Healing effect of curcumin on tooth extraction sockets in diabetic rats
DOI:
https://doi.org/10.1590/1678-7757-2024-0251Keywords:
Curcumin, Diabetes mellitus, Tooth extraction, Wound healingAbstract
Diabetes mellitus (DM) delays wound healing, including those following tooth extractions. Curcumin (CCM) can promote soft tissue and bone healing. Objective: The present study investigates the healing effects of CCM on tooth extraction sockets in diabetic rats. Methodology: Ninety-six male Wistar rats were divided into the following four groups: Control+Corn Oil (CO), Control+CCM, DM+CO, and DM+CCM. Each group was subdivided into 7-, 14-, and 28-day time point subgroups comprising eight rats. All animals had their maxillary first molars extracted. CCM-treated rats received 100 mg/kg of CCM orally for 7, 14, and 28 days. The lesion area was evaluated using macroscopic analyses, whereas socket healing was assessed by hematoxylin and eosin staining. Keratinocyte growth factor (KGF), Runt-related transcription factor 2 (Runx2), and collagen type I (COL1) expression levels were obtained using quantitative polymerase chain reaction (qPCR). Bone healing was analyzed by means of microcomputed tomography (μCT). Results: After 7 days, the groups showed no significant differences in lesion area and by day 14, no lesions were present. CCM treatment increased KGF mRNA expression in diabetic rats; however, diabetic rats showed delayed bone healing unrelated to CCM. CCM treatment resulted in increased Runx2 mRNA expression only in control rats, whereas COL1 mRNA expression remained unaffected by CCM. Conclusion: CCM shows potential as a soft tissue healing enhancer in diabetic rats and could serve as an additional treatment to promote soft tissue repair in diabetic individuals. Although CCM did not impact alveolar bone healing, it may enhance bone healing in other skeleton regions.
Downloads
References
Cervino G, Terranova A, Briguglio F, De Stefano R, Fama F, D'Amico C, et al. Diabetes: oral health related quality of life and oral alterations. Biomed Res Int. 2019;2019:5907195. doi: 10.1155/2019/5907195
» https://doi.org/10.1155/2019/5907195
Al-Obaidi MM, Al-Bayaty FH, Al Batran R, Hussaini J, Khor GH. Impact of ellagic acid in bone formation after tooth extraction: an experimental study on diabetic rats. ScientificWorldJournal. 2014;2014:908098. doi: 10.1155/2014/908098
» https://doi.org/10.1155/2014/908098
Fang Y, Wang LP, Du FL, Liu WJ, Ren GL. Effects of insulin-like growth factor I on alveolar bone remodeling in diabetic rats. J Periodontal Res. 2013;48(2):144-50. doi: 10.1111/j.1600-0765.2012.01512.x
» https://doi.org/10.1111/j.1600-0765.2012.01512.x
Sá MA, Andrade VB, Mendes RM, Caliari MV, Ladeira LO, Silva EE, et al. Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets. Oral Dis. 2013;19(5):484-93. doi: 10.1111/odi.12030
» https://doi.org/10.1111/odi.12030
Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci. 2019;20(7):1694. doi: 10.3390/ijms20071694
» https://doi.org/10.3390/ijms20071694
Cirano FR, Pimentel SP, Casati MZ, Corrêa MG, Pino DS, Messora MR, et al. Effect of curcumin on bone tissue in the diabetic rat: repair of peri-implant and critical-sized defects. Int J Oral Maxillofac Surg. 2018;47(11):1495-503. doi: 10.1016/j.ijom.2018.04.018
» https://doi.org/10.1016/j.ijom.2018.04.018
Sogabe Y, Abe M, Yokoyama Y, Ishikawa O. Basic fibroblast growth factor stimulates human keratinocyte motility by Rac activation. Wound Repair Regen. 2006;14(4):457-62. doi: 10.1111/j.1743-6109.2006.00143.x
» https://doi.org/10.1111/j.1743-6109.2006.00143.x
