Fish: a new xenograft source for maxillary sinus lifting

Authors

  • Emrah Soylu Erciyes University Faculty of Dentistry. Department of Oral and Maxillofacial Surgery and DentBioChem Biotechnology Co. Erciyes Teknopark https://orcid.org/0000-0002-9828-5096
  • Musab Süleyman Kilavuz Erciyes University Faculty of Dentistry. Department of Oral and Maxillofacial Surgery and DentBioChem Biotechnology Co. Erciyes Teknopark
  • Fatih Duman Erciyes University. Faculty of Science. Department of Hydrobiology
  • Hasan Ekeer Erciyes University Faculty of Dentistry. Department of Oral and Maxillofacial Surgery and DentBioChem Biotechnology Co. Erciyes Teknopark
  • Arzu Hanım Yay Erciyes University. Faculty of Medicine. Department of Histology and Embryology.
  • Demet Bolat Erciyes University. Faculty of Medicine. Department of Histology and Embryology.

DOI:

https://doi.org/10.1590/1678-7757-2024-0245

Keywords:

Hydroxyapatite, Fish-derived hydroxyapatite, Autologous graft, Maxillofacial surgery, Maxillary sinus floor augmentation, Rabbits

Abstract

Objective: Although autogenous grafting is accepted as the gold standard in intraoral grafting, xenogenous grafts are frequently used in sinus lift surgeries due to their osteoinductive and osteoconductive properties. This study aimed to investigate the efficacy of fish spine-derived xenogenic grafts in sinus augmentation surgery. Material and Methods: In this study, a fish spine-derived xenogenic  graft was produced for comparison with autogenous graft and bovine derived xenogenic grafts. Twenty-one New Zealand rabbits were used. Autogenous grafts (AG- Group 1), as well as bovine-derived (bHAP - Group 2) and fish spine-derived (fHAP - Group 3) xenogenic grafts were placed in the right and left sinuses of rabbits. The animals were sacrificed at the 4th and 8th weeks. New bone formation (NBF) was evaluated through histological examination, while bone volume (BV), new bone surface/bone volume (BS-BV), new bone surface/tissue volume (BS-TV), and trabecular separation (Tb-Sp) were assessed via Micro-CT. Statistical significance was considered at p<0.05. Results: Histological examination revealed a significant difference in NBF between AG-bHAP (p<0.001), as well as between fHAP-bHAP (p<0.001) in the fourth-week group. No significant difference was found in the eighth-week group (p=0.130). In the eighth-week group, a statistically significant difference was found between fHAP and bHAP in terms of BV. (p=0.007). Conclusion: Although both graft materials used in this study showed positive effects on bone regeneration, fHAP and AG presented similar effects on bone regeneration and were superior to bHAP.

Downloads

Download data is not yet available.

References

Kozusko SD, Riccio C, Goulart M, Bumgardner J, Jing XL, Konofaos P. Chitosan as a bone scaffold biomaterial. J Craniofac Surg. 2018;29(7):1788-93. doi: 10.1097/SCS.0000000000004909

» https://doi.org/10.1097/SCS.0000000000004909

Sununliganon L, Peng L, Singhatanadgit W, Cheung LK. Osteogenic efficacy of bone marrow concentrate in rabbit maxillary sinus grafting. J Craniomaxillofac Surg. 2014;42(8):1753-65. doi: 10.1016/j.jcms.2014.06.011

» https://doi.org/10.1016/j.jcms.2014.06.011

Drage NA, Palmer RM, Blake G, Wilson R, Crane F, Fogelman I. A comparison of bone mineral density in the spine, hip and jaws of edentulous subjects. Clin Oral Implants Res. 2007;18:496-500. doi: 10.1111/j.1600-0501.2007.01379.x

» https://doi.org/10.1111/j.1600-0501.2007.01379.x

Boyne P, James R. Grafting the maxillary sinus floor with autogenous marrow and bone. J Oral Surg. 1980;38:613-6.

Danesh-Sani SA, Loomer PM, Wallace SS. A comprehensive clinical review of maxillary sinus floor elevation: anatomy, techniques, biomaterials and complications. Brit J Oral Maxillofac Surg. 2016;54(7):724-30. doi: 10.1016/j.bjoms.2016.05.008

» https://doi.org/10.1016/j.bjoms.2016.05.008

Cochran DL, Schenk R, Buser D, Wozney JM, Jones AA. Recombinant human bone morphogenetic protein-2 stimulation of bone formation around endosseous dental implants. J. Periodontol 1999;70:139-50. doi: 10.1902/jop.1999.70.2.139

» https://doi.org/10.1902/jop.1999.70.2.139

Lorusso F, Inchingolo F, Dipalma G, Postiglione F, Fulle S, Scarano A. Synthetic Scaffold/Dental Pulp Stem Cell (DPSC) tissue engineering constructs for bone defect treatment: an animal studies literature review. Int J Mol Sci. 2020;21(24):9765. doi: 10.3390/ijms21249765

» https://doi.org/10.3390/ijms21249765

Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18. doi:10.1186/1749-799X-9-18

» https://doi.org/10.1186/1749-799X-9-18

Yilmaz S, Ozden B, Bas B, Altun G, Altunkaynak BZ. Could calcified triglyceride bone cement be an alternative graft material in maxillary sinus augmentation? J Craniofacl Surg. 2017;28(1):97-103. doi: 10.1097/SCS.0000000000003236

» https://doi.org/10.1097/SCS.0000000000003236

Canellas JV, Drugos L, Ritto FG, Fischer RG, Medeiros PJ. Xenograft materials in maxillary sinus floor elevation surgery: a systematic review with network meta-analyses. Br J Oral and Maxillofac Surg. 2021;59(7):742-51. doi. 10.1016/j.bjoms.2021.02.009

