Synergistic anti-cancer effects of metformin and cisplatin on YD-9 oral squamous carcinoma cells via AMPK pathway
DOI:
https://doi.org/10.1590/Keywords:
Drug therapy, Apoptosis, Reactive oxygen species, Epithelial-mesenchymal transition, Extracellular signal-regulated kinaseAbstract
Objective This study evaluated whether hypoglycemic drug metformin enhances the anti-cancer effects of cisplatin in YD-9 cells. Methodology YD-9 cells, derived from oral mucosal squamous cell carcinoma of oral mucosa, were used to assess the combined effects of metformin and cisplatin by means of MTT assay, live and dead cell staining, and colony formation assays to evaluate cell viability and proliferation. Reactive oxygen species level was measured using a Muse cell analyzer. Apoptosis, epithelial-mesenchymal transition, and related molecular pathways were analyzed by western blot. Wound healing assays and Transwell migration assays examined cell migration, whereas monophosphate-activated protein kinase inhibitor Compound C, was utilized to investigate the AMPK pathway. Results Sequential treatment of YD-9 cells with metformin and cisplatin resulted in decreased cell viability and proliferation, increased ROS levels, and elevated apoptosis compared with the individual drugs. Moreover, the treatment inhibited EMT, wound healing, and cell migration. These results correlated with increased AMPK phosphorylation, a key regulator of cellular energy homeostasis. Introduction of Compound C pre-treatment upregulated N-cadherin and α-smooth muscle actin along with enhanced cell migration. Conclusion This study found synergism in anti-cancer effects between metformin and cisplatin. Additionally, introduction of Compound C confirmed that EMT inhibition is AMPK dependent. These findings indicate the potential use of metformin as an adjunct drug in anti-cancer treatments, warranting further investigation.
Downloads
References
- Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, et al. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci. 2023;15(1):44. doi: 10.1038/s41368-023-00249-w
» https://doi.org/10.1038/s41368-023-00249-w
- Cunha AR, Compton K, Xu R, Mishra R, Drangsholt MT, Antunes JL, et al. The global, regional, and national burden of adult lip, oral, and pharyngeal cancer in 204 countries and territories: a systematic analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2023;9(10):1401-16. doi: 10.1001/jamaoncol.2023.2960
» https://doi.org/10.1001/jamaoncol.2023.2960
- Gangane NM, Ghongade PV, Patil BU, Atram M. Oral cavity cancer incidence and survival trends: a population-based study. J Cancer Res Ther. 2024;20(5):1446-52. doi: 10.4103/jcrt.jcrt_2720_22
» https://doi.org/10.4103/jcrt.jcrt_2720_22
- Perri F, Longo F, Fusco R, D'Alessio V, Aversa C, Pavone E, et al. Electrochemotherapy as a first line treatment in recurrent squamous cell carcinoma of the oral cavity and oropharynx PDL-1 negative and/or with evident contraindication to immunotherapy: a randomized multicenter controlled trial. Cancers (Basel). 2021;13(9):2210. doi: 10.3390/cancers13092210
» https://doi.org/10.3390/cancers13092210
- Foretz M, Guigas B, Viollet B. Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinol. 2023;19(8):460-76. doi: 10.1038/s41574-023-00833-4
» https://doi.org/10.1038/s41574-023-00833-4
- Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330(7503):1304-5. doi: 10.1136/bmj.38415.708634.F7
» https://doi.org/10.1136/bmj.38415.708634.F7
- Wang LW, Li ZS, Zou DW, Jin ZD, Gao J, Xu GM. Metformin induces apoptosis of pancreatic cancer cells. World J Gastroenterol. 2008;14(47):7192-8. doi: 10.3748/wjg.14.7192
» https://doi.org/10.3748/wjg.14.7192
- Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A, et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis. 2011;2(9):e199. doi: 10.1038/cddis.2011.86
» https://doi.org/10.1038/cddis.2011.86
- Rogalska A, Forma E, Ciesielski P, Brys M, Krzeslak A, Marczak A. Effect of metformin on apoptosis induction in ovarian cancer cells. Prz Menopauzalny. 2014;13(3):155-61. doi: 10.5114/pm.2014.43817
» https://doi.org/10.5114/pm.2014.43817
- Song J, Du J, Han L, Lin X, Fan C, Chen G. The effect of metformin on triple-negative breast cancer cells and nude mice. Altern Ther Health Med. 2023;29(8):389-95.
