Comparative analysis of hydrophobicity and dentin adhesion ability in Candida albicans strains
DOI:
https://doi.org/10.1590/1678-7757-2024-0154Keywords:
Dentin adhesion, Hydrophobicity, Candida albicansAbstract
Adhesion to dentin is a first step for a successful microbial root canal colonization. Cell hydrophobicity seems to have some influence in the Candida species adhesion to surfaces. Objective: to measure cell surface hydrophobicity and to investigate the adherence ability to human dentin among Candida albicans strains isolated from root canal and lingual dorsum via an in vitro study. Methodology: adhesion was quantified in function of dentin area covered by blastospores and/or hyphae presence detected by epifluorescence microscope. Cell surface hydrophobicity was estimated by assessing the percentage migration of cells from an aqueous phase to a hydrocarbon phase. Contact angles were measured by the sessile drop technique on the dentin surface using a contact angle measurements apparatus. We also examined the correlation between adhesion ability and hydrophobicity.Results: although there was some intra-species variation in cell surface hydrophobicity, most isolates were characterized by moderate hydrophobicity. There was no significant difference in this parameter when the isolation niche was considered. Both root canal and lingual dorsum yeasts were able to adhere to dentin. No association was found between the strains’ site of isolation and adhesion. Moreover, cell surface hydrophobicity and adhesion ability were not correlated. Conclusion: although hydrophobicity can influence Candida albicans virulence in many ways, this study suggests that this parameter by itself was not a good predictor of adhesion to dentin.
Downloads
References
Kakehashi S, Stanley HR, Fitzgeralg RJ. The effects of surgical exposures of dental pulps in germfree and conventional laboratory rats. Oral Surg Oral Med Oral Pathol Oral Radiol. 1965; 20(3):340-9. doi: org/10.1016/0030-4220(65)90166-0
Manoil D, Al-manei K, Belibasakis, GN. Systematic review of the root canal microbiota associated with apical periodontitis: lessons from next generation sequencing. Proteomics Clin Appl. 2020;14(3):1-17. doi: org/10.1002/prca.201900060
Ordinola-Zapata R, Costalonga M, Nixdorf D, Dietz M, Schuweiler D, Lima BP, et al. Taxonomic abundance in primary and secondary rootcanal infections. Int Endod J. 2023;56(2): 278-88. doi.org/10.1111/iej.13864
Siqueira JF, Rôças IN. Present status and future directions: microbiology of endodontic infections. Int Endod J. 2022;55(suppl.3):512-30. doi.org/10.1111/iej.13677
Nobile CJ, Johnson AD. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015;69:71-92. doi: 10.1146/annurev-micro-091014-104330
Rapala-Kozik M, Surowiec M, Juszczak M, Wronowska E, Kulig K, Bednarek A, et al. Living together: the role of Candida albicans in the formation of polymicrobial biofilms in the oral cavity. Yeast. 2023;40(8):1- 15. doi.org/10.1002/yea.3855
Ten Cate JM, Klis FM, Pereira-Cenci T, Crielaard W, De Groot PWJ. Molecular and cellular mechanisms that lead to Candida biofilm formation. J Dent Res. 2009;88(2):105-15. doi: 10.1177/0022034508329273
