1,25(OH)2D3 increase osteogenic potential of human periodontal ligament cells with low osteoblast potential

Authors

DOI:

https://doi.org/10.1590/1678-7757-2024-0160

Keywords:

Calcitriol, Osteoblast, Cementoblast, Periodontal Dental Ligament Mesenchymal Progenitor Cells, Differentiation, Asporin, Bone Morphogenetic Protein 2

Abstract

Periodontal dental ligament mesenchymal stem cells (PDLMSCs) play a major role in periodontal tissue regeneration by the neoformation of root cementum and alveolar bone. These cells are highly heterogeneous, and many present low potential to renovate the hard tissue damaged by periodontal disease. A previous study found that the low osteoblast/cementoblast (O/C) differentiation potential of PDLMSCs is related to high asporin (ASPN) expression, which was identified as a negative regulator of PDL cells differentiation and mineralization, suppressing BMP-2-induced O/C differentiation. Objective: This study aimed to investigate whether 1,25(OH)2D3 treatment could stimulate the O/C differentiation of periodontal ligament mesenchymal progenitor cells characterized as low osteoblast potential (LOP), by asporin and bone morphogenetic protein-2 alteration. Methodology: Three LOP cell populations were cultured in standard medium (CONTROL), osteogenic medium (OM), and osteogenic medium associated with 1 nM of 1,25(OH)2D3 (OM + VD). The following assays were performed: 1) MTT to evaluate metabolic activity; 2) gene expression for asporin (ASPN), bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN), and vitamin D receptor (VDR) using qRT-PCR; 3) BMP-2 extracellular expression; and 4) quantification of mineralized nodule deposition by Alizarin Red Staining. Data were subjected to two-way ANOVA and Tukey’s test (P<0.05). Results: The results showed that the 1,25(OH)2D3 treatment did not affect the cell viability, as demonstrated by metabolic activity increase over the 10 days in culture. After 14 days of 1,25(OH)2D3 treatment, the mRNA levels for ASPN and VDR decreased (P<0.05), while BMP-2 transcripts and extracellular expression increased (P<0.05). In parallel, RUNX2, ALP, and OCN gene expression was upregulated by 1,25(OH)2D3 treatment, resulting in an increase of mineral nodule deposition in vitro (P<0.05). Conclusions: These data show that 1,25(OH)2D3 improves osteoblast/cementoblast differentiation of low osteoblast potential accompanied by alterations in ASPN and BMP-2 expression.

Downloads

Download data is not yet available.

References

- Reynolds MA Reynolds MA, Kao RT, Kao RT, Camargo PM, et al. Periodontal regeneration - intrabony defects: a consensus report from the AAP Regeneration Workshop. J Periodontol. 2015;86(2 Suppl):S105-7. doi: 10.1902/jop.2015.140378

» https://doi.org/10.1902/jop.2015.140378

- Reddy MS, Aichelmann-Reidy ME, Avila-Ortiz G, et al. Periodontal regeneration - furcation defects: a consensus report from the AAP Regeneration Workshop. J Periodontol. 2015;86(2 Suppl):S131-3. doi: 10.1902/jop.2015.140379

» https://doi.org/10.1902/jop.2015.140379

- Cirelli JA, Fiorini T, Moreira CH, Molon RS, Dutra TP, Sallum EA. Periodontal regeneration: is it still a goal in clinical periodontology? Braz Oral Res. 2021;35(Supp 2):e09. doi: 10.1590/1807-3107bor-2021.vol35.0097

» https://doi.org/10.1590/1807-3107bor-2021.vol35.0097

- Sculean A, Nikolidakis D, Nikou G, Ivanovic A, Chapple IL, Stavropoulos A. Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontol 2000. 2015;68(1):182-216. doi: 10.1111/prd.12086

» https://doi.org/10.1111/prd.12086

- Jepsen S, Gennai S, Hirschfeld J, Kalemaj Z, Buti J, Graziani F. Regenerative surgical treatment of furcation defects: a systematic review and Bayesian network meta-analysis of randomized clinical trials. J Clin Periodontol. 2020;47 Suppl 22:352-74. doi: 10.1111/jcpe.13238

» https://doi.org/10.1111/jcpe.13238

- Nyman S, Gottlow J, Lindhe J, Karring T, Wennstrom J. New attachment formation by guided tissue regeneration. J Periodontal Res. 1987;22(3):252-4. doi: 10.1111/j.1600-0765.1987.tb01581.x

» https://doi.org/10.1111/j.1600-0765.1987.tb01581.x

- Polimeni G, Xiropaidis AV, Wikesjö UM. Biology and principles of periodontal wound healing/regeneration. Periodontol 2000. 2006;41:30-47. doi: 10.1111/j.1600-0757.2006.00157.x