- Liu Q, Tong D, Liu G, Gao J, Wang LA, Xu J, et al. Metformin inhibits prostate cancer progression by targeting tumor-associated inflammatory infiltration. Clin Cancer Res. 2018;24(22):5622-34. doi: 10.1158/1078-0432.CCR-18-0420
» https://doi.org/10.1158/1078-0432.CCR-18-0420
- Lee EJ, Kim J, Lee SA, Kim EJ, Chun YC, Ryu MH, et al. Characterization of newly established oral cancer cell lines derived from six squamous cell carcinoma and two mucoepidermoid carcinoma cells. Exp Mol Med. 2005;37(5):379-90. doi: 10.1038/emm.2005.48
» https://doi.org/10.1038/emm.2005.48
- Park NH, Min BM, Li SL, Huang MZ, Cherick HM, Doniger J. Immortalization of normal human oral keratinocytes with type 16 human papillomavirus. Carcinogenesis. 1991;12(9):1627-31. doi: 10.1093/carcin/12.9.1627
» https://doi.org/10.1093/carcin/12.9.1627
- Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440-6. doi: 10.1158/0008-5472.CAN-09-1947
» https://doi.org/10.1158/0008-5472.CAN-09-1947
- Ketabat F, Pundir M, Mohabatpour F, Lobanova L, Koutsopoulos S, Hadjiiski L, et al. Controlled drug delivery systems for oral cancer treatment-current status and future perspectives. Pharmaceutics. 2019;11(7):302. doi: 10.3390/pharmaceutics11070302
» https://doi.org/10.3390/pharmaceutics11070302
- Olmos M, Glajzer J, Buntemeyer TO, Frohwitter G, Ries J, Eckstein M, et al. Neoadjuvant Immunotherapy of oral squamous cell carcinoma: case report and assessment of histological response. Front Oncol. 2021;11:720951. doi: 10.3389/fonc.2021.720951
» https://doi.org/10.3389/fonc.2021.720951
- Imbesi Bellantoni M, Picciolo G, Pirrotta I, Irrera N, Vaccaro M, Vaccaro F, et al. Oral cavity squamous cell carcinoma: an update of the pharmacological treatment. Biomedicines. 2023;11(4):1112. doi: 10.3390/biomedicines1104111
» https://doi.org/10.3390/biomedicines1104111
- Tranby EP, Heaton LJ, Tomar SL, Kelly AL, Fager GL, Backley M, et al. Oral cancer prevalence, mortality, and costs in medicaid and commercial insurance claims data. Cancer Epidemiol Biomarkers Prev. 2022;31(9):1849-57. doi: 10.1158/1055-9965.EPI-22-0114
» https://doi.org/10.1158/1055-9965.EPI-22-0114
- Romani AMP. Cisplatin in cancer treatment. Biochem Pharmacol. 2022;206:115323. doi: 10.1016/j.bcp.2022.115323
» https://doi.org/10.1016/j.bcp.2022.115323
- Tang Z, Tang N, Jiang S, Bai Y, Guan C, Zhang W, et al. The chemosensitizing role of metformin in anti-cancer therapy. Anticancer Agents Med Chem. 2021;21(8):949-62. doi: 10.2174/1871520620666200918102642
» https://doi.org/10.2174/1871520620666200918102642
- Amin D, Richa T, Mollaee M, Zhan T, Tassone P, Johnson J, et al. Metformin effects on FOXP3(+) and CD8(+) T cell infiltrates of head and neck squamous cell carcinoma. Laryngoscope. 2020;130(9):e490-e8. doi: 10.1002/lary.28336
» https://doi.org/10.1002/lary.28336
- Zhu L, Yang K, Ren Z, Yin D, Zhou Y. Metformin as anticancer agent and adjuvant in cancer combination therapy: current progress and future prospect. Transl Oncol. 2024;44:101945. doi: 10.1016/j.tranon.2024.101945
» https://doi.org/10.1016/j.tranon.2024.101945
- Yu H, Zhong X, Gao P, Shi J, Wu Z, Guo Z, et al. The potential effect of metformin on cancer: an umbrella review. Front Endocrinol (Lausanne). 2019;10:617. doi: 10.3389/fendo.2019.00617
» https://doi.org/10.3389/fendo.2019.00617
- Janzer A, German NJ, Gonzalez-Herrera KN, Asara JM, Haigis MC, Struhl K. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc Natl Acad Sci U S A. 2014;111(29):10574-9. doi: 10.1073/pnas.1409844111
» https://doi.org/10.1073/pnas.1409844111
