The simultaneous miR-155-5p overexpression and miR-223-3p inhibition can activate pEMT in oral squamous cell carcinoma
DOI:
https://doi.org/10.1590/Keywords:
miR-223-3p, miR-155-5p, Migration, Oral squamous cell carcinoma, EMTAbstract
Objective: This study aims to explore the effects of miR-223-3p and miR-155-5p on epithelial-mesenchymal transition (EMT) and migration in oral squamous cell carcinoma (OSCC). Methodology: EMT markers (E-cadherin, N-cadherin, P120 catenin (P120ctn), and vimentin) expression was determined by qRT-PCR and western blot analysis in SCC-9 cells which overexpress miR-155-5p and/or not express miR-223-3p. Scratch assays and Transwell migration assays were conducted to evaluate cell migration ability. Results: When miR-223-3p was inhibited in OSCC cells, P120ctn and E-cadherin mRNA levels were dramatically downregulated (P<0.05), while N-cadherin levels were significantly upregulated, and the migration ability of OSCC cells increased. The overexpression of miR-155-5p in OSCC cells upregulated miR-223-3p significantly (34-fold) compared to the control group. It also led to significant downregulation of the mRNA of P120ctn and E-cadherin and significant upregulation of the mRNA of N-cadherin and Vimentin (P<0.05). Meanwhile, the migratory ability of OSCC cells significantly increased. When miR-155-5p was overexpressed while miR-223-3p was inhibited, the highest expression of E-cadherin and P120ctn mRNA and the lowest expression of N-cadherin(P<0.05) was observed. Simultaneously, tumor cell migration was significantly facilitated. Conclusion: miR-223-3p inhibits the migration of OSCC cells, while miR-155-5p can elevate the miR-223-3p mRNA expression. The simultaneous miR-155-5p overexpression and miR-223-3p inhibition can activate pEMT, increasing OSCC migration in vitro. This provides a novel approach and potential target for the effective treatment of OSCC.
Downloads
References
- Cui Z, Liu Z. [The expression of c-met and cox-2 protein in the tissues of oral leukoplakia and oral squamous cell carcinoma]. J Prac Stomatol. 2019;35(6):839-42. Chinese
- Debaugnies M, Rodriguez-Acebes S, Blondeau J, Blondeau J, Parent MA, Zocco M. RHOJ controls EMT-associated resistance to chemotherapy. Nature. 2023;616(7955):168-75. doi: 10.1038/s41586-023-05838-7
https://doi.org/10.1038/s41586-023-05838-7
- Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 2022;15(1):129-55. doi: 10.1186/s13045-022-01347-8
https://doi.org/10.1186/s13045-022-01347-8
- Weisse J, Rosemann J, Muller L, Kappler M, Eckert AW, Glaß M, et al. Identification of lymphocyte cell-specific protein-tyrosine kinase (LCK) as a driver for invasion and migration of oral cancer by tumor heterogeneity exploitation. Mol Cancer. 2021;20(1):88-110. doi: 10.1186/s12943-021-01384-w
https://doi.org/10.1186/s12943-021-01384-w
- Casili G, Scuderi SA, Lanza M, Filippone A, Mannino D, Giuffrida R, et al. Therapeutic potential of BAY-117082, a ´s elective NLRP3 inflammasome inhibitor, on metastatic evolution in human Oral Squamous Cell Carcinoma (OSCC). Cancers (Basel). 2023;15(10):2796-810. doi: 10.3390/cancers15102796
https://doi.org/10.3390/cancers15102796
- Ozel M, Baskol M, Akalin H, Baskol G. Suberoylanilide Hydroxamic Acid (SAHA) reduces fibrosis markers and deactivates human stellate cells via the Epithelial-Mesenchymal Transition (EMT). Cell Biochem Biophys. 2021;79(2):349-57. doi: 10.1007/s12013-021-00974-1
