Resin infiltrant with antibacterial activity: effects of incorporation of DMAHDM monomer and NACP on physical and antimicrobial properties
DOI:
https://doi.org/10.1590/1678-7757-2024-0263Keywords:
Dental white spots, Dental enamel, Quaternary ammonium compounds, Biofilms, Composite resins, Dental cariesAbstract
Objectives: Considering the fact that resin infiltrants lack antibacterial activity, this study assessed the influence of the quaternary ammonium monomer dimethylaminohexadecyl methacrylate (DMAHDM) and amorphous calcium phosphate nanoparticles (NACP) on the physical and antibacterial properties of an experimental resin infiltrant (ERI). Methodology: The following groups were established: ERI (75/25 wt.% TEGDMA/BISEMA), ERI + 2.5% DMAHDM (2.5DM), ERI + 5% DMAHDM (5DM), ERI + 2% NACP (NACP), ERI + 2.5% DMAHDM + 2% NACP (2.5DM_NACP), ERI + 5% DMAHDM + 2% NACP (5DM_NACP), and Icon® (IC), a commercial resin infiltrant. Degree of conversion (DC; n=4), sorption and solubility (SO/SOL; n=8), and contact angle (CA; n=10) tests were conducted. Biofilm biomass (BB; n=6) and bacterial metabolism (BM; n=8) were evaluated after Streptococcus mutans (UA159) cultivation for 48 h on material samples. Data were evaluated by one-way ANOVA and Tukey or Games-Howell post hoc tests (α=0.05). Results: IC exhibited the highest DC, with no difference from 2.5DM and 5DM. IC showed the lowest CA. IC had the lowest SO, followed by ERI, which had the lowest SOL, with no difference from IC. 5DM_NACP showed the lowest biofilm biomass, similar to 2.5DM and 5DM. Resin infiltrants containing DMAHDM showed reduced bacterial metabolism. Conclusions: DMAHDM, with or without NACP, demonstrated significant antibacterial activity, while NACP impaired DC. Both DMAHDM and NACP increased the contact angle, sorption, and solubility of the resin infiltrant, which may affect the material’s clinical performance.
Downloads
References
- Peres MA, Macpherson LM, Weyant RJ, Daly B, Venturelli R, Mathur MR, et al. Oral diseases: a global public health challenge. Lancet. 2019;394(10194):249-60. doi: 10.1016/S0140-6736(19)31146-8
» https://doi.org/10.1016/S0140-6736(19)31146-8
- Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007;369(9555):51-9. doi: 10.1016/S0140-6736(07)60031-2
» https://doi.org/10.1016/S0140-6736(07)60031-2
- Urquhart O, Tampi MP, Pilcher L, Slayton RL, Araujo MW, Fontana M, et al. Nonrestorative treatments for caries: systematic review and network meta-analysis. J Dent Res. 2019;98(1):14-26. doi: 10.1177/0022034518800014
» https://doi.org/10.1177/0022034518800014
- Chen Y, Chen D, Lin H. Infiltration and sealing for managing non-cavitated proximal lesions: a systematic review and meta-analysis. BMC Oral Health. 2021;21(1):13. doi: 10.1186/s12903-020-01364-4
» https://doi.org/10.1186/s12903-020-01364-4
- Paris S, Bitter K, Krois J, Meyer-Lueckel H. Seven-year-efficacy of proximal caries infiltration: randomized clinical trial. J Dent. 2020;93:7-10. doi: 10.1016/j.jdent.2020.103277
» https://doi.org/10.1016/j.jdent.2020.103277
- Fúcio SB, Puppin-Rontani RM, Carvalho FG, Mattos-Graner RO, Correr-Sobrinho L, Garcia-Godoy F. Analyses of biofilms accumulated on dental restorative materials. Am J Dent. 2009;22(3):131-6.
