Bmal1 knockout aggravates Porphyromonas gingivalis-induced periodontitis by activating the NF-κB pathway
DOI:
https://doi.org/10.1590/1678-7757-2024-0388Keywords:
Circadian clock, Periodontitis, BMAL1, NF-κB, p65Abstract
Circadian rhythm disorders and NF-κB are closely linked and can exacerbate periodontitis. However, the mechanisms via which circadian rhythm-related genes influence periodontitis are not yet fully understood. Objective We investigated the effect of brain and muscle Arnt-like protein-1 (BMAL1) on the NF-κB pathway and downstream inflammatory factors on periodontitis. In this study, Bmal1 homozygous knockout and periodontitis mouse models were established. Methodology Bone marrow-derived macrophages (BMDMs) from Bmal1-/- mice were cultured and stimulated with lipopolysaccharides. Bone resorption was detected using micro-computed tomography and histological analyses. Gene and cytokine expression was assessed using quantitative reverse-transcription PCR and ELISA. The nuclear translocation of p65 was detected using immunofluorescence. Results Our findings indicate that Bmal1 knockout exacerbates periodontitis severity in mice by activating the NF-κB signaling pathway with increased nuclear translocation of p65 (p<0.05), as well as increased expression of Il-1b, Il-6, and Tnfα (p<0.01), along with decreased Nr1d1 expression (p<0.05) in BMDMs under inflammation. Conclusion The results highlight the protective role of Bmal1 in periodontitis and suggest its potential link to the circadian clock's influence on the disease.
Downloads
References
- Bhadra U, Thakkar N, Das P, Pal Bhadra M. Evolution of circadian rhythms: from bacteria to human. Sleep Med. 2017;35:49-61. doi: 10.1016/j.sleep.2017.04.008
» https://doi.org/10.1016/j.sleep.2017.04.008
- Brancaccio M, Enoki R, Mazuski CN, Jones J, Evans JA, Azzi A. Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back. J Neurosci. 2014;34(46):15192-9. doi: 10.1523/JNEUROSCI.3233-14.2014
» https://doi.org/10.1523/JNEUROSCI.3233-14.2014
- Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42(1):201-6. doi: 10.1016/0006-8993(72)90054-6
» https://doi.org/10.1016/0006-8993(72)90054-6
- Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Di Cesare Mannelli L, et al. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther. 2022;7(1):41. doi: 10.1038/s41392-022-00899-y
» https://doi.org/10.1038/s41392-022-00899-y
- Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci. 1987;7(6):1626-38. doi: 10.1523/JNEUROSCI.07-06-01626.1987
» https://doi.org/10.1523/JNEUROSCI.07-06-01626.1987
- Asirim EZ, Humberg TH, Maier GL, Sprecher SG. Circadian and genetic modulation of visually-guided navigation in Drosophila larvae. Sci Rep. 2020;10(1):13976. doi: 10.1038/s41598-020-59614-y
» https://doi.org/10.1038/s41598-020-59614-y
- Luo B, Zhou X, Tang Q, Yin Y, Feng G, Li S, et al. Circadian rhythms affect bone reconstruction by regulating bone energy metabolism. J Transl Med. 2021;19(1):410. doi: 10.1186/s12967-021-03068-x
» https://doi.org/10.1186/s12967-021-03068-x
- Papagerakis S, Zheng L, Schnell S, Sartor MA, Somers E, Marder W, et al. The circadian clock in oral health and diseases. J Dent Res. 2014;93(1):27-35. doi: 10.1177/0022034513505768
» https://doi.org/10.1177/0022034513505768
- Swanson CM, Kohrt WM, Buxton OM, Everson CA, Wright KP Jr, Orwoll ES, et al. The importance of the circadian system & sleep for bone health. Metabolism. 2018;84:28-43. doi: 10.1016/j.metabol.2017.12.002