https://doi.org/10.1007/s12013-021-00974-1
- Bierie B, Pierce SE, Kroeger C, Stover DG, Pattabiraman DR, Thiru P, et al. Integrin-ß4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci U S A. 2017;114(12):E2337-46. doi: 10.1073/pnas.1618298114
https://doi.org/10.1073/pnas.1618298114
- Burger GA, Danen EH, Beltman JB. Deciphering epithelial-mesenchymal transition regulatory networks in cancer through computational approaches. Front Oncol .2017;7:162-75. doi: 10.3389/fonc.2017.00162
https://doi.org/10.3389/fonc.2017.00162
- Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJ, et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet. 2017;49(5):708-18. doi: 10.1038/ng.3818
https://doi.org/10.1038/ng.3818
- Cabrera AJ, Gumbiner BM, Kwon YV. Remodeling of E-cadherin subcellular localization during cell dissemination. Mol Biol Cell. 2023;34(5):ar46. doi: 10.1091/mbc.E23-03-0087
https://doi.org/10.1091/mbc.E23-03-0087
- Wang W, Jin J, Zhou Z, Wang Y, Min K, Zuo X, et al. Snail inhibits metastasis via regulation of E-cadherin and is associated with prognosis in colorectal cancer. Oncol Lett. 2023;25(6):271-80. doi: 10.3892/ol.2023.13857
https://doi.org/10.3892/ol.2023.13857
- Xie J, Zhou J, Xia J, Zeng Y, Huang G, Zeng W, et al. Phospholipase C delta 1 inhibits WNT/beta-catenin and EGFR-FAK-ERK signaling and is disrupted by promoter CpG methylation in renal cell carcinoma. Clin Epigenetics. 2023;15(1):30-44. doi: 10.1186/s13148-023-01448-2
https://doi.org/10.1186/s13148-023-01448-2
- Hu Y, Zhu S, Xu R, Zeng Y, Huang G, Zeng W, et al. Delta-catenin attenuates medulloblastoma cell invasion by targeting EMT pathway. Front Genet. 2022;13:867872. doi: 10.3389/fgene.2022.867872
https://doi.org/10.3389/fgene.2022.867872
- Chen Z, Dong M, Deng F. [The expression of PKC, P120ctn and E-cad in oral squamous carcinoma]. J Pract Stomatol. 2014;61-5. Chinese. doi: 10.3969/j.issn.1001-3733.2014.01.015
https://doi.org/10.3969/j.issn.1001-3733.2014.01.015
- Chen Z, Ji Q, Zheng X. Effect of P120ctn silence and overexpression on cell migration and invasion of oral squamous cell carcinoma. J Oral Sci Res. 2016;1141-5. Chinese. doi: 10.13701/j.cnki.kqyxyj.2016.11.007
https://doi.org/10.13701/j.cnki.kqyxyj.2016.11.007
- Hakim SG, Taubitz C, Hoppe S, Steller D, Rades D, Ribbat-Idel J, et al. Prognostic impact of the loss of E-cadherin and de novo expression of N-cadherin at the invasive front of primary and recurrent oral squamous cell carcinoma. Front Oncol. 2023;13:1151879-1151893. doi: 10.3389/fonc.2023.1151879
https://doi.org/10.3389/fonc.2023.1151879
- Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res. 2007;13(23):7003-11. doi: 10.1158/1078-0432.CCR-07-1263
https://doi.org/10.1158/1078-0432.CCR-07-1263
- Miao Y, Li AL, Wang L, Fan CF, Zhang XP, Xu HT, et al. Overexpression of NEDD9 is associated with altered expression of E-Cadherin, beta-Catenin and N-Cadherin and predictive of poor prognosis in non-small cell lung cancer. Pathol Oncol Res. 2013;19(2):281-6. doi:10.1007/s12253-012-9580-2
https://doi.org/10.1007/s12253-012-9580-2
- Jang HR, Shin SB, Kim CH, Won JY, Xu R, Kim DE, et al. PLK1/vimentin signaling facilitates immune escape by recruiting Smad2/3 to PD-L1 promoter in metastatic lung adenocarcinoma. Cell Death Differ. 2021;28(9):2745-64. doi: 10.1038/s41418-021-00781-4
https://doi.org/10.1038/s41418-021-00781-4
