr, Wang L, Magalhães AC. The abrasive effect of commercial whitening toothpastes on eroded enamel. Am J Dent. 2017;30:142-6.
Klimek J, Hellwing E, Ahrens G. Fluoride taken up by plaque, by the underlying enamel and by the clean enamel from three fluoride compounds in vitro. Caries Res. 1982;12:156-61. doi.org/10.1159/000260592
Shellis RP, Addy M. The interactions between attrition, abrasion and erosion in tooth wear, Monogr Oral Sci. 2014;25:32-45. doi.org/10.1159/000359936.
Jakobek L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015;15. doi: 10.1016/j.foodchem.2014.12.013
Li X, Chen D, Wang G, Lu Y. Study of interaction between human serum albumin and three antioxidants: ascorbic acid, α-tocopherol, and proanthocyanidins. Eur J Med Chem. 2013;70:22-36. doi.org/10.1016/j.ejmech.2013.09.033
Jerkovic L, Voegele AF, Chwatal S, Kronenberg F, Radcliffe CM, Wormald MR, et al. Afamin is a novel human vitamin e-binding glycoprotein characterization and in vitro expression. J Proteome Res. 2005;4:889-99. doi: 10.1021/pr0500105
UniProt. Universal protein resource. P43652 AFAM_HUMAN [internet]. Hinxton, Cambridge: European Bioinformatics Institute (EMBL-EBI); 2023 [cited August 19, 2023). Available from: https://www.uniprot.org/uniprot/P43652.
Nishio H, Dugaiczyk A. Complete structure of the human alpha-albumin gene, a new member of the serum albumin multigene family. Proc Natl Acad Sci USA. 1996;93:7557-61. doi: 10.1073/pnas.93.15.7557
Siqueira WL, Zhang W, Helmerhorst EJ, Gygi SP, Oppenheim FG. Identification of protein components in in vivo human acquired enamel pellicle using LC−ESI−MS/MS. J Proteome Res. 2007;6:2152-60. doi: 10.1021/pr060580k
Ventura TM, Cassiano LD, Souza e Silva CM, Taira EA, Leite AD, Rios D, et al. The proteomic profile of the acquired enamel pellicle according to its location in the dental arches. Arch Oral Biol. 2017;79:20-9. doi: 10.1016/j.archoralbio.2017.03.001
Lee YH, Zimmerman JN, Custodio W, Xiao Y, Basiri T, Hatibovic- Kofman S, et al. Proteomic evaluation of acquired enamel pellicle during in vivo formation. PLoS ONE. 2013;8:e67919. doi: 10.1371/journal.pone.0067919
Carvalho TS, Pham K, Rios D, Niemeyer S, Baumann T. Synergistic effect between plant extracts and fluoride to protect against enamel erosion: an in vitro study. PLoS ONE. 2022;17:e0277552. doi: 10.1371/journal.pone.0277552
Naurato N, Wong P, Lu Y, Wroblewski K, Bennick A. Interaction of tannin with human salivary histatins. J Agric Food Chem. 1999;47:2229-34. doi: 10.1021/jf981044i
Esteves-Oliveira M, Witulski N, Hilgers RD, Apel C, Meyer-Lueckel H, De Paula Eduardo C. Combined tin-containing fluoride solution and co2 laser treatment reduces enamel erosion in vitro. Caries Res. 2015;49:565-74. doi: 10.1159/000439316
Silva BM, Rios D, Foratori GA Jr, Magalhães AC, Buzalaf MA, Peres SC, Honorio HM. Effect of fluoride group on dental erosion associated or not with abrasion in human enamel: a systematic review with network metanalysis. Arch Oral Biol. 2022;144. doi: 10.1016/j.archoralbio.2022.105568
Schlueter N, Neutard L, Von Hinckeldey J, Klimek J, Ganss C. Tin and fluoride as anti-erosive agents in enamel and dentine in vitro. Acta Odontol Scand. 2010;68:180-4. doi: 10.3109/00016350903555395
Schlueter N, Klimek J, Ganss C. In vitro efficacy of experimental tin- and fluoride-containing mouth rinses as anti-erosive agents in enamel. J Dent. 2009;37:944-8. doi: 10.1016/j.jdent.2009.07.010
Kensche A, Buschbeck E, Konig B, Koch M, Kirsch J, Hannig C, et al. Effect of fluoride mouthrinses and stannous ions on the erosion protective properties of the in situ pellicle. Sci Rep. 2019;9(1):5336. doi: 10.1038/s41598-019-41736-7
Ahsan H, Ahad A, Siddiqui WA. A review of characterization of tocotrienols from plant oils and foods. J Chem Biol. 2015;8:45-59. doi: 10.1007/s12154-014-0127-8
Kamat JP, Sarma HD, Devasagayam TP, Nesaretnam K, Basiron Y. Tocotrienols from palm oil as effective inhibitors of protein oxidation and lipid peroxidation in rat liver microsomes. Mol Cell Biochem. 1997;170:131-7. doi: 10.1023/a:1006853419214
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Applied Oral Science
This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.