» https://doi.org/10.1111/j.1600-0757.2006.00157.x

- Melcher AH. On the repair potential of periodontal tissues. J Periodontol. 1976;47(5):256-60. doi: 10.1902/jop.1976.47.5.256

» https://doi.org/10.1902/jop.1976.47.5.256

- Nyman S, Gottlow J, Karring T, Lindhe J. The regenerative potential of the periodontal ligament. An experimental study in the monkey. J Clin Periodontol. 1982;9(3):257-65. doi: 10.1111/j.1600-051x.1982.tb02065.x

» https://doi.org/10.1111/j.1600-051x.1982.tb02065.x

- Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149-55. doi: 10.1016/S0140-6736(04)16627-0.

» https://doi.org/10.1016/S0140-6736(04)16627-0

- Singhatanadgit W, Donos N, Olsen I. Isolation and characterization of stem cell clones from adult human ligament. Tissue Eng Part A. 2009;15(9):2625-36. doi: 10.1089/ten.TEA.2008.0442

» https://doi.org/10.1089/ten.TEA.2008.0442

- Silvério KG, Rodrigues TL, Coletta RD, Benevides L, Silva JS, Casati MZ, et al. Mesenchymal stem cell properties of periodontal ligament cells from deciduous and permanent teeth. J Periodontol. 2010;81(8):1207-15. doi: 10.1902/jop.2010.090729

» https://doi.org/10.1902/jop.2010.090729

- Sununliganon L, Singhatanadgit W. Highly osteogenic PDL stem cell clones specifically express elevated levels of ICAM1, ITGB1 and TERT. Cytotechnology. 2012;64(1):53-63. doi: 10.1007/s10616-011-9390-5

» https://doi.org/10.1007/s10616-011-9390-5

- Saito MT, Salmon CR, Amorim BR, Ambrosano GM, Casati MZ, Sallum EA, et al. Characterization of highly osteoblast/cementoblast cell clones from a CD105-enriched periodontal ligament progenitor cell population. J Periodontol. 2014;85:e205-11. doi: 10.1902/jop.2014.130461

» https://doi.org/10.1902/jop.2014.130461

- Saito MT, Mofatto LS, Albiero ML, Casati MZ, Sallum EA, Nociti FH Junior, et al. Transcriptome profile of highly osteoblastic/cementoblastic periodontal ligament cell clones. J Appl Oral Sci. 2020;28:e20200242. doi: 10.1590/1678-7757-2020-0242

» https://doi.org/10.1590/1678-7757-2020-0242

- Sacramento CM, Assis RI, Saito MT, Coletta RD, Dourado MR, Sallum EA, et al. BMP-2 and asporin expression regulate 5-aza-dC-mediated osteoblast/cementoblast differentiation of periodontal dental ligament mesenchymal progenitor cells. Differentiation. 2022;124:17-27. doi: 10.1016/j.diff.2022.02.003

» https://doi.org/10.1016/j.diff.2022.02.003

- Levi B, Hyun JS, Nelson ER, Li S, Montoro DT, Wan DC, et al. Nonintegrating knockdown and customized scaffold design enhances human adipose-derived stem cells in skeletal repair. Stem Cells. 2011;29(12):2018-29. doi: 10.1002/stem.757

» https://doi.org/10.1002/stem.757

- Yamada S, Tomoeda M, Ozawa Y, Yoneda S, Terashima Y, Ikezawa K, et al. PLAP-1/asporin, a novel negative regulator of periodontal ligament mineralization. J Biol Chem. 2007;282(32):23070-80. doi: 10.1074/jbc.M611181200

» https://doi.org/10.1074/jbc.M611181200

- Wang L, Liu C, Wu F. Low-level laser irradiation enhances the proliferation and osteogenic differentiation of PDLSCs via BMP signaling. Lasers Med Sci. 2022;37(2):941-8. doi: 10.1007/s10103-021-03338-6.