- Fei X, Wang S, Meng Y, Shi L, Lei S, Dongxia Q, et al. [Expression of SOX2 in OSCC and its correlation with EMT]. J Oral Sci Res. 2017;33(11):1209-12. Chinese. doi: 10.13701/j.cnki.kqyxyj.2017.11.019
https://doi.org/10.13701/j.cnki.kqyxyj.2017.11.019
- Ruyu C, Rui H, Shanghua W, Xiang D, Dandan D, Zhenzhong F, et al. Expression and clinical significance of YAP, E-cadherin and Vimentin in oral squamous cell carcinoma. Acta Univ Med Anhui. 2018;53(12):1964-7. Chinese. doi: 10.19405/j.cnki.issn1000-1492.2018.12.032
https://doi.org/10.19405/j.cnki.issn1000-1492.2018.12.032
- Ahmad A. Non-coding RNAs: a tale of junk turning into treasure. Noncoding RNA Res. 2017;1(1):1-2. doi:10.1016/j.ncrna.2016.12.001
- Goodall GJ, Wickramasinghe VO. RNA in cancer. Nat Rev Cancer. 2021;21(1):22-36. doi: 10.1038/s41568-020-00306-0
https://doi.org/10.1038/s41568-020-00306-0
- Wang L, Liu Y, Gao Q, Hu R. Hsa_circ_0005085 may suppress cutaneous squamous cell carcinoma growth and metastasis through targeting the miR-186-5p/LAMC1 axis. Skin Res Technol. 2023;29(6):e13321. doi:10.1111/srt.13321
- Acunzo M, Romano G, Wernicke D, Croce CM. MicroRNA and cancer-a brief overview. Adv Biol Regul. 2015;57:1-9. doi:10.1016/j.jbior.2014.09.013
- Liu L, Zhang C, Li X, Sun W, Qin S, Qin L, et al. miR-223 promotes colon cancer by directly targeting p120 catenin. Oncotarget. 2017;8(38):63764-79. doi: 10.18632/oncotarget.19541
https://doi.org/10.18632/oncotarget.19541
- Zhang J, Luo X, Li H, Yue X, Deng L, Cui Y, et al. MicroRNA-223 functions as an oncogene in human colorectal cancer cells. Oncol Rep. 2014;32(1):115-20. doi:10.3892/or.2014.3173
https://doi.org/10.3892/or.2014.3173
- Gao L, Xiong X. MiR-223 inhibits the proliferation, invasion and EMT of nasopharyngeal carcinoma cells by targeting SSRP1. Int J Clin Exp Pathol. 2018;11(9):4374-84. doi: 10.7150/ijbs.59876
https://doi.org/10.7150/ijbs.59876
- Sun X, Guan G, Dai Y, Zhao P, Liu L, Wang Q, et al. microRNA-155-5p initiates childhood acute lymphoblastic leukemia by regulating the IRF4/CDK6/CBL axis. Lab Invest. 2022;102(4):411-21. doi: 10.1038/s41374-021-00638-x
https://doi.org/10.1038/s41374-021-00638-x
- Al-Moghrabi N, Al-Showimi M, Al-Yousef N, AlOtai L. MicroRNA-155-5p, reduced by curcumin-re-expressed hypermethylated BRCA1, is a molecular biomarker for cancer risk in BRCA1-methylation Carriers. Int J Mol Sci. 2023;24(10):9021-36. doi: 10.3390/ijms24109021
https://doi.org/10.3390/ijms24109021
- Mehterov N, Sacconi A, Pulito C, Vladimirov B, Haralanov G, Pazardjikliev D, et al. A novel panel of clinically relevant miRNAs signature accurately differentiates oral cancer from normal mucosa. Front Oncol. 2022;12:1072579. doi: 10.3389/fonc.2022.1072579
https://doi.org/10.3389/fonc.2022.1072579
- Kim H, Yang JM, Ahn SH, Jeong WJ, Chung JH, Paik JH. Potential oncogenic role and prognostic implication of MicroRNA-155-5p in oral squamous cell carcinoma. Anticancer Res. 2018;38(9):5193-200. doi: 10.21873/anticanres.12842
https://doi.org/10.21873/anticanres.12842
- Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, et al. Reprogramming of miRNA networks in cancer and leukemia. Genome Res. 2010;20(5):589-99. doi: 10.1101/gr.098046.109
https://doi.org/10.1101/gr.098046.109
- Wang S. [Study on the mechanism of p120ctn promoting acquired resistance to EGFR-TKIs in non-small cell lung cancer [dissertation]. Taiwan: China Medical University; 2020. Chinese. doi: 10.27652/d.cnki.gzyku.2020.000065.
