The effect of injectable platelet-rich fibrin and platelet-rich fibrin in regenerative endodontics
a comparative in vitro study
DOI:
https://doi.org/10.1590/1678-7757-2023-0449Keywords:
Platelet-rich fibrin, Angiogenesis, Mineralization, Regenerative endodonticsAbstract
To explore the feasibility of injectable platelet-rich fibrin (i-PRF) in regenerative endodontics by comparing the effect of i-PRF and platelet-rich fibrin (PRF) on the biological behavior and angiogenesis of human stem cells from the apical papilla (SCAPs). Methodology: i-PRF and PRF were obtained from venous blood by two different centrifugation methods, followed by hematoxylin-eosin (HE) staining and scanning electron microscopy (SEM). Enzyme-linked immunosorbent assay (ELISA) was conducted to quantify the growth factors. SCAPs were cultured with different concentrations of i-PRF extract (i-PRFe) and PRF extract (PRFe), and the optimal concentrations were selected using the Cell Counting Kit-8 (CCK-8) assay. The cell proliferation and migration potentials of SCAPs were then observed using the CCK-8 and Transwell assays. Mineralization ability was detected by alizarin red staining (ARS), and angiogenesis ability was detected by tube formation assay. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the expression of genes related to mineralization and angiogenesis. The data were subjected to statistical analysis. Results: i-PRF and PRF showed a similar three-dimensional fibrin structure, while i-PRF released a higher concentration of growth factors than PRF ( P <.05). 1/4× i-PRFe and 1/4× PRFe were selected as the optimal concentrations. The cell proliferation rate of the i-PRFe group was higher than that of the PRFe group ( P <.05), while no statistical difference was observed between them in terms of cell mitigation ( P >.05). More importantly, our results showed that i-PRFe had a stronger effect on SCAPs than PRFe in facilitating mineralization and angiogenesis, with the consistent result of RT-qPCR ( P <.05). Conclusion: This study revealed that i-PRF released a higher concentration of growth factors and was superior to PRF in promoting proliferation, mineralization and angiogenesis of SCAPs, which indicates that i-PRF could be a promising biological scaffold for application in pulp regeneration.
Downloads
References
- Sui B, Chen C, Kou X, Li B, Xuan K, Shi S, et al. Pulp stem cell-mediated functional pulp regeneration. J Dent Res. 2019;98(1):27-35. doi: 10.1177/0022034518808754
» https://doi.org/10.1177/0022034518808754
- Iwaya SI, Ikawa M, Kubota M. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dent Traumatol. 2001;17(4):185-7. doi: 10.1034/j.1600-9657.2001.017004185.x
» https://doi.org/10.1034/j.1600-9657.2001.017004185.x
- Eramo S, Natali A, Pinna R, Milia E. Dental pulp regeneration via cell homing. Int Endod J. 2018;51(4):405-19. doi: 10.1111/iej.12868
» https://doi.org/10.1111/iej.12868
- Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e37-44. doi: 10.1016/j.tripleo.2005.07.008
» https://doi.org/10.1016/j.tripleo.2005.07.008
-Hong S, Chen W, Jiang B. A comparative evaluation of concentrated growth factor and platelet-rich fibrin on the proliferation, migration, and differentiation of human stem cells of the apical papilla. J Endod. 2018;44(6):977-83. 10.1016/j.joen.2018.03.006
- Bi J, Liu Y, Liu XM, Lei S, Chen X. Platelet-rich fibrin improves the osteo-/odontogenic differentiation of stem cells from apical papilla via the extracellular signal-regulated protein kinase signaling pathway. J Endod. 2020;46(5):648-54. doi: 10.1016/j.joen.2020.02.004
» https://doi.org/10.1016/j.joen.2020.02.004
- Mudalal M, Wang Z, Mustafa S, Liu Y, Wang Y, Yu J, et al. Effect of Leukocyte-Platelet Rich Fibrin (L-PRF) on tissue regeneration and proliferation of human gingival fibroblast cells cultured using a modified method. Tissue Eng Regen Med. 2021;18(5):895-904. doi: 10.1007/s13770-021-00360-1
» https://doi.org/10.1007/s13770-021-00360-1
- Goel A, Windsor LJ, Gregory RL, Blanchard SB, Hamada Y. Effects of platelet-rich fibrin on human gingival and periodontal ligament fibroblast proliferation from chronic periodontitis versus periodontally healthy subjects. Clin Exp Dent Res. 2021;7(4):436-42. doi: 10.1002/cre2.370
» https://doi.org/10.1002/cre2.370
