Using machine learning to classify temporomandibular disorders: a proof of concept
DOI:
https://doi.org/10.1590/1678-7757-2024-0282Keywords:
Artificial intelligence., Machine learning, Facial pain, DiagnosisAbstract
Background: the escalating influx of patients with temporomandibular disorders and the challenges associated with accurate diagnosis by non-specialized dental practitioners underscore the integration of artificial intelligence into the diagnostic process of temporomandibular disorders (TMD) as a potential solution to mitigate diagnostic disparities associated with this condition. Objectives: In this study, we evaluated a machine-learning model for classifying TMDs based on the International Classification of Orofacial Pain, using structured data. Methodology: Model construction was performed by the exploration of a dataset comprising patient records from the repository of the Multidisciplinary Orofacial Pain Center (CEMDOR) affiliated with the Federal University of Santa Catarina. Diagnoses of TMD were categorized following the principles established by the International Classification of Orofacial Pain (ICOP-1). Two independent experiments were conducted using the decision tree technique to classify muscular or articular conditions. Both experiments uniformly adopted identical metrics to assess the developed model's performance and efficacy. Results: The classification model for joint pain showed a relevant potential for general practitioners, presenting 84% accuracy and f1-score of 0.85. Thus, myofascial pain was classified with 78% accuracy and an f1-score of 0.76. Both models used from 2 to 5 clinical variables to classify orofacial pain. Conclusion: The use of decision tree-based machine learning holds significant support potential for TMD classification.
Downloads
References
- Leeuw R, Klasser GD. Orofacial pain: guidelines for assessment, diagnosis, and management. Stomatology Edu J. 2015;2(2):173; doi: 10.25241/stomaeduj.2015.2(2).bookreview.6.
» https://doi.org/10.25241/stomaeduj.2015.2(2).bookreview.6
- Farook TH, Jamayet N Bin, Abdullah JY, et al. Machine learning and intelligent diagnostics in dental and orofacial pain management: a systematic review. Pain Res Manag. 2021;2021:6659133 doi: 10.1155/2021/6659133
» https://doi.org/10.1155/2021/6659133
- Orhan K, Driesen L, Shujaat S, Jacobs R, Chai X. Development and validation of a magnetic resonance imaging-based machine learning model for tmj pathologies. Biomed Res Int. 2021;2021: 6656773 doi: 10.1155/2021/6656773
» https://doi.org/10.1155/2021/6656773
- Choi E, Kim D, Lee JY, Park HK. Artificial intelligence in detecting temporomandibular joint osteoarthritis on orthopantomogram. Sci Rep. 2021;11(1): 10246 doi: 10.1038/s41598-021-89742-y
» https://doi.org/10.1038/s41598-021-89742-y
- Reda B, Contardo L, Prenassi M, Guerra E, Derchi G, Marceglia S. Artificial intelligence to support early diagnosis of temporomandibular disorders: a preliminary case study. J Oral Rehabil. 2023;50(1):31-8. doi: 10.1111/joor.13383
» https://doi.org/10.1111/joor.13383
- Calil BC, Cunha DV, Vieira MF, Oliveira Andrade A, Furtado DA, et al. Identification of arthropathy and myopathy of the temporomandibular syndrome by biomechanical facial features. Biomed Eng Online. 2020;19(1):22. doi: 10.1186/s12938-020-00764-5
» https://doi.org/10.1186/s12938-020-00764-5
- International Classification of Orofacial Pain, 1st edition (ICOP). Cephalalgia. 2020;40(2):129-21. doi: 10.1177/0333102419893823
» https://doi.org/10.1177/0333102419893823
- Schiffman E, Ohrbach R, Truelove E, Look J, Anderson G, Goulet JP, et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for clinical and research applications: recommendations of the International RDC/TMD Consortium Network * and Orofacial Pain Special Interest Group. J Oral Facial Pain Headache 2014;28(1):6-27. doi: 10.11607/jop.1151.