- Zhang N, Melo MA, Weir MD, Reynolds MA, Bai Y, Xu HH. Do dental resin composites accumulate more oral biofilms and plaque than amalgam and glass ionomer materials? Materials (Basel). 2016;9(11):888 doi: 10.3390/ma9110888
» https://doi.org/10.3390/ma9110888
- Opdam NJ, Van De Sande FH, Bronkhorst E, Cenci MS, Bottenberg P, Pallesen U, et al. Longevity of posterior composite restorations: a systematic review and meta-analysis. J Dent Res. 2014;93(10):943-9. doi: 10.1177/0022034514544217
» https://doi.org/10.1177/0022034514544217
- Delaviz Y, Finer Y, Santerre JP. Biodegradation of resin composites and adhesives by oral bacteria and saliva: a rationale for new material designs that consider the clinical environment and treatment challenges. Dent Mater. 2014;30(1):16-32. doi: 10.1016/j.dental.2013.08.201
» https://doi.org/10.1016/j.dental.2013.08.201
- Melo MA, Orrego S, Weir MD, Xu HH, Arola DD. Designing multiagent dental materials for enhanced resistance to biofilm damage at the bonded interface. ACS Appl Mater Interfaces. 2016;8(18):11779-87. doi: 10.1021/acsami.6b01923
» https://doi.org/10.1021/acsami.6b01923
- Yu J, Huang X, Zhou X, Han Q, Zhou W, Liang J, et al. Anti-caries effect of resin infiltrant modified by quaternary ammonium monomers. J Dent. 2020;97:103355. doi: 10.1016/j.jdent.2020.103355
» https://doi.org/10.1016/j.jdent.2020.103355
- Wu L, Cao X, Meng Y, Huang T, Zhu C, Pei D, et al. Novel bioactive adhesive containing dimethylaminohexadecyl methacrylate and calcium phosphate nanoparticles to inhibit metalloproteinases and nanoleakage with three months of aging in artificial saliva. Dent Mater. 2022;38(7):1206-17. doi: 10.1016/j.dental.2022.06.017
» https://doi.org/10.1016/j.dental.2022.06.017
- Zhang N, Zhang K, Melo MA, Weir MD, Xu DJ, Bai Y, et al. Effects of long-term water-aging on novel anti-biofilm and protein-repellent dental composite. Int J Mol Sci. 2017;18(1):1-15. doi: 10.3390/ijms18010186
» https://doi.org/10.3390/ijms18010186
- Rego GF, Vidal ML, Viana GM, Cabral LM, Schneider LF, Portela MB, et al. Antibiofilm properties of model composites containing quaternary ammonium methacrylates after surface texture modification. Dent Mater. 2017;33(10):1149-56. doi: 10.1016/j.dental.2017.07.010
» https://doi.org/10.1016/j.dental.2017.07.010
- Bhadila G, Wang X, Weir MD, Melo MA, Martinho F, Fay GG, et al. Low-shrinkage-stress nanocomposite: an insight into shrinkage stress, antibacterial, and ion release properties. J Biomed Mater Res - Part B Appl Biomater. 2021;109(8):1124-34. doi: 10.1002/jbm.b.34775
» https://doi.org/10.1002/jbm.b.34775
- Filemban H, Bhadila G, Wang X, Melo MA, Oates TW, Weir MD, et al. Novel low-shrinkage-stress bioactive nanocomposite with anti-biofilm and remineralization capabilities to inhibit caries. J Dent Sci. 2022;17(2):811-21. doi: 10.1016/j.jds.2021.09.032
» https://doi.org/10.1016/j.jds.2021.09.032
- Fan M, Yang J, Xu HH, Weir MD, Tao S, Yu Z, et al. Remineralization effectiveness of adhesive containing amorphous calcium phosphate nanoparticles on artificial initial enamel caries in a biofilm-challenged environment. Clin Oral Investig. 2021;25(9):5375-90. doi: 10.1007/s00784-021-03846-3
» https://doi.org/10.1007/s00784-021-03846-3
