Physicochemical properties of flowable composites using isobornyl methacrylate as diluent monomer

Authors

DOI:

https://doi.org/10.1590/1678-7757-2024-0172

Keywords:

Dental materials, Methacrylate, Dental resin, Monomers

Abstract

Objective: This study sought to evaluate the effect of isobornyl methacrylate (IBOMA) as a diluent monomer on the physicochemical properties of experimental flowable resin composites. Methodology: the organic resin matrix of a modal flowable resin composite was formulated with 50 wt.% of bisphenol-A-glycidyl methacrylate (Bis-GMA) and 50 wt.% of a diluent monomer, in which IBOMA was used as a combining or substituent diluent monomer to triethylene glycol dimethacrylate (TEGDMA). The resin matrices were filled with 55 wt.% particles, of which 10 wt.% was 0.05-μm fumed silica, and 45 wt.% was 0.7-μm BaBSiO2 glass. Polymerization shrinkage stress (PSS; n=10), degree of conversion (DC; n=3), maximum rate of polymerization (Rpmax; n=3), film thickness (FT; n=10), sorption (Wsp; n=10), solubility (Wsl; n=10), flexural strength (FS; n=10), flexural modulus (FM; n=10), Knoop microhardness (KH; n=10), and microhardness reduction after chemical softening (HR; n=10) were evaluated. Data were analyzed using one-way ANOVA, followed by Tukey’s test (α=0.05; β=0.2). Results: the results showed that the substitution or addition of IBOMA reduced FT (p=0.001), PSS (p=0.013), Rpmax (p=0.001), DC (p=0.001), FM (p=0.006) Wsp (p=0.032), and Wsl (p=0.021). However, when used as a complete substituent, IBOMA demonstrated significantly lower FS (p=0.017) and KH (p=0.008), while TEGDMA demonstrated significantly lower HR (p=0.022). Conclusion: the flowable composite containing IBOMA combined with TEGDMA showed no effect in KH and FS and effectively reduced the PSS, RP, FT, Wsp, and Wsl. However, it showed a reduction in DC, FS, and an increase in HR.

Downloads

References

Fugolin AP, Pfeifer CS. New resins for dental composites. J Dent Res. 2017;96(10):1085-91. doi: 10.1177/0022034517720658

Makhdoom SN, Campbell KM, Carvalho RM, Manso AP. Effects of curing modes on depth of cure and microtensile bond strength of bulk fill composites to dentin. J Appl Oral Sci. 2020;28:e20190753. doi: 10.1590/1678-7757-2019-0753

Pereira RD, Valdívia AD, Bicalho AA, Franco SD, Tantbirojn D, Versluis A, et al. Effect of photoactivation timing on the mechanical properties of resin cements and bond strength of fiberglass post to root dentin. Oper Dent. 2015;40(5):E206-21. doi: 10.2341/14-115-L

Soares CJ, Bicalho AA, Verissimo C, Soares P, Tantbirojn D, Versluis A. Delayed photo-activation effects on mechanical properties of dual cured resin cements and finite element analysis of shrinkage stresses in teeth restored with ceramic inlays. Oper Dent. 2016t;41(5):491-500. doi: 10.2341/15-090-L

Batista JM, Sinhoreti MA, Fraga MA, Silva MV, Correr AB, Roulet JF, et al. Effect of preheating on mechanical properties of a resin-based composite containing elastomeric urethane monomer. J Mech Behav Biomed Mater. 2023 May;141:105758. doi: 10.1016/j.jmbbm.2023.105758

Khan AA, Al-Khureif AA, Saadaldin SA, Mohamed BA, Musaibah ASO, Divakar DD, et al. Graphene oxide-based experimental silane primers enhance shear bond strength between resin composite and zirconia. Eur J Oral Sci. 2019;127(6):570-6. doi: 10.1111/eos.12665

Martins AR, Machado-Santos L, Grassia RC Jr, Vitti RP, Sinhoreti MA, Brandt WC. Physical and mechanical properties of resins blends containing a monomethacrylate with low-polymerization shrinkage. Eur J Dent. 2021;15(1):96-100. doi: 10.1055/s-0040-1716985

Rocha MG, Oliveira DC, Menezes LR, Roulet JF, Sinhoreti MA, Correr AB. The use of an elastomeric methacrylate monomer (Exothane 24) to reduce the polymerization shrinkage stress and improve the two-body wear resistance of bulk fill composites. Dent Mater. 2022;38(2):e43-e57. doi: 10.1016/j.dental.2021.12.017

Sinhoreti MA, Tomaselli LO, Rocha MG, Oliveira D, Roulet JF, Geraldeli S. Effect of elastomeric urethane monomer on physicochemical properties and shrinkage stress of resin composites. Braz Dent J. 2023;34(4):135-42. doi: 10.1590/0103-6440202305475

Fugolin AP, Paula AB, Dobson A, Huynh V, Consani R, Ferracane JL, et al. Alternative monomer for BisGMA-free resin composites formulations. Dent Mater. 2020;36(7):884-92. doi: 10.1016/j.dental.2020.04.009

Barszczewska-Rybarek IM, Chrószcz MW, Chladek G. Novel urethane-dimethacrylate monomers and compositions for use as matrices in dental restorative materials. Int J Mol Sci. 2020;21(7):2644. doi: 10.3390/ijms21072644

Palagummi SV, Hong T, Wang Z, Moon CK, Chiang MY. Resin viscosity determines the condition for a valid exposure reciprocity law in dental composites. Dent Mater. 2020;36(2):310-9. doi: 10.1016/j.dental.2019.12.003

Baroudi K, Mahmoud S. Improving composite resin performance through decreasing its viscosity by different methods. Open Dent J. 2015;9:235-42. doi: 10.2174/1874210601509010235

Habib E, Wang R, Zhu XX. Correlation of resin viscosity and monomer conversion to filler particle size in dental composites. Dent Mater. 2018;34(10):1501-08. doi: 10.1016/j.dental.2018.06.008

Altintas SH, Usumez A. Evaluation of TEGDMA leaching from four resin cements by HPLC. Eur J Dent. 2012;6(3):255-62.

