Titanium micro-nano textured surface with strontium incorporation improves osseointegration: an in vivo and in vitro study
DOI:
https://doi.org/10.1590/1678-7757-2024-0144Keywords:
Osseointegration, Titanium implant, Dental implant, Strontium, Surface modification, Animal modelAbstract
Objectives: This study aimed to investigate the osseointegration of titanium (Ti) implants with micro-nano textured surfaces functionalized with strontium additions (Sr) in a pre-clinical rat tibia model. Methodology: Ti commercially pure (cp-Ti) implants were installed bilaterally in the tibia of 64 Holtzman rats, divided into four experimental groups (n=16/group): (1) Machined surface - control (C); (2) Micro-nano textured surface treatment (MN); (3) Micro-nano textured surface with Sr2+ addition (MNSr); and (4) Micro-nano textured surface with a higher complementary addition of Sr2+ (MNSr+). In total, two experimental euthanasia periods were assessed at 15 and 45 days (n=8/period). The tibia was subjected to micro-computed tomography (μ-CT), histomorphometry with the EXAKT system, removal torque (TR) testing, and gene expression analysis by PCR-Array of 84 osteogenic markers. Gene expression and protein production of bone markers were performed in an in vitro model with MC3T3-E1 cells. The surface characteristics of the implants were evaluated by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and laser scanning confocal microscopy. Results: SEM, confocal, and EDS analyses demonstrated the formation of uniform micro-nano textured surfaces in the MN group and Sr addition in the MNSr and MNSr+ groups. TR test indicated greater osseointegration in the 45-day period for treated surfaces. Histological analysis highlighted the benefits of the treatments, especially in cortical bone, in which an increase in bone-implant contact was found in groups MN (15 days) and MNSr (45 days) compared to the control group. Gene expression analysis of osteogenic activity markers showed modulation of various osteogenesis-related genes. According to the in vitro model, RT-qPCR and ELISA demonstrated that the treatments favored gene expression and production of osteoblastic differentiation markers. Conclusions: Micro-nano textured surface and Sr addition can effectively improve and accelerate implant osseointegration and is, therefore, an attractive approach to modifying titanium implant surfaces with significant potential in clinical practice.
Downloads
References
Medeiros FC, Kudo GA, Leme BG, Saraiva PP, Verri FR, Honório HM, et al. Dental implants in patients with osteoporosis: a systematic review with meta-analysis. Int J Oral Maxillofac Surg. 2018;47(4):480-91. doi: 10.1016/j.ijom.2017.05.021
Barik A, Chakravorty N. Targeted drug delivery from titanium implants: a review of challenges and approaches. Adv Exp Med Biol. 2020;1251:1-17. doi: 10.1007/5584_2019_447.
Kurup A, Dhatrak P, Khasnis N. Surface modification techniques of titanium and titanium alloys for biomedical dental applications: a review. MaterToday Proc. 2021;39:84-90. doi: 10.1016/j.matpr.2020.06.163
Thakral G, Thakral R, Sharma N, Seth J, Vashisht P. Nanosurface the future of implants. J Clin Diagn Res. 2014;8(5):ZE07-10. doi: 10.7860/JCDR/2014/8764.4355
Oliveira DP, Palmieri A, Carinci F, Bolfarini C. Gene expression of human osteoblasts cells on chemically treated surfaces of Ti-6Al-4V-ELI. Mater Sci Eng C Mater Biol Appl. 2015;51:248-55. doi: 10.1016/j.msec.2015.03.011
Offermanns V, Andersen OZ, Riede G, Sillassen M, Jeppesen CS, Almtoft KP, et al. Effect of strontium surface-functionalized implants on early and late osseointegration: a histological, spectrometric and tomographic evaluation. Acta Biomater. 2018;69:385-94. doi: 10.1016/j.actbio.2018.01.049
Lin G, Zhou C, Lin M, Xu A, He F. Strontium-incorporated titanium implant surface treated by hydrothermal reactions promotes early bone osseointegration in osteoporotic rabbits. Clin Oral Implants Res. 2019;30(8):777-90. doi: 10.1111/clr.13460
Xu Y, Zhang L, Xu J, Li J, Wang H, He F. Strontium-incorporated titanium implant surfaces treated by hydrothermal treatment enhance rapid osseointegration in diabetes: a preclinical vivo experimental study. Clin Oral Implants Res. 2021;32(11):1366-83. doi: 10.1111/clr.13837
Marx D, Rahimnejad Yazdi A, Papini M, Towler M. A review of the ratest insights into the mechanism of action of strontium in bone. Bone Rep. 2020;12:100273. doi: 10.1016/j.bonr.2020.100273
Vestermark MT. Strontium in the bone-implant interface. Dan Med Bull. 2011;58(5):B4286.