Werner S, Breeden M, Hubner G, Greenhalgh DG, Longaker MT. Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse. J Invest Dermatol. 1994;103(4):469-73. doi: 10.1111/1523-1747.ep12395564
» https://doi.org/10.1111/1523-1747.ep12395564
Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014;46(1):2-18. doi: 10.4143/crt.2014.46.1.2
» https://doi.org/10.4143/crt.2014.46.1.2
Amini A, Soleimani H, Rezaei F, Ghoreishi SK, Chien S, Bayat M. The combined effect of photobiomodulation and curcumin on acute skin wound healing in rats. J Lasers Med Sci. 2021;12:e9. doi: 10.34172/jlms.2021.09
» https://doi.org/10.34172/jlms.2021.09
Bukhari SN, Hussain F, Thu HE, Hussain Z. Synergistic effects of combined therapy of curcumin and Fructus Ligustri Lucidi for treatment of osteoporosis: cellular and molecular evidence of enhanced bone formation. J Integr Med. 2019;17(1):38-45. doi: 10.1016/j.joim.2018.08.003
» https://doi.org/10.1016/j.joim.2018.08.003
Dasari N, Jiang A, Skochdopole A, Chung J, Reece EM, Vorstenbosch J, et al. Updates in diabetic wound healing, inflammation, and scarring. Semin Plast Surg. 2021;35(3):153-8. doi: 10.1055/s-0041-1731460
» https://doi.org/10.1055/s-0041-1731460
Zhang WX, Lin ZQ, Sun AL, Shi YY, Hong QX, Zhao GF. Curcumin ameliorates the experimental diabetic peripheral neuropathy through promotion of NGF expression in rats. Chem Biodivers. 2022;19(6):e202200029. doi: 10.1002/cbdv.202200029
» https://doi.org/10.1002/cbdv.202200029
Rashid K, Sil PC. Curcumin ameliorates testicular damage in diabetic rats by suppressing cellular stress-mediated mitochondria and endoplasmic reticulum-dependent apoptotic death. Biochim Biophys Acta. 2015;1852(1):70-82. doi: 10.1016/j.bbadis.2014.11.007
» https://doi.org/10.1016/j.bbadis.2014.11.007
Ran Z, Zhang Y, Wen X, Ma J. Curcumin inhibits high glucoseinduced inflammatory injury in human retinal pigment epithelial cells through the ROSPI3K/AKT/mTOR signaling pathway. Mol Med Rep. 2019;19(2):1024-31. doi: 10.3892/mmr.2018.9749
» https://doi.org/10.3892/mmr.2018.9749
Araujo MG, Silva CO, Misawa M, Sukekava F. Alveolar socket healing: what can we learn? Periodontol 2000. 2015;68(1):122-34. doi: 10.1111/prd.12082
» https://doi.org/10.1111/prd.12082
Safali S, Aydin BK, Nayman A, Ugurluoglu C. Effect of curcumin on bone healing: An experimental study in a rat model of femur fracture. Injury. 2019;50(11):1915-20. doi: 10.1016/j.injury.2019.09.002
» https://doi.org/10.1016/j.injury.2019.09.002
Elburki MS, Rossa C Jr, Guimarães-Stabili MR, Lee HM, Curylofo-Zotti FA, Johnson F, et al. A Chemically Modified Curcumin (CMC 2.24) inhibits nuclear factor κB activation and inflammatory bone loss in murine models of LPS-Induced experimental periodontitis and diabetes-associated natural periodontitis. Inflammation. 2017;40(4):1436-49. doi: 10.1007/s10753-017-0587-4
» https://doi.org/10.1007/s10753-017-0587-4
Vieira AE, Repeke CE, Ferreira SB, Colavite PM, Biguetti CC, Oliveira RC, et al. Intramembranous bone healing process subsequent to tooth extraction in mice: micro-computed tomography, histomorphometric and molecular characterization. PLoS One. 2015;10(5):e0128021. doi: 10.1371/journal.pone.0128021
» https://doi.org/10.1371/journal.pone.0128021
Ito S, Kasahara N, Kitamura K, Matsunaga S, Mizoguchi T, Htun MW, et al. Pathological differences in the bone healing processes between tooth extraction socket and femoral fracture. Bone Rep. 2022;16:101522. doi: 10.1016/j.bonr.2022.101522
» https://doi.org/10.1016/j.bonr.2022.101522