- Fendt SM, Bell EL, Keibler MA, Davidson SM, Wirth GJ, Fiske B, et al. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res. 2013;73(14):4429-38. doi: 10.1158/0008-5472.CAN-13-0080
» https://doi.org/10.1158/0008-5472.CAN-13-0080
- Seo DY, Bae JH, Zhang D, Song W, Kwak HB, Heo JW, et al. Effects of cisplatin on mitochondrial function and autophagy-related proteins in skeletal muscle of rats. BMB Rep. 2021;54(11):575-80. doi: 10.5483/BMBRep.2021.54.11.132
» https://doi.org/10.5483/BMBRep.2021.54.11.132
- Salehi AM, Wang L, Gu X, Coates PJ, Norberg Spaak L, Sgaramella N, et al. Patients with oral tongue squamous cell carcinoma and coexisting diabetes exhibit lower recurrence rates and improved survival: Implications for treatment. Oncol Lett. 2024;27(4):142. doi: 10.3892/ol.2024.14275
» https://doi.org/10.3892/ol.2024.14275
- Bodmer M, Meier C, Krähenbühl S, Jick SS, Meier CR. Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care. 2010;33(6):1304-8. doi: 10.2337/dc09-1791
» https://doi.org/10.2337/dc09-1791
- Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 2018;25(1):154-60. doi: 10.1038/cdd.2017.180
» https://doi.org/10.1038/cdd.2017.180
- Tan BJ, Chiu GN. Role of oxidative stress, endoplasmic reticulum stress and ERK activation in triptolide-induced apoptosis. Int J Oncol. 2013;42(5):1605-12. doi: 10.3892/ijo.2013.1843
» https://doi.org/10.3892/ijo.2013.1843
- Sugiura R, Satoh R, Takasaki T. ERK: a double-edged sword in cancer. ERK-dependent apoptosis as a potential therapeutic strategy for cancer. Cells. 2021;10(10):2509. doi: 10.3390/cells10102509
» https://doi.org/10.3390/cells10102509
- Munakarmi S, Shrestha J, Shin HB, Lee GH, Jeong YJ. 3,3'-diindolylmethane suppresses the growth of hepatocellular carcinoma by regulating its invasion, migration, and er stress-mediated mitochondrial apoptosis. Cells. 2021;10(5):1178. doi: 10.3390/cells10051178
» https://doi.org/10.3390/cells10051178
- Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871-90. doi: 10.1016/j.cell.2009.11.007
» https://doi.org/10.1016/j.cell.2009.11.007
- Costa LC, Leite CF, Cardoso SV, Loyola AM, Faria PR, Souza PE, et al. Expression of epithelial-mesenchymal transition markers at the invasive front of oral squamous cell carcinoma. J Appl Oral Sci. 2015;23(2):169-78. doi: 10.1590/1678-775720140187
» https://doi.org/10.1590/1678-775720140187
- Anggorowati N, Ratna Kurniasari C, Damayanti K, Cahyanti T, Widodo I, Ghozali A, et al. Histochemical and immunohistochemical study of a-SMA, collagen, and PCNA in epithelial ovarian neoplasm. Asian Pac J Cancer Prev. 2017;18(3):667-71. doi: 10.22034/APJCP.2017.18.3.667
» https://doi.org/10.22034/APJCP.2017.18.3.667
- Parikh JG, Kulkarni A, Johns C. a-smooth muscle actin-positive fibroblasts correlate with poor survival in hepatocellular carcinoma. Oncol Lett. 2014;7(2):573-5. doi:10.3892/ol.2013.1720
» https://doi.org/doi:10.3892/ol.2013.1720
- Codogno P, Morel E. FOXO3a provides a quickstep from autophagy inhibition to apoptosis in cancer therapy. Dev Cell. 2018;44(5):537-9. doi: 10.1016/j.devcel.2018.02.019
» https://doi.org/10.1016/j.devcel.2018.02.019
- Das TP, Suman S, Alatassi H, Ankem MK, Damodaran C. Inhibition of AKT promotes FOXO3a-dependent apoptosis in prostate cancer. Cell Death Dis. 2016;7(2):e2111. doi: 10.1038/cddis.2015.403
» https://doi.org/10.1038/cddis.2015.403
- Murugan AK. mTOR: role in cancer, metastasis and drug resistance. Semin Cancer Biol. 2019;59:92-111. doi: 10.1016/j.semcancer.2019.07.003
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Paras Man Pradhan, Young-Hee Lee, Sungil Jang, Ho-Keun Yi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.