» https://doi.org/10.1007/s10103-021-03338-6

- García EV, Valdecantos PA, Barrera D, Roldán-Olarte M, Miceli DC. Bone morphogenetic proteins in the bovine oviduct: differential expression of BMP-5 in the isthmus during the estrous cycle. Theriogenology. 2014;81(8):1032-41. doi: 10.1016/j.theriogenology.2014.01.025

» https://doi.org/10.1016/j.theriogenology.2014.01.025

- Kim HY, Park SY, Choung SY. Enhancing effects of myricetin on the osteogenic differentiation of human periodontal ligament stem cells via BMP-2/Smad and ERK/JNK/p38 mitogen-activated protein kinase signaling pathway. Eur J Pharmacol. 2018;834:84-91. doi: 10.1016/j.ejphar.2018.07.012

» https://doi.org/10.1016/j.ejphar.2018.07.012

- Zhang Y, Shen L, Mao Z, Wang N, Wang X, Huang X, et al. Icariin enhances bone repair in rabbits with bone infection during post-infection treatment and prevents inhibition of osteoblasts by vancomycin. Front Pharmacol. 2017;8:784. doi: 10.3389/fphar.2017.00784

» https://doi.org/10.3389/fphar.2017.00784

- Jones G, Strugnell SA, DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiol Rev. 1998;78(4):1193-231. doi: 10.1152/physrev.1998.78.4.1193

» https://doi.org/10.1152/physrev.1998.78.4.1193

- Liu K, Meng H, Hou J. Activity of 25-hydroxylase in human gingival fibroblasts and periodontal ligament cells. PLoS One. 2012;7(12):e52053. doi: 10.1371/journal.pone.0052053

» https://doi.org/10.1371/journal.pone.0052053

- Liu K, Meng H, Lu R, Xu L, Zhang L, Chen Z, et al. Initial periodontal therapy reduced systemic and local 25-hydroxy vitamin D(3) and interleukin-1beta in patients with aggressive periodontitis. J Periodontol. 2010;81(2):260-6. doi: 10.1902/jop.2009.090355

» https://doi.org/10.1902/jop.2009.090355

- Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res. 1998;13(3):325-49. doi: 10.1359/jbmr.1998.13.3.325

» https://doi.org/10.1359/jbmr.1998.13.3.325

- Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266-81. doi: 10.1056/NEJMra070553

» https://doi.org/10.1056/NEJMra070553

- Adams JS, Hewison M. Update in vitamin D. J Clin Endocrinol Metab. 2010;95(2):471-8. doi: 10.1210/jc.2009-1773

» https://doi.org/10.1210/jc.2009-1773

- Zhang P, Zhang Y, Liu Q, Zhang Y, Ji Y, Xu X. 1,25(OH)2D3 supports the osteogenic differentiation of hPDLSCs under inflammatory conditions through inhibiting PLAP-1 expression transcriptionally. Int Immunopharmacol. 2020;78:105998. doi: 10.1016/j.intimp.2019.105998

» https://doi.org/10.1016/j.intimp.2019.105998

- Assis RI, Schmidt AG, Racca F, Silva RA, Zambuzzi WF, Silverio KG, et al. DNMT1 inhibitor restores RUNX2 expression and mineralization in periodontal ligament cells. DNA Cell Biol. 2021;40(5):662-74. doi: 10.1089/dna.2020.6239

» https://doi.org/10.1089/dna.2020.6239

- Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3: new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. doi: 10.1093/nar/gks596

» https://doi.org/10.1093/nar/gks596

- Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996-1006. doi: 10.1101/gr.229102

» https://doi.org/10.1101/gr.229102

- Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004;329(1):77-84. doi: 10.1016/j.ab.2004.02.002

» https://doi.org/10.1016/j.ab.2004.02.002

- Tomoeda M, Yamada S, Shirai H, Ozawa Y, Yanagita M, Murakami S. PLAP-1/asporin inhibits activation of BMP receptor via its leucine-rich repeat motif. Biochem Biophys Res Commun. 2008;371(2):191-6. doi: 10.1016/j.bbrc.2008.03.158

» https://doi.org/10.1016/j.bbrc.2008.03.158

- Dietrich T, Joshipura KJ, Dawson-Hughes B, Bischoff-Ferrari HA. Association between serum concentrations of 25-hydroxyvitamin D3 and periodontal disease in the US population. Am J Clin Nutr. 2004;80(1):108-13. doi: 10.1093/ajcn/80.1.108

» https://doi.org/10.1093/ajcn/80.1.108

- Nebel D, Svensson D, Arosenius K, Larsson E, Jönsson D, Nilsson BO. 1a,25-dihydroxyvitamin D3 promotes osteogenic activity and downregulates proinflammatory cytokine expression in human periodontal ligament cells. J Periodontal Res. 2015;50(5):666-73. doi: 10.1111/jre.12249

» https://doi.org/10.1111/jre.12249

- Atkins GJ, Anderson PH, Findlay DM, Welldon KJ, Vincent C, Zannettino AC, et al. Metabolism of vitamin D3 in human osteoblasts: evidence for autocrine and paracrine activities of 1 alpha,25-dihydroxyvitamin D3. Bone. 2007;40(6):1517-28. doi: 10.1016/j.bone.2007.02.024