Inoue S, Fujikawa K, Matsuki-Fukushima M, Nakamura M. Repair processes of flat bones formed via intramembranous versus endochondral ossification. J Oral Biosci. 2020;62(1):52-7. doi: 10.1016/j.job.2020.01.007
» https://doi.org/10.1016/j.job.2020.01.007
Wang D, Gilbert JR, Zhang X, Zhao B, Ker DF, Cooper GM. Calvarial versus long bone: implications for tailoring skeletal tissue engineering. Tissue Eng Part B Rev. 2020;26(1):46-63. doi: 10.1089/ten.TEB.2018.0353
» https://doi.org/10.1089/ten.TEB.2018.0353
Nonose N, Pereira JA, Machado PR, Rodrigues MR, Sato DT, Martinez CA. Oral administration of curcumin (Curcuma longa) can attenuate the neutrophil inflammatory response in zymosan-induced arthritis in rats. Acta Cir Bras. 2014;29(11):727-34. doi: 10.1590/s0102-86502014001800006
» https://doi.org/10.1590/s0102-86502014001800006
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, et al. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res. 2021;163:105224. doi: 10.1016/j.phrs.2020.105224
» https://doi.org/10.1016/j.phrs.2020.105224
Wang Y, Wang Y, Cai N, Xu T, He F. Anti-inflammatory effects of curcumin in acute lung injury: in vivo and in vitro experimental model studies. International Immunopharmacology. 2021;96:107600. doi: 10.1016/j.intimp.2021.107600
» https://doi.org/10.1016/j.intimp.2021.107600
Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6(10):92. doi: 10.3390/foods6100092
» https://doi.org/10.3390/foods6100092
Sadeghi M, Dehnavi S, Asadirad A, Xu S, Majeed M, Jamialahmadi T, et al. Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology. 2023;31(3):1069-93. doi: 10.1007/s10787-023-01136-w
» https://doi.org/10.1007/s10787-023-01136-w
Wal P, Saraswat N, Pal RS, Wal A, Chaubey M, et al. A detailed insight of the anti-inflammatory effects of curcumin with the assessment of parameters, sources of ros and associated mechanisms. Open Medicine J. 2019;6:64-76. doi: 10.2174/1874220301906010064
» https://doi.org/10.2174/1874220301906010064
Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007;595:105-25. doi: 10.1007/978-0-387-46401-5_3
» https://doi.org/10.1007/978-0-387-46401-5_3
Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, et al. Anti-Inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des Devel Ther. 2021;15:4503-25. doi: 10.2147/dddt.S327378
» https://doi.org/10.2147/dddt.S327378
Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2017;57(13):2889-95. doi: 10.1080/10408398.2015.1077195
» https://doi.org/10.1080/10408398.2015.1077195
Clinical development plan: curcumin. J Cell Biochem Suppl. 1996;26:72-85.
Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21(4b):2895-900.
Corrêa MG, Pires PR, Ribeiro FV, Pimentel SZ, Casarin RC, Cirano FR, et al. Systemic treatment with resveratrol and/or curcumin reduces the progression of experimental periodontitis in rats. J Periodontal Res. 2017;52(2):201-9. doi: 10.1111/jre.12382
» https://doi.org/10.1111/jre.12382
Zhou T, Chen D, Li Q, Sun X, Song Y, Wang C. Curcumin inhibits inflammatory response and bone loss during experimental periodontitis in rats. Acta Odontol Scand. 2013;71(2):349-56. doi: 10.3109/00016357.2012.682092
» https://doi.org/10.3109/00016357.2012.682092
Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6:10. doi: 10.1186/1472-6882-6-10
» https://doi.org/10.1186/1472-6882-6-10
Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004;10(20):6847-54. doi: 10.1158/1078-0432.Ccr-04-0744

Downloads
Published
Issue
Section
License
Copyright (c) 2024 Tipthanan Chotipinit, Weera Supronsinchai, Soranun Chantarangsu, Supaporn Suttamanatwong

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.