Favarão J, Oliveira DC, Rocha MG, Zanini MM, Abuna GF, Mendonça MJ, et al. Solvent degradation and polymerization shrinkage reduction of resin composites using isobornyl methacrylate. Braz Dent J. 2019;30(3):272-8. doi: 10.1590/0103-6440201802525

He J, Liu F, Luo Y, Jia D. Properties 2,2-Bis[p-(2'-hydroxy-3'- methacryloxy propoxy) phenyl]bornyl] propane/Isobornyl (Meth) acrylate Copolymers. J Appl Polym Sci. 2012;5:1527-31. doi: 10.1002/app.36629

Moraes RR, Garcia JW, Barros MD, Lewis SH, Pfeifer CS, Liu J, et al. Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials. Dent Mater. 2011;27(6):509-19. doi: 10.1016/j.dental.2011.01.006

Liu J, Howard GD, Lewis SH, Barros MD, Stansbury JW. A study of shrinkage stress reduction and mechanical properties of nanogel-modified resin systems. Eur Polym J. 2012;48(11):1819-28. doi: 10.1016/j.eurpolymj.2012.08.009

Ferracane JL, Hilton TJ, Stansbury JW, Watts DC, Silikas N, Ilie N, et al. Academy of Dental Materials guidance-resin composites: Part II-technique sensitivity (handling, polymerization, dimensional changes). Dent Mater. 2017;33(11):1171-91. doi: 10.1016/j.dental.2017.08.188

Lara L, Rocha MG, Menezes LR, Correr AB, Sinhoreti MA, Oliveira D. Effect of combining photoinitiators on cure efficiency of dental resin-based composites. J Appl Oral Sci. 2021;23:29:e20200467. doi: 10.1590/1678-7757-2020-0467

Wang Z, Chiang MY. Correlation between polymerization shrinkage stress and C-factor depends upon cavity compliance. Dent Mater. 2016;32(3):343-52. doi: 10.1016/j.dental.2015.11.003

Rodrigues FP, Lima RG, Muench A, Watts DC, Ballester RY. A method for calculating the compliance of bonded-interfaces under shrinkage: validation for Class I cavities. Dent Mater. 2014;30(8):936-44. doi: 10.1016/j.dental.2014.05.032

Lee SH, Chang J, Ferracane J, Lee IB. Influence of instrument compliance and specimen thickness on the polymerization shrinkage stress measurement of light-cured composites. Dent Mater. 2007;23(9):1093-100. doi: 10.1016/j.dental.2006.10.003

International Organization for Standardization. ISO 4049:2019. Dentistry - polymer-based filling, restorative and luting materials. 4th ed. Geneva: International Organization for Standardization; 2019.

Daronch M, Rueggeberg FA, De Goes MF, Giudici R. Polymerization kinetics of pre-heated composite. J Dent Res. 2006;85(1):38-43. doi: 10.1177/154405910608500106

Finer Y, Santerre JP. The influence of resin chemistry on a dental composite's biodegradation. J Biomed Mater Res A. 2004;69(2):233-46. doi: 10.1002/jbm.a.30000

Srivastava R, Liu J, He C, Sun Y. BisGMA analogues as monomers and diluents for dental restorative composite materials. Mater Sci Eng C Mater Biol Appl. 2018;88:25-31. doi: 10.1016/j.msec.2018.01.011

Sampaio CS, Barbosa JM, Cáceres E, Rigo LC, Coelho PG, Bonfante EA, et al. Volumetric shrinkage and film thickness of cementation materials for veneers: an in vitro 3D microcomputed tomography analysis. J Prosthet Dent. 2017;117(6):784-91. doi: 10.1016/j.prosdent.2016.08.029

Shortall AC, Palin WM, Burtscher P. Refractive index mismatch and monomer reactivity influence composite curing depth. J Dent Res. 2008;87(1):84-8. doi: 10.1177/154405910808700115

Aldhafyan M, Silikas N, Watts DC. Influence of curing modes on monomer elution, sorption and solubility of dual-cure resin-cements. Dent Mater. 2022;38(6):978-88. doi: 10.1016/j.dental.2022.03.004

Cao W, Zhang Y, Wang X, Li Q, Xiao Y, Li P, et al. Novel resin-based dental material with anti-biofilm activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond. J Mater Sci Mater Med. 2018;29(11):162. doi: 10.1007/s10856-018-6172-z

Prakki A, Tallury P, Mondelli RF, Kalachandra S. Influence of additives on the properties of Bis-GMA/Bis-GMA analog comonomers and corresponding copolymers. Dent Mater. 2007;23(10):1199-204. doi: 10.1016/j.dental.2006.10.007

Gonçalves F, Pfeifer CS, Ferracane JL, Braga RR. Contraction stress determinants in dimethacrylate composites. J Dent Res. 2008;87(4):367-71. doi: 10.1177/154405910808700404

Downloads

Published

2024-09-27 — Updated on 2024-10-01

Versions

Issue

Section

Original Articles

How to Cite

Pereira, R. P., Oliveira, D. de, Rocha, M. G., Correr-Sobrinho, L., Roulet, J.-F., & Sinhoreti, M. A. C. (2024). Physicochemical properties of flowable composites using isobornyl methacrylate as diluent monomer. Journal of Applied Oral Science, 32, e20240172. https://doi.org/10.1590/1678-7757-2024-0172 (Original work published 2024)