- Clarin A, Ho D, Soong J, Looi C, Ipe DS, Tadakamadla SK. The antibacterial and remineralizing effects of biomaterials combined with DMAHDM nanocomposite: a systematic review. Materials (Basel). 2021;14(7):1688. doi: 10.3390/ma14071688
» https://doi.org/10.3390/ma14071688
- Bhadila G, Wang X, Zhou W, Menon D, Ann M, Melo S, et al. Novel low-shrinkage-stress nanocomposite with remineralization and antibacterial abilities to protect marginal enamel under biofilm. J Dent. 2020;99:103406. doi: 10.1016/j.jdent.2020.103406
» https://doi.org/10.1016/j.jdent.2020.103406
- Zhou W, Peng X, Zhou X, Weir MD, Melo MA, Tay FR, et al. In vitro evaluation of composite containing DMAHDM and calcium phosphate nanoparticles on recurrent caries inhibition at bovine enamel-restoration margins. Dent Mater. 2020;36(10):1343-55. doi: 10.1016/j.dental.2020.07.007
» https://doi.org/10.1016/j.dental.2020.07.007
- Sfalcin RA, Correr AB, Morbidelli LR, Araújo TG, Feitosa VP, Correr-Sobrinho L, et al. Influence of bioactive particles on the chemical-mechanical properties of experimental enamel resin infiltrants. Clin Oral Investig. 2017;21(6):2143-2151. doi: 10.1007/s00784-016-2005-y
» https://doi.org/10.1007/s00784-016-2005-y
- Mathias C, Gomes RS, Dressano D, Braga RR, Aguiar FH, Marchi GM. Effect of diphenyliodonium hexafluorophosphate salt on experimental infiltrants containing different diluents. Odontology. 2019;107(2):202-8. doi: 10.1007/s10266-018-0391-0
» https://doi.org/10.1007/s10266-018-0391-0
- Souza AF, Souza MT, Damasceno JE, Ferreira PV, Cerqueira GA, Aguiar FH, et al. Effects of the incorporation of bioactive particles on physical properties, bioactivity and penetration of resin enamel infiltrant. Clin Cosmet Investig Dent. 2023;15:31-43. doi: 10.2147/CCIDE.S398514
» https://doi.org/10.2147/CCIDE.S398514
- Wang L, Xie X, Imazato S, Weir MD, Reynolds MA, Xu HH. A protein-repellent and antibacterial nanocomposite for Class-V restorations to inhibit periodontitis-related pathogens. Mater Sci Eng C. 2016;67:702-10. doi: 10.1016/j.msec.2016.05.080
» https://doi.org/10.1016/j.msec.2016.05.080
- Pupo Y, Farago P, Nadal J, Simão L, Esmerino L, Gomes O, et al. Effect of a novel quaternary ammonium methacrylate polymer (qamp) on adhesion and antibacterial properties of dental adhesives. Int J Mol Sci. 2014;15(5):8998-9015. doi: 10.3390/ijms15058998
» https://doi.org/10.3390/ijms15058998
- Elliott JE, Lovell LG, Bowman CN. Primary cyclization in the polymerization of bis-GMa and TEGDMA: a modeling approach to understanding the cure of dental resins. Dent Mater. 2001;17(3):221-9. doi: 10.1016/s0109-5641(00)00075-0
» https://doi.org/10.1016/s0109-5641(00)00075-0
- Vidal ML, Rego GF, Viana GM, Cabral LM, Souza JP, Silikas N, et al. Physical and chemical properties of model composites containing quaternary ammonium methacrylates. Dent Mater. 2018;34(1):143-51. 10.1016/j.dental.2017.09.020
» https://doi.org/10.1016/j.dental.2017.09.020
- Dai Z, Xie X, Zhang N, Li S, Yang K, Zhu M, et al. Novel nanostructured resin infiltrant containing calcium phosphate nanoparticles to prevent enamel white spot lesions. J Mech Behav Biomed Mater. 2022;126:104990. doi: 10.1016/j.jmbbm.2021.104990
» https://doi.org/10.1016/j.jmbbm.2021.104990
- Resende MC, Vilela HS, Chiari MD, Trinca RB, Silva FR, Braga RR. Physicochemical characterization of experimental resin-based materials containing calcium orthophosphates or calcium silicate. Dent Mater. 2024;40(10):1507-14. doi: 10.1016/j.dental.2024.07.002