- Yoshpe M, Kaufman AY, Lin S, Ashkenazi M. Regenerative endodontics: a promising tool to promote periapical healing and root maturation of necrotic immature permanent molars with apical periodontitis using platelet-rich fibrin (PRF). Eur Arch Paediatr Dent. 2021;22(3):527-34. doi: 10.1007/s40368-020-00572-4
» https://doi.org/10.1007/s40368-020-00572-4
- Lv H, Chen Y, Cai Z, Lei L, Zhang M, Zhou R, et al. The efficacy of platelet-rich fibrin as a scaffold in regenerative endodontic treatment: a retrospective controlled cohort study. BMC Oral Health. 2018;18(1):139. doi: 10.1186/s12903-018-0598-z
- Pinto N, Harnish A, Cabrera C, Andrade C, Druttman T, Brizuela C. An innovative regenerative endodontic procedure using leukocyte and platelet-rich fibrin associated with apical surgery: a case report. J Endod. 2017;43(11):1828-34. doi: 10.1016/j.joen.2017.07.002
» https://doi.org/10.1016/j.joen.2017.07.002
- Bakhtiar H, Esmaeili S, Fakhr Tabatabayi S, Ellini MR, Nekoofar MH, et al. Second-generation Platelet Concentrate (Platelet-rich Fibrin) as a scaffold in regenerative endodontics: a case series. J Endod. 2017;43(3):401-8. doi: 10.1016/j.joen.2016.10.016
» https://doi.org/10.1016/j.joen.2016.10.016
- Kritika S, Sujatha V, Srinivasan N, Renganathan SK, Mahalaxmi S. Prospective cohort study of regenerative potential of non vital immature permanent maxillary central incisors using platelet rich fibrin scaffold. Sci Rep. 2021;11(1):13679. doi: 10.1038/s41598-021-93236-2
» https://doi.org/10.1038/s41598-021-93236-2
- Wang QL, Yang PP, Ge LH, Liu H. Preliminary evaluation of platelet rich fibrin-mediated tissue repair in immature canine pulpless teeth. Chin J Dent Res. 2016;19(1):49-54. doi: 10.3290/j.cjdr.a35697
» https://doi.org/10.3290/j.cjdr.a35697
- Aydinyurt HS, Sancak T, Taskin C, Basbugan Y, Akinci L. Effects of injectable platelet-rich fibrin in experimental periodontitis in rats. Odontology. 2021;109(2):422-32. doi: 10.1007/s10266-020-00557-1
» https://doi.org/10.1007/s10266-020-00557-1
- Mourão CF, Valiense H, Melo ER, Mourão NB, Maia MD. Obtention of injectable platelets rich-fibrin (i-PRF) and its polymerization with bone graft: technical note. Rev Col Bras Cir. 2015;42(6):421-3. doi: 10.1590/0100-69912015006013
» https://doi.org/10.1590/0100-69912015006013
- Choukroun J, Ghanaati S. Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients' own inflammatory cells, platelets and growth factors: the first introduction to the low speed centrifugation concept. Eur J Trauma Emerg Surg. 2018;44(1):87-95. doi: 10.1007/s00068-017-0767-9
» https://doi.org/10.1007/s00068-017-0767-9
- Litvinov RI, Weisel JW. What is the biological and clinical relevance of fibrin? Semin Thromb Hemost. 2016;42(4):333-43. doi: 10.1055/s-0036-1571342
» https://doi.org/10.1055/s-0036-1571342
- Jasmine S, Thangavelu A, Janarthanan K, Krishnamoorthy R, Alshatwi AA. Antimicrobial and antibiofilm potential of injectable platelet rich fibrin-a second-generation platelet concentrate-against biofilm producing oral staphylococcus isolates. Saudi J Biol Sci. 2020;27(1):41-6. doi: 10.1016/j.sjbs.2019.04.012
» https://doi.org/10.1016/j.sjbs.2019.04.012
- Wang X, Zhang Y, Choukroun J, Ghanaati S, Miron RJ. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets. 2018;29(1):48-55. doi: 10.1080/09537104.2017.1293807
» https://doi.org/10.1080/09537104.2017.1293807
- Kyyak S, Blatt S, Pabst A, Thiem D, Al-Nawas B, Kämmerer PW. Combination of an allogenic and a xenogenic bone substitute material with injectable platelet-rich fibrin - a comparative in vitro study. J Biomater Appl. 2020;35(1):83-96. doi: 10.1177/0885328220914407
» https://doi.org/10.1177/0885328220914407
- Miron RJ, Fujioka-Kobayashi M, Hernandez M, Kandalam U, Zhang Y, Ghanaati S, et al. Injectable platelet rich fibrin (i-PRF): opportunities in regenerative dentistry? Clin Oral Investig. 2017;21(8):2619-27. doi: 10.1007/s00784-017-2063-9
» https://doi.org/10.1007/s00784-017-2063-9
- Xu F, Qiao L, Zhao Y, Chen W, Hong S, Pan J, et al. The potential application of concentrated growth factor in pulp regeneration: an in vitro and in vivo study. Stem Cell Res Ther. 2019;10(1):134. doi: 10.1186/s13287-019-1247-4
» https://doi.org/10.1186/s13287-019-1247-4
- Hong S, Li L, Cai W, Jiang B. The potential application of concentrated growth factor in regenerative endodontics. Int Endod J. 2019;52(5):646-55. doi: 10.1111/iej.13045
» https://doi.org/10.1111/iej.13045
- Pan JC, Guan Y, Jiang B. Effect of injectable platelet rich fibrin on human stem cells from apical papilla. Stomatology. 2021;41(7):594-8, 613.