Baker JL, Marck Welch JL, Kauffman KM, McLean JS, He X. The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol. 2024;22(2):89-104. doi: 10.1038/s41579-023-00963-6
Qiu R, Li W, Lin Y, Yu D, Zhao W. Genotypic diversity and cariogenicity of Candida albicans from children with early childhood caries and caries-free children. BMC Oral Health. 2015;15(1):144-200. doi.org/10.1186/s12903-015-0134-3
Persoon IF, Buijs MJ, Ozok AR, Crielaard W, Kroom BP, Zaura E, et al. The mycobiome of root canal infections is correlated to the bacteriome. Clin Oral Invest. 2017;21(5): 1871-81. doi: 10.1007/s00784-016-1980-3
Miranda TT, Vianna CR, Rodrigues L, Monteiro AS, Rosa CA, Corrêa Jr. A. Diversity and frequency of yeasts from the dorsum of the tongue and necrotic root canals associated with primary apical periodontitis. Int Endod J. 2009;42(9):839-44. doi: 10.1111/j.1365-2591.2009.01601.x
Bartnicka D, Gonzalez-Gonzalez M, Sykut J, Koziel J, Ciaston I, Adamowicz K, et al. Candida albicans shields the periodontal killer Porphyromonas gingivalis from recognition by the host immune system and supports the bacterial infection of gingival tissue. Int J Mol Sci. 2020;21(6):1984-2006. doi: 10.3390/ijms21061984
Pourhajibagher M, Ghorbanzadeh R, Parker S, Chiniforush N, Bahador A. The evaluation of cultivable microbiota profile in patients with secondary endodontic infection before and after photo-activated disinfection. Photodiagnosis Photodyn Ther. 2017;18:198-203. doi: 10.1016/j.pdpdt.2017.02.013
Yoo Y-J, Kim AR, Perinpanayagam H, Han SH, Kum KY. Candida albicans virulence factors and pathogenicity for endodontic infections. Microorganisms. 2020;8(9):1300-18. 10.3390/microorganisms8091300
Danchik C, Casadevall A. Role of cell surface hydrophobicity in the pathogenesis of medically-significant fungi. Front Cell Infect Microbiol. 2021;10(59):4973-80. doi: 10.3389/fcimb.2020.594973
Henriques M, Azeredo J, Oliveira R. The involvement of physico-chemical interactions in the adhesion of Candida albicans and Candida dubliniensis to epithelial cells. Mycoses. 2007;50(5):391-6. doi: 10.1111/j.1439-0507.2007.01387.x
Yoshijima Y, Murakami K, Kayama S, Liu D, Hirota K, Ichikawa T, et al. Effect of substrate surface hydrophobicity on the adherence of yeast and hyphal Candida. Mycoses. 2010;53(3):221-6. doi: 10.1111/j.1439-0507.2009.01694.x
Raut J, Rathod V, Karuppayil SM. Cell surface hydrophobicity and adhesion: a study on fifty clinical isolates of Candida albicans. J. Med Mycol. 2010;51:131-6. doi: 10.3314/jjmm.51.131
Ellepola ANB, Chandy R, Khan ZU. In vitro impact of limited exposure to subtherapeutic concentrations of chlorhexidine gluconate on the adhesion-associated attributes of oral Candida species. Med Princ Pract. 2016;25(4):355-62. doi: 10.1159/000445688
Alshahni RZ, Alshahni MM, Hiraishi N, Makimura K. Effect of silver diamine fluoride on reducing Candida albicans adhesion on dentine. Mycopathologia. 2020;185(4):691-8. doi: 10.1007/s11046-020-00473-6
Janeczko M, Gmur D, Kochanowicz E, Górka K, Skrzypek T. Inhibitory effect of a combination of baicalein and quercetin flavonoids against Candida albicans strains isolated from the female reproductive system. Fungal Biol. 126(6-7):407-420. doi: 10.1016/j.funbio.2022.05.002
Kurtzmann CP, Fell JW. The Yeasts – a taxonomic study. Amsterdam: Elsevier; 1998.
Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett. 1980;9(1):29-33. doi: org/10.1111/j.1574-6968.1980.tb05599.x
Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol. 2021;47(1):91-111. doi: 10.1080/1040841X.2020.1843400
Mattos-Guaraldi AL, Formiga LC, Andrade AF. Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphteriae strains evaluated by different methods. Curr Microbiol. 1999;38(1):37-42. doi: 10.1007/pl00006769
Suchodolski J, Muraszko J, Korba A, Bernat P, Krasowska A. Lipid composition and cell surface hydrophobicity of Candida albicans influence the efficacy of fluconazole-gentamicin treatment. Yeast. 2020;37(1):117-29. doi: 10.1002/yea.3455
Hazen BW, Hazen KC. Dynamic expression of cell surface hydrophobicity during initial yeast cell growth and before germ tube formation of Candida albicans. Infect Immun. 1988;56(9):2521-5. doi: 10.1128/iai.56.9.2521-2525.1988
Souza RD, Mores AU, Cavalca L, Rosa RT, Samaranayake LP, Rosa EA. Cell surface hydrophobicity of Candida albicans isolated from elder patients undergoing denture-related candidosis. Gerodontology. 2009;26(2):157-61. doi: 10.1111/j.1741-2358.2008.00229.x
Muadcheingka T, Tantivitayakul P. Distribution of Candida albicans and non-albicans Candida species in oral candidiasis patients: correlation between cell surface hydrophobicity and biofilm forming activities. Arch Oral Biol. 2015;60(6):894-901. doi: 10.1016/j.archoralbio.2015.03.002
Danchik C, Casadevall A. Role of cell surface hydrophobicity in the pathogenesis of medically-significant fungi. Front Cell Infect Microbiol. 2021;10:1-7. doi: 10.3389/fcimb.2020.594973
Lai WC, Hsu HC, Cheng CW, Wang SH, Li WC, Hsieh PS, et al. Filament negative regulator CDC4 suppresses glycogen phosphorylase encoded GPH1 that impacts the cell wall-associated features in Candida albicans. J Fungi. 2022;8(3):233-50. doi: 10.3390/jof8030233
Tronchin G, Bouchara JP, Robert R, Senet JM. Adherence of Candida albicans germ tubes to plastic: ultrastructural and molecular studies of fibrillar adhesins. Infect Immun. 1988;56(8):1987-93. doi: 10.1128/iai.56.8.1987-1993.1988
Glee PM, Sundstrom P, Hazen KC. Expression of surface hydrophobic proteins by Candida albicans in vivo. Infect Immun. 1995;63(4):1373-81. doi: 10.1128/iai.63.4.1373-1379.1995
Rodrigues AG, Mårdh PA, Pina-Vaz C, Martinez-de-Oliveira J, Fonseca AF. Germ tube formation changes surface hydrophobicity of Candida cells. Infect Dis Obstet Gynecol. 1999;7(5):222-6. doi: 10.1002/(SICI)1098-0997(1999)7:5<222::AID-IDOG3>3.0.CO;2-L
Liber-Kneć A, Łagan S. Surface testing of dental biomaterials-determination of contact angle and surface free energy. Materials. 2021;14(11):2716-33. doi: 10.3390/ma14112716
Henriques M, Azeredo J, Oliveira R. Adhesion of Candida albicans and Candida dubliniensis to acrylic and hydroxyapatite. Colloids Surf B Biointerfaces. 2004;33:235-41. https://doi.org/10.1016/j.colsurfb.2003.10.012
Sterzenbach T, Helbig R, Hannig C, Hannig M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig. 2020;24(12):4237-60. doi: 10.1007/s00784-020-03646-1
Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol. 2014;19(4):112-9. doi: 10.3389/fcimb.2014.00112
Panagoda GJ, Ellepola AN, Samaranayake LP. Adhesion to denture acrylic surfaces and relative cell-surface hydrophobicity of Candida parapsilosis and Candida albicans. APMIS. 1998;106(7):736-42. doi: org/10.1111/j.1699-0463.1998.tb00220.x
Gunaratnam G, Dudek J, Jung P, Becker SL, Jacobs K, Bischoff M, et al. Quantification of the adhesion strength of Candida albicans to tooth enamel. Microorganisms. 2021;9(11):2213-25. doi: 10.3390/microorganisms9112213
Van Thiel IA, Stavrou AA, De Jong A, Theelen B, Davids M, Hakvoort TB, et al. Genetic and phenotypic diversity of fecal Candida albicans strains in irritable bowel syndrome. Sci Rep. 2022;12(1):5391-406. doi: 10.1038/s41598-022-09436-x
Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun. 2014;82:1968-81. doi: 10.1128/IAI.00087-14
Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic films. Caries Res. 2011;45(1):69-86. doi: 10.1159/000324598
Alshanta OA, Albashaireh K, McKloud E, Delaney C, Kean R, McLean W, et al. Candida albicans and Enterococcus faecalis biofilm frenemies: when the relationship sours. Biofilm. 2022;4:100072. doi: 10.1016/j.bioflm.2022.100072
Downloads
Published
Versions
- 2024-10-01 (3)
- 2024-09-11 (2)
- 2024-09-11 (1)
Issue
Section
License
Copyright (c) 2024 Tatiana Teixeira de Miranda, Leonardo Rodrigues, Carlos Augusto Rosa, Ary Côrrea Junior

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.