Querido W, Rossi AL, Farina M. The effects of strontium on bone mineral: a review on current knowledge and microanalytical approaches. Micron. 2016;80:122-34. doi: 10.1016/j.micron.2015.10.006
López-Valverde N, Muriel-Fernández J, Gómez de Diego R, Ramírez JM, López-Valverde A. Effect of strontium-coated titanium implants on osseointegration in animal models: a literature systematic review. Int J Oral Maxillofac Implants. 2019;34(6):1389-96. doi: 10.11607/jomi.7827
Lu W, Zhou Y, Yang H, Cheng Z, He F. Efficacy of strontium supplementation on implant osseointegration under osteoporotic conditions: a systematic review. J Prosthet Dent. 2022;128(3):341-9. doi: 10.1016/j.prosdent.2020.12.031
Shi J, Li Y, Gu Y, Qiao S, Zhang X, Lai H. Effect of titanium implants with strontium incorporation on bone apposition in animal models: a systematic review and meta-analysis. Sci Rep. 2017;7(1):15563. doi: 10.1038/s41598-017-15488-1
Pinotti FE, Oliveira GJ, Aroni MA, Marcantonio RA, Marcantonio E Jr. Analysis of osseointegration of implants with hydrophilic surfaces in grafted areas: a preclinical study. Clin Oral Implants Res. 2018;29(10):963-72. doi: 10.1111/clr.13361
Liu X, Huang H, Zhang J, Sun T, Zhang W, Li Z. Recent advance of strontium functionalized in biomaterials for bone regeneration. Bioengineering (Basel). 2023;10(4):414. doi: 10.3390/bioengineering10040414
You J, Zhang Y, Zhou Y. Strontium functionalized in biomaterials for bone tissue engineering: a prominent role in osteo immunomodulation. Front Bioeng Biotechnol. 2022;10:928799. doi: 10.3389/fbioe.2022.928799
Park JW, Kim HK, Kim YJ, Jang JH, Song H, Hanawa T. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium. Acta Biomater. 2010;6(7):2843-51. doi: 10.1016/j.actbio.2010.01.017
Tao ZS, Zhou WS, He XW, Liu W, Bai BL, Zhou Q, et al. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater Sci Eng C Mater Biol Appl. 2016;62:226-32. doi: 10.1016/j.msec.2016.01.034
Chen X, Chen Y, Shen J, Xu J, Zhu L, Gu X, et al. Positive modulation of osteogenesis on a titanium oxide surface incorporating strontiumoxide: an in vitro and in vivo study. Mater Sci Eng C Mater Biol Appl. 2019;99:710-8. doi: 10.1016/j.msec.2019.02.013
Favero LG, Pisoni A, Paganelli C. Removal torque of osseointegrated mini-implants: an in vivo evaluation. Eur J Orthod. 2007;29(5):443-8. doi: 10.1093/ejo/cjm062
von Wilmowsky C, Moest T, Nkenke E, Stelzle F, Schlegel KA. Implants in bone: part II. Research on implant osseointegration: material testing, mechanical testing, imaging and histoanalytical methods. Oral Maxillofac Surg. 2014;18(4):355-72. doi: 10.1007/s10006-013-0397-2
Hong JM, Kim UG, Yeo IS. Comparison of three-dimensional digital analyses and two-dimensional histomorphometric analyses of the bone-implant interface. PLoS ONE. 2022;17(10):e0276269. doi: 10.1371/journal.pone.0276269
Bernhardt R, Kuhlisch E, Schulz MC, Eckelt U, Stadlinger B. Comparison of bone-implant contact and bone-implant volume between 2D-histological sections and 3D-SRμCT slices. Eur Cell Mater. 2012;23:237-47 doi: 10.22203/ecm.v023a18
Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N. Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci. 2007;53(1-2):25-35.