» https://doi.org/10.1016/j.bone.2007.02.024

- Zella LA, Kim S, Shevde NK, Pike JW. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Mol Endocrinol. 2006;20(6):1231-47. doi: 10.1210/me.2006-0015

» https://doi.org/10.1210/me.2006-0015

- Chen TL, Hauschka PV, Feldman D. Dexamethasone increases 1,25-dihydroxyvitamin D3 receptor levels and augments bioresponses in rat osteoblast-like cells. Endocrinology. 1986;118(3):1119-26. doi: 10.1210/endo-118-3-1119

» https://doi.org/10.1210/endo-118-3-1119

- Bragdon B, Bonor J, Shultz KL, Beamer WG, Rosen CJ, Nohe A. Bone morphogenetic protein receptor type Ia localization causes increased BMP2 signaling in mice exhibiting increased peak bone mass phenotype. J Cell Physiol. 2012;227(7):2870-9. doi: 10.1002/jcp.23028

» https://doi.org/10.1002/jcp.23028

- Liu P, Oyajobi BO, Russell RG, Scutt A. Regulation of osteogenic differentiation of human bone marrow stromal cells: interaction between transforming growth factor-beta and 1,25(OH)(2) vitamin D(3) in vitro. Calcif Tissue Int. 1999;65(2):173-80. doi: 10.1007/s002239900678

» https://doi.org/10.1007/s002239900678

- Ciavarella S, Dammacco F, De Matteo M, Loverro G, Silvestris F. Umbilical cord mesenchymal stem cells: role of regulatory genes in their differentiation to osteoblasts. Stem Cells Dev. 2009;18(8):1211-20. doi: 10.1089/scd.2008.0340

» https://doi.org/10.1089/scd.2008.0340

- Orimo H, Shimada T. The role of tissue-nonspecific alkaline phosphatase in the phosphate-induced activation of alkaline phosphatase and mineralization in SaOS-2 human osteoblast-like cells. Mol Cell Biochem. 2008;315(1-2):51-60. doi: 10.1007/s11010-008-9788-3

» https://doi.org/10.1007/s11010-008-9788-3

- Jensen ED, Gopalakrishnan R, Westendorf JJ. Regulation of gene expression in osteoblasts. Biofactors. 2010;36(1):25-32. doi: 10.1002/biof.72

» https://doi.org/10.1002/biof.72

- Katz JM, Nataraj C, Jaw R, Deigl E, Bursac P. Demineralized bone matrix as an osteoinductive biomaterial and in vitro predictors of its biological potential. J Biomed Mater Res B Appl Biomater. 2009;89(1):127-34. doi: 10.1002/jbm.b.31195

» https://doi.org/10.1002/jbm.b.31195

- Kasten P, Luginbühl R, van Griensven M, Barkhausen T, Krettek C, Bohner M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix. Biomaterials. 2003;24(15):2593-603. doi: 10.1016/s0142-9612(03)00062-0

» https://doi.org/10.1016/s0142-9612(03)00062-0

- Franceschi RT, Ge C, Xiao G, Roca H, Jiang D. Transcriptional regulation of osteoblasts. Ann N Y Acad Sci. 2007;1116:196-207. doi: 10.1196/annals.1402.081

» https://doi.org/10.1196/annals.1402.081

- Kaji H, Naito J, Sowa H, Sugimoto T, Chihara K. Smad3 differently affects osteoblast differentiation depending upon its differentiation stage. Horm Metab Res. 2006;38(11):740-5. doi: 10.1055/s-2006-955085

» https://doi.org/10.1055/s-2006-955085

- Hinoi E, Fujimori S, Wang L, Hojo H, Uno K, Yoneda Y. Nrf2 negatively regulates osteoblast differentiation via interfering with RUNX2-dependent transcriptional activation. J Biol Chem. 200630;281(26):18015-24. doi: 10.1074/jbc.M600603200

» https://doi.org/10.1074/jbc.M600603200

- Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010;339(1):189-95. doi: 10.1007/s00441-009-0832-8

» https://doi.org/10.1007/s00441-009-0832-8

Downloads

Published

2024-11-25

Issue

Section

Original Articles

How to Cite

Pereira, B. C., Sacramento, C. M., Sallum, E. A., Monteiro, M. de F., Casarin, R. C. V., Casati, M. Z., & Silvério, K. G. (2024). 1,25(OH)2D3 increase osteogenic potential of human periodontal ligament cells with low osteoblast potential. Journal of Applied Oral Science, 32, e20240160. https://doi.org/10.1590/1678-7757-2024-0160