» https://doi.org/10.1016/j.bjoms.2021.02.009

Di Stefano DA, Gastaldi G, Vinci R, Cinci L, Pieri L, Gherlone EF. Histomorphometric comparison of enzyme-deantigenic equine bone and anorganic bovine bone in sinus augmentation: a randomized clinical trial with 3-year follow-up. Int J Oral Maxillofac Implants. 2015;30(5):1161-7. doi: 10.11607/jomi.4057

» https://doi.org/10.11607/jomi.4057

Lee JS, Shin HK, Yun JH, Cho KS. Randomized clinical trial of maxillary sinus grafting using deproteinized porcine and bovine bone mineral. Clin Implant Dent Relat Res. 2017;19(1):140-50. doi. 10.1111/cid.12430

» https://doi.org/10.1111/cid.12430

Granito RN, Renno AC, Yamamura H, Almeida MC, Ruiz PL, Ribeiro DA. Hydroxyapatite from fish for bone tissue engineering: a promising approach. Int J Mol Cell Med. 2018;7:80-90. doi: 10.22088/IJMCM.BUMS.7.2.80

» https://doi.org/10.22088/IJMCM.BUMS.7.2.80

Shi P, Liu M, Fan F, Yu C, Lu W, Du M. Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Mater Sci Eng C Mater Biol Appl. 2018;90:706-712. doi: 10.1016/j.msec.2018.04.026

» https://doi.org/10.1016/j.msec.2018.04.026

Amaral Corrêa TH, França Holanda JN. Fish bone as a source of raw material for synthesis of calcium phosphate. Mat Res. 2019;22. doi:10.1590/1980-5373-MR-2019-0486

» https://doi.org/10.1590/1980-5373-MR-2019-0486

Appleford MR, Oh S, Oh N, Ong JL. In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair. J Biomed Mater Res A. 2009;89:1019-27. doi: 10.1002/jbm.a.32049

» https://doi.org/10.1002/jbm.a.32049

Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol. 2015;72:269-81. doi: 10.1016/j.ijbiomac.2014.07.008

» https://doi.org/10.1016/j.ijbiomac.2014.07.008

Prathibha PM, Thomas NG, Dalvi YB, Varghese KG, Binsi PK, Zynudheen AA, et al. Fish scale-derived hydroxyapatite for alveolar ridge preservation. Biotechnol Appl Biochem. 2024;1-9. doi: 10.1002/bab.2627

» https://doi.org/10.1002/bab.2627

Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4:3-11. doi:10.1002/jbmr.5650040103

» https://doi.org/10.1002/jbmr.5650040103

Buser D, Hoffmann B, Bernard J pierre, Lussi A, Mettler D, Schenk RK. Evaluation of filling materials in membrane-protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res. 1998;9(3):137-50. doi: 10.1034/j.1600-0501.1998. 090301.x

» https://doi.org/10.1034/j.1600-0501.1998.090301.x

Adventa Y, Zubaidah N. Literature review the role of hydroxyapatite materials on collagen synthesis in alveolar bone defects healing. Conserv Dent J. 11(1):24-7. doi: 10.20473/cdj.v11i1.2021.24-27

» https://doi.org/10.20473/cdj.v11i1.2021.24-27

Fang CH, Lin YW, Lin FH, Sun JS, Chao YH, Lin HY, et al. Biomimetic synthesis of nanocrystalline hydroxyapatite composites: therapeutic potential and effects on bone regeneration. Int J Mol Sci. 2019;20(23):6002. doi:10.3390/ijms20236002

» https://doi.org/10.3390/ijms20236002

Mohiuddin OA, Campbell B, Poche JN, Ma M, Rogers E, Gaupp D, et al. Decellularized adipose tissue hydrogel promotes bone regeneration in critical-sized mouse femoral defect model. Front Bioeng Biotechnol. 2019;7:211. doi:10.3389/fbioe.2019.00211

» https://doi.org/10.3389/fbioe.2019.00211

Yamamura H, Silva VH, Ruiz PL, Ussui V, Lazar DR, Renno AC, et al. Physico-chemical characterization and biocompatibility of hydroxyapatite derived from fish waste. J Mech Behav Biomed Mater. 2018;80:137-42. doi: 10.1016/j.jmbbm.2018.01.035

» https://doi.org/10.1016/j.jmbbm.2018.01.035

Sankar S, Sekar S, Mohan R, Rani S, Sundaraseelan J, Sastry TP. Preparation and partial characterization of collagen sheet from fish (Lates calcarifer) scales. Int J Biol Macromol. 2008;42:6-9. doi: 10.1016/j.ijbiomac.2007.08.003

» https://doi.org/10.1016/j.ijbiomac.2007.08.003

Chierico A, Valentini R, Majzoub Z, Piattelli A, Scarano A, Okun L, et al. Electrically charged GTAM membranes stimulate osteogenesis in rabbit calvarial defects. Clin Oral Implants Res. 1999;10(5):415-24. doi: 10.1034/j.1600-0501.1999.100508.x

» https://doi.org/10.1034/j.1600-0501.1999.100508.x

Downloads

Published

2024-11-25

Issue

Section

Original Articles

How to Cite

Soylu, E., Kilavuz, M. S., Duman, F., Ekeer, H., Yay, A. H., & Bolat, D. (2024). Fish: a new xenograft source for maxillary sinus lifting. Journal of Applied Oral Science, 32. https://doi.org/10.1590/1678-7757-2024-0245