https://doi.org/10.27652/d.cnki.gzyku.2020.000065
- Miranda-Filho A, Bray F. Global patterns and trends in cancers of the lip, tongue and mouth. Oral Oncol. 2020;102:104551. doi: 10.1016/j.oraloncology.2019.104551
https://doi.org/10.1016/j.oraloncology.2019.104551
- Patel A, Patel P, Mandlik D, Patel K, Malaviya P, Johar K, et al. A novel 3-miRNA network regulates tumour progression in oral squamous cell carcinoma. Biomark Res. 2023;11(1):64. doi: 10.1186/s40364-023-00505-5
https://doi.org/10.1186/s40364-023-00505-5
- Sun C, Liu XH, Sun YR. MiR-223-3p inhibits proliferation and metastasis of oral squamous cell carcinoma by targeting SHOX2. Eur Rev Med Pharmacol Sci. 2019;23(16):6927-34. doi: 10.26355/eurrev_201908_18732
https://doi.org/10.26355/eurrev_201908_18732
- Jiang L, Lv L, Liu X, Jiang X, Yin Q, Hao Y, et al. MiR-223 promotes oral squamous cell carcinoma proliferation and migration by regulating FBXW7. Cancer Biomark. 2019;24(3):325-34. doi: 10.3233/CBM-181877
https://doi.org/10.3233/CBM-181877
- Zhu Z, Yang L, Wang Q, Qu XW, Xiong J. [The role of miR-223-3p in the proliferation, migration and invasion of oral squamous cell carcinoma cells]. J Clin Stomatol. 2021;37(10):587-91. Chinese.
- Tachibana H, Sho R, Takeda Y, Zhang X, Yoshida Y, Narimatsu H, et al. Circulating miR-223 in oral cancer: its potential as a novel diagnostic biomarker and therapeutic target. PLoS One. 2016;11(7):e0159693. doi: 10.1371/journal.pone.0159693
https://doi.org/10.1371/journal.pone.0159693
- Liu L, Zhang C, Li X, Sun W, Qin S, Qin L, et al. miR-223 promotes colon cancer by directly targeting p120 catenin. Oncotarget. 2017;8(38):63764-79. doi: 10.18632/oncotarget.19541
https://doi.org/10.18632/oncotarget.19541
- Wu M, Duan Q, Liu X, Zhang P, Fu Y, Zhang Z, et al. MiR-155-5p promotes oral cancer progression by targeting chromatin remodeling gene ARID2. Biomed Pharmacother. 2020;122:109696. doi: 10.1016/j.biopha.2019.109696
https://doi.org/10.1016/j.biopha.2019.109696
- Borzi C, Calzolari L, Centonze G, Milione M, Sozzi G, Fortunato O. mir-660-p53-mir-486 network: a new key regulatory pathway in lung tumorigenesis. Int J Mol Sci. 2017;18(1):222-33. doi: 10.3390/ijms18010222
» https://doi.org/10.3390/ijms18010222
- Wang D, Sun X, Wei Y, Liang H, Yuan M, Jin F, et al. Nuclear miR-122 directly regulates the biogenesis of cell survival oncomiR miR-21 at the posttranscriptional level. Nucleic Acids Res. 2018;46(4):2012-29. doi: 10.1093/nar/gkx1254
https://doi.org/10.1093/nar/gkx1254
- Matkovich SJ, Hu Y, Dorn GW 2nd. Regulation of cardiac microRNAs by cardiac microRNAs. Circ Res. 2013;113(1):62-71. doi: 10.1161/CIRCRESAHA.113.300975
https://doi.org/10.1161/CIRCRESAHA.113.300975
- Haerinck J, Berx G. Partial EMT takes the lead in cancer metastasis. Dev Cell. 2021;56(23):3174-6. doi: 10.1016/j.devcel.2021.11.012
https://doi.org/10.1016/j.devcel.2021.11.012
- Andriani F, Bertolini G, Facchinetti F, Baldoli E, Moro M, Casalini P, et al. Conversion to stem-cell state in response to microenvironmental cues is regulated by balance between epithelial mesenchymal features in lung cancer cells. Mol Oncol. 2015;10(2):253-71. doi: 10.1002/1878-0261
https://doi.org/10.1002/1878-0261
- Nieto MA. Epithelial plasticity: a common themein embryonic and cancer cells. Science. 2013;342:1234850-74. doi:10.1126/science.1234850
https://doi.org/10.1126/science.1234850
- Elisha Y, Kalchenko V, Kuznetsov Y, Geiger B. Dual role of E-cadherin in the regulation of invasive collective migration of mammary carcinoma cells. Sci Rep. 2018;8(1):4986-500. doi: 10.1038/s41598-018-22940-3
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ruiman Zhou, Zhong Chen, Yihuang Cai, Huilian Zhang, Shunjie Mao, Yunan Zhuang, Jiacheng Zheng
This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.