- Lee SI, Kim GT, Kim HJ, Park SH, Kim EC. NOD2 mediates odontoblast differentiation and rankl expression. J Dent Res. 2014;93(7):678-84. doi: 10.1177/0022034514535214
» https://doi.org/10.1177/0022034514535214
- Xie J, Zhao YM, Rao NQ, Wang XT, Fang TJ, Li XX, et al. [Comparative study of differentiation potential of mesenchymal stem cells derived from orofacial system into vascular endothelial cells]. Beijing Da Xue Xue Bao Yi Xue Ban. 2019;51(5):900-6. Chinese. doi: 10.19723/j.issn.1671-167X.2019.05.018
» https://doi.org/10.19723/j.issn.1671-167X.2019.05.018
- Liang C, Liang Q, Xu X, Liu X, Gao X, Li M, et al. Bone morphogenetic protein 7 mediates stem cells migration and angiogenesis: therapeutic potential for endogenous pulp regeneration. Int J Oral Sci. 2022;14(1):38. doi: 10.1038/s41368-022-00188-y
» https://doi.org/10.1038/s41368-022-00188-y
- Liu H, Lu J, Jiang Q, Haapasalo M, Qian J, Tay FR, et al. Biomaterial scaffolds for clinical procedures in endodontic regeneration. Bioact Mater. 2021;12:257-77. doi: 10.1016/j.bioactmat.2021.10.008
» https://doi.org/10.1016/j.bioactmat.2021.10.008
- Farshidfar N, Jafarpour D, Firoozi P, Sahmeddini S, Hamedani S, Souza RF, et al. The application of injectable platelet-rich fibrin in regenerative dentistry: a systematic scoping review of in vitro and in vivo studies. Jpn Dent Sci Rev. 2022;58:89-123. doi: 10.1016/j.jdsr.2022.02.00
» https://doi.org/10.1016/j.jdsr.2022.02.00
- Varela HA, Souza JC, Nascimento RM, Araújo RF Jr, Vasconcelos RC, Cavalcante RS, et al. Injectable platelet rich fibrin: cell content, morphological, and protein characterization. Clin Oral Investig. 2019;23(3):1309-18. doi: 10.1007/s00784-018-2555-2
» https://doi.org/10.1007/s00784-018-2555-2
- Choukroun J, Ghanaati S. Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients' own inflammatory cells, platelets and growth factors: the first introduction to the low speed centrifugation concept. Eur J Trauma Emerg Surg. 2018;44(1):87-95. doi: 10.1007/s00068-017-0767-9
» https://doi.org/10.1007/s00068-017-0767-9
- Egle K, Salma I, Dubnika A. From blood to regenerative tissue: how autologous platelet-rich fibrin can be combined with other materials to ensure controlled drug and growth factor release. Int J Mol Sci. 2021;22(21):11553. doi: 10.3390/ijms222111553
» https://doi.org/10.3390/ijms222111553
- Kubesch A, Barbeck M, Al-Maawi S, Orlowska A, Booms PF, et al. A low-speed centrifugation concept leads to cell accumulation and vascularization of solid platelet-rich fibrin: an experimental study in vivo. Platelets. 2019;30(3):329-40. doi: 10.1080/09537104.2018.1445835
» https://doi.org/10.1080/09537104.2018.1445835
- Schmalz G, Widbiller M, Galler KM. Signaling molecules and pulp regeneration. J Endod. 2017;43(9S):S7-S11. doi: 10.1016/j.joen.2017.06.003
» https://doi.org/10.1016/j.joen.2017.06.003
- Lovelace TW, Henry MA, Hargreaves KM, Diogenes A. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. J Endod. 2011;37(2):133-8. doi: 10.1016/j.joen.2010.10.009
» https://doi.org/10.1016/j.joen.2010.10.009
-Fernández-Medina T, C Vaquette, S Ivanovski. Systematic comparison of the effect of four clinical-grade platelet rich hemoderivatives on osteoblast behaviour. Int J Mol Sci. 2019;20(24):10.3390/ijms20246243
» https://doi.org/10.3390/ijms20246243
- Lee YS, Park YH, Seo YM, Lee HK, Park JC. Tubular dentin formation by TGF-ß/BMP signaling in dental epithelial cells. Oral Dis. 2023;29(4):1644-56. doi: 10.1111/odi.14170
» https://doi.org/10.1111/odi.14170
- Chai J, Jin R, Yuan G, Kanter V, Miron RJ, Zhang Y. Effect of liquid platelet-rich fibrin and platelet-rich plasma on the regenerative potential of dental pulp cells cultured under inflammatory conditions: a comparative analysis. J Endod. 2019;45(8):1000-8. doi: 10.1016/j.joen.2019.04.002
» https://doi.org/10.1016/j.joen.2019.04.002
- Hilkens P, Bronckaers A, Ratajczak J, Gervois P, Wolfs E, Lambrichts I. The angiogenic potential of DPSCs and SCAPs in an in vivo model of dental pulp regeneration. Stem Cells Int. 2017;2017:2582080. doi: 10.1155/2017/2582080
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Jing Pan, Linjuan Luo, Zhen Jiang, Haiyan Huang, Beizhan Jiang
This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.