» https://doi.org/10.1016/j.dental.2024.07.002
- Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater. 2006;22(3):211-22. doi: 10.1016/j.dental.2005.05.005
» https://doi.org/10.1016/j.dental.2005.05.005
- Fonseca AS, Labruna Moreira AD, Albuquerque PP, Menezes LR, Pfeifer CS, Schneider LF. Effect of monomer type on the C[dbnd]C degree of conversion, water sorption and solubility, and color stability of model dental composites. Dent Mater. 2017;33(4):394-401. doi: 10.1016/j.dental.2017.01.010
» https://doi.org/10.1016/j.dental.2017.01.010
- Gama-Teixeira A, Simionato MR, Elian SN, Sobral MA, Luz MA. Streptococcus mutans -induced secondary caries adjacent to glass ionomer cement, composite resin and amalgam restorations in vitro. Braz Oral Res. 2007;21(4):368-74. doi: 10.1590/s1806-83242007000400015
» https://doi.org/10.1590/s1806-83242007000400015
- Wang L, Melo MA, Weir MD, Xie X, Reynolds MA, Xu HH. Novel bioactive nanocomposite for Class-V restorations to inhibit periodontitis-related pathogens. Dent Mater. 2016;32(12):e351-61. doi: 10.1016/j.dental.2016.09.023
» https://doi.org/10.1016/j.dental.2016.09.023
- Zhou H, Li F, Weir MD, Xu HH. Dental plaque microcosm response to bonding agents containing quaternary ammonium methacrylates with different chain lengths and charge densities. J Dent. 2013;41(11):1122-31. doi: 10.1016/j.jdent.2013.08.003
» https://doi.org/10.1016/j.jdent.2013.08.003
- Wu J, Zhou H, Weir MD, Melo MA, Levine ED, Xu HH. Effect of dimethylaminohexadecyl methacrylate mass fraction on fracture toughness and antibacterial properties of CaP nanocomposite. J Dent. 2015;43(12):1539-46. doi: 10.1016/j.jdent.2015.09.004
» https://doi.org/10.1016/j.jdent.2015.09.004
- Finer Y, Santerre JP. Influence of silanated filler content on the biodegradation of bisGMA/TEGDMA dental composite resins. J Biomed Mater Res Part A. 2007;81A(1):75-84. doi: 10.1002/jbm.a.31004
» https://doi.org/10.1002/jbm.a.31004
- Ferracane JL. Resin-based composite performance: are there some things we can't predict? Dent Mater. 2013;29(1):51-8. doi: 10.1016/j.dental.2012.06.013
» https://doi.org/10.1016/j.dental.2012.06.013
- Gonzalez-Bonet A, Kaufman G, Yang Y, Wong C, Jackson A, Huyang G, et al. Preparation of dental resins resistant to enzymatic and hydrolytic degradation in oral environments. Biomacromolecules. 2015;16(10):3381-8. doi: 10.1021/acs.biomac.5b01069
» https://doi.org/10.1021/acs.biomac.5b01069
- Singh J, Khalichi P, Cvitkovitch DG, Santerre JP. Composite resin degradation products from BisGMA monomer modulate the expression of genes associated with biofilm formation and other virulence factors in Streptococcus mutans J Biomed Mater Res Part A. 2009;88A(2):551-60. doi: 10.1002/jbm.a.31879
» https://doi.org/10.1002/jbm.a.31879
- Spencer P, Ye Q, Misra A, Goncalves SE, Laurence JS. Proteins, pathogens, and failure at the composite-tooth interface. J Dent Res. 2014;93(12):1243-9. doi: 10.1177/0022034514550039
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ana Ferreira Souza, May Anny Alves Fraga, Américo Bortolazzo Correr, Flávio Henrique Baggio Aguiar, Giselle Maria Marchi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.