» https://doi.org/10.11607/jop.1151
- Pigg M, Nixdorf DR, Law AS, Renton T, Sharav Y, Baad-Hansen L, et al. New International Classification of Orofacial Pain: What Is in It For Endodontists? J Endod 2021;47(3):345-57. doi: 10.1016/j.joen.2020.12.002
» https://doi.org/10.1016/j.joen.2020.12.002
- Lövgren A, Visscher CM, Häggman-Henrikson B, Lobbezoo F, Marklund S, Wänman A. Validity of three screening questions (3Q/TMD) in relation to the DC/TMD. J Oral Rehabil. 2016;43(10):729-36. doi: 10.1111/joor.12428
» https://doi.org/10.1111/joor.12428
- Aggarwal VR, Joughin A, Zakrzewska JM, Crawford FJ, Tickle M. Dentists’ and specialists’ knowledge of chronic orofacial pain: results from a continuing professional development survey. Primary Dental Care. 2011;18(1):41-4. doi: 10.1308/135576111794065838
» https://doi.org/10.1308/135576111794065838
- Hadlaq E, Khan H, Mubayrik A, Almuflehi NS, Mawardi H. Dentists’ knowledge of chronic orofacial pain. Niger J Clin Pract. 2019;22(10):1365. doi: 10.4103/njcp.njcp_110_19
» https://doi.org/10.4103/njcp.njcp_110_19
- Al-Huraishi HA, Meisha DE, Algheriri WA, Alasmari WF, Alsuhaim AS, Al-Khotani AA. Newly graduated dentists’ knowledge of temporomandibular disorders compared to specialists in Saudi Arabia. BMC Oral Health 2020;20(1):272. doi: 10.1186/s12903-020-01259-4
» https://doi.org/10.1186/s12903-020-01259-4
- Reissmann DR, Behn A, Schierz O, List T, Heydecke G. Impact of dentists’ years since graduation on management of temporomandibular disorders. Clin Oral Investig. 2015;19(9):2327-36. doi: 10.1007/s00784-015-1459-7
» https://doi.org/10.1007/s00784-015-1459-7
- Erdilek D, Gümüştaş B, Güray Efes B. Digitalization era of dental education: a systematic review. Dent Med Probl. 2023;60(3):513-25. doi: 10.17219/dmp/156804
» https://doi.org/10.17219/dmp/156804
- Delgado Castillo S, Miguel Soto S, Atoche-Socola K, Arriola-Guillén LE. Revolution in modern teaching in dentistry since the appearance of the COVID-19 pandemic: a review. Dent Med Probl. 2022;59(1):137-41. doi: 10.17219/dmp/141522
» https://doi.org/10.17219/dmp/141522
- Ertürk Avunduk AT, Delikan E. Satisfaction and stress levels of dentistry students relating to distance education. Dent Med Probl. 2021;58(3):291-8. doi: 10.17219/dmp/135318
» https://doi.org/10.17219/dmp/135318
- Emodi-Perlman A, Eli I. Temporomandibular disorders and bruxism - up-to-date assessment and screening tools the general dentist should be aware of. Dent Med Probl. 2024;61(2):169-71. doi: 10.17219/dmp/175582
» https://doi.org/10.17219/dmp/175582
- MacHoy ME, Szyszka-Sommerfeld L, Vegh A, Gedrange T, Woźniak K. The ways of using machine learning in dentistry. Adv Clin Exp Med. 2020;29(3):375-84. doi: 10.17219/acem/115083
» https://doi.org/10.17219/acem/115083
- Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255-60. doi: 10.1126/science.aaa8415
» https://doi.org/10.1126/science.aaa8415
- Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res. 2020;99(7):769-74. doi: 10.1177/0022034520915714
» https://doi.org/10.1177/0022034520915714
- Kose C Jr, Oliveira D, Pereira PN, Rocha MG. Using artificial intelligence to predict the final color of leucite-reinforced ceramic restorations. J Esth Restor Dent. 2023;35(1):105-15. doi: 10.1111/jerd.13007
» https://doi.org/10.1111/jerd.13007
- Carrillo-Perez F, Pecho OE, Morales JC, Paravina RD, Della Bona A, Ghinea R. Applications of artificial intelligence in dentistry: a comprehensive review. J Esthet Rest Dent. 2022;34(1):259-80. doi: 10.1111/jerd.12844
» https://doi.org/10.1111/jerd.12844
- Loyola-Gonzalez O. Black-box vs. white-box: understanding their advantages and weaknesses from a practical point of view. IEEE Access. 2019;7:154096-113. doi: 10.1109/ACCESS.2019.2949286
» https://doi.org/10.1109/ACCESS.2019.2949286
- Stiglic G, Kocbek S, Pernek I, Kokol P. Comprehensive decision tree models in bioinformatics. PLoS One. 2012;7(3):e33812. doi: 10.1371/journal.pone.0033812
» https://doi.org/10.1371/journal.pone.0033812
- Firmino RT, Granville-Garcia AF, Bendo CB, Ferreira FM, Ortiz FR, Mcgrath CP. Development and validation of a short form of the BOHLAT-P. Braz Oral Res. 2022;36:e074. doi: 10.1590/1807-3107bor-2022.vol36.0074
» https://doi.org/10.1590/1807-3107bor-2022.vol36.0074
- Li Y, Sun G, Zhu Y. Data imbalance problem in text classification. In: 2010 Third International Symposium on Information Processing IEEE; 2010. p. 301-305. doi: 10.1109/ISIP.2010.47
» https://doi.org/10.1109/ISIP.2010.47
- Hernández VAS, Monroy R, Medina-Pérez MA, Loyola-Gonçalves O, Herrera F. A practical tutorial for decision tree induction. ACM Comput Surv. 2022;54(1):1-38. doi: 10.1145/3429739
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Fernanda Pretto Zatt, João Victor Cunha Cordeiro, Lauren Bohner, Beatriz Dulcineia Mendes de Souza, Victor Emanoel Armini Caldas, Ricardo Armini Cadas

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.