Sapna G, Gokul S, Bagri-Manjrekar K. Matrix metalloproteinasesand periodontal diseases. Oral Dis. 2014;20(6):538-50. doi: 10.1111/odi.12159
Sorsa T, Gursoy UK, Nwhator S, Hernandez M, Tervahartiala T, Leppilahti J, et al. Analysis of matrix metalloproteinases, especially MMP-8, in gingival crevicular fluid, mouthrinse and saliva for monitoring periodontal diseases. Periodontology 2000. 2016;70(1):142-63.
Morais EF, Pinheiro JC, Leite RB, Santos PP, Barboza CA, Freitas RA. Matrix metalloproteinase-8 levels in periodontal disease patients: A systematic review. J Periodontal Res. 2018;53(2):156-63. doi: 10.1111/jre.12495.
Hakki SS, Bozkurt SB, Hakki EE, Nielsen FH. Boron as boric acid induces mRNA expression of the differentiation factor tuftelin in pre-osteoblastic MC3T3-E1 cells. Biol Trace Elem Res. 2021;199(4):1534-43. doi: 10.1007/s12011-020-02257-x
Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev. 1993;14(4):424-42. doi: 10.1210/edrv-14-4-424
Zollinger AJ, Smith ML. Fibronectin, the extracellular glue. Matrix Biol. 2017;60-61:27-37. doi: 10.1016/j.matbio.2016.07.011
Zhang J, Li L. BMP signaling and stem cell regulation. Dev Biol. 2005;284(1):1-11. doi: 10.1016/j.ydbio.2005.05.009
Xu AT, Xie YW, Xu JG, Li J, Wang H, He FM. Effects of strontium-incorporated micro/nano rough titanium surfaces on osseointegration via modulating polarization of macrophages. Colloids Surf B Biointerfaces. 2021;207:111992. doi: 10.1016/j.colsurfb.2021.111992
Geng T, Wang Y, Lin K, Zhang C, Wang J, Liu Y, et al. Strontium-doping promotes bone bonding of titanium implants in osteoporotic microenvironment. Front Bioeng Biotechnol. 2022;10:1011482. doi: 10.3389/fbioe.2022.1011482
Bailey S, Karsenty G, Gundberg C, Vashishth D. Osteocalcin and osteopontin influence bone morphology and mechanical properties. Ann N Y Acad Sci. 2017;1409(1):79-84. doi: 10.1111/nyas.13470
Nagasaki K, Chavez MB, Nagasaki A, Taylor JM, Tan MH, Ma M, et al. The bone sialoprotein rgd domain modulates and maintains periodontal development. J Dent Res. 2022;101(10):1238-47. doi: 10.1177/00220345221100794
Di Medio L, Brandi ML. Advances in bone turnover markers. Adv Clin Chem. 2021;105:101-40. doi: 10.1016/bs.acc.2021.06.001
Shimizu Y, Fujibayashi S, Yamaguchi S, Mori S, Kitagaki H, Shimizu T, et al. Bioactive effects of strontium loading on micro/nano surface Ti6Al4V components fabricated by selective laser melting. Mater Sci Eng C Mater Biol Appl. 2020;109:110519. doi: 10.1016/j.msec.2019.110519
Souza JC, Sordi MB, Kanazawa M, Ravindran S, Henriques B, Silva FS, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019;94:112-31. doi: 10.1016/j.actbio.2019.05.045
Matos FG, Santana LC, Cominotte MA, Silva FS, Vaz LG, Oliveira DP, et al. Strontium-loaded titanium-15 molybdenum surface improves physicochemical and biological properties in vitro. Biomed Phys Eng Express. 2022;8(4). doi: 10.1088/2057-1976/ac71cf

Downloads
Published
Versions
- 2024-10-01 (2)
- 2024-09-16 (1)
Issue
Section
License
Copyright (c) 2024 Pio Moerbeck da Costa Filho, Camila Chiérici Marcantonio, Diego Pedreira de Oliveira, Maria Eduarda Scordamaia Lopes, Julio Cesar Sanchez Puetate, Luan Viana Faria, Letícia de Freitas Carvalho, Rafael Scaf de Molon, Idelmo Rangel Garcia Junior, Andressa Vilas Bôas Nogueira, James Deschner, Joni Augusto Cirelli

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.