» https://doi.org/10.1016/j.metabol.2017.12.002
- Hastings MH, Brancaccio M, Maywood ES. Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus. J Neuroendocrinol. 2014;26(1):2-10. doi: 10.1111/jne.12125
» https://doi.org/10.1111/jne.12125
- Hilbert DA, Memmert S, Marciniak J, Jager A. Molecular biology of periodontal ligament fibroblasts and orthodontic tooth movement: Evidence and possible role of the circadian rhythm. J Orofac Orthop. 2019;80(6):336-47. doi: 10.1007/s00056-019-00195-5
» https://doi.org/10.1007/s00056-019-00195-5
- Xu C, Ochi H, Fukuda T, Sato S, Sunamura S, Takarada T, et al. Circadian clock regulates bone resorption in mice. J Bone Miner Res. 2016;31(7):1344-55. doi: 10.1002/jbmr.2803
» https://doi.org/10.1002/jbmr.2803
- Liu X, Cao N, Liu X, Deng Y, Xin Y, Fu R, et al. Circadian rhythm disorders aggravate periodontitis by modulating BMAL1. Int J Mol Sci. 2022;24(1):374. doi: 10.3390/ijms24010374
» https://doi.org/10.3390/ijms24010374
- Balaji TM, Varadarajan S, Jagannathan R, Mahendra J, Fageeh HI, Fageeh HN, et al. Melatonin as a topical/systemic formulation for the management of periodontitis: A systematic review. Materials (Basel). 2021;14(9):2417. doi: 10.3390/ma14092417
» https://doi.org/10.3390/ma14092417
- Younis LT. The role of nuclear factor kappa B in periodontal diseases. J Dent Health Oral Disord Ther. 2017;6(3):00202. doi: 10.15406/jdhodt.2017.06.00202
» https://doi.org/10.15406/jdhodt.2017.06.00202
- Pacios S, Xiao W, Mattos M, Lim J, Tarapore RS, Alsadun S, et al. Osteoblast lineage cells play an essential role in periodontal bone loss through activation of nuclear factor-kappa B. Sci Rep. 2015;5:16694. doi: 10.1038/srep16694
» https://doi.org/10.1038/srep16694
- Kramer A, Shen Y, Endale M, Wang W, Morris AR, Francey LJ, et al. NF-?B modifies the mammalian circadian clock through interaction with the core clock protein BMAL1. PLoS Genet. 2021;17(11):e1009933. doi: 10.1371/journal.pgen.1009933
» https://doi.org/10.1371/journal.pgen.1009933
- Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25(7):1468-86. doi: 10.1002/jbmr.141
» https://doi.org/10.1002/jbmr.141
- Toda G, Yamauchi T, Kadowaki T, Ueki K. Preparation and culture of bone marrow-derived macrophages from mice for functional analysis. STAR Protoc. 2021;2(1):100246. doi: 10.1016/j.xpro.2020.100246
» https://doi.org/10.1016/j.xpro.2020.100246
- Wang X, Sato F, Tanimoto K, Rajeshwaran N, Thangavelu L, Makishima M, et al. The potential roles of Dec1 and Dec2 in periodontal inflammation. Int J Mol Sci. 2021;22(19):10349. doi: 10.3390/ijms221910349
» https://doi.org/10.3390/ijms221910349
- Ebersole JL, Gonzalez OA. Mucosal circadian rhythm pathway genes altered by aging and periodontitis. PLoS One. 2022;17(12):e0275199. doi: 10.1371/journal.pone.0275199
» https://doi.org/10.1371/journal.pone.0275199
- Ghafouri-Fard S, Gholami L, Nazer N, Hussen BM, Shadnoush M, Sayad A, et al. Assessment of expression of NF-?B-related genes in periodontitis. Gene Rep. 2022;26:101454. doi: 10.1016/j.genrep.2021.101454
» https://doi.org/10.1016/j.genrep.2021.101454
- Kim SM, Neuendorff N, Chapkin RS, Earnest DJ. Role of inflammatory signaling in the differential effects of saturated and poly-unsaturated fatty acids on peripheral circadian clocks. EBioMedicine. 2016;7:100-11. doi: 10.1016/j.ebiom.2016.03.037
» https://doi.org/10.1016/j.ebiom.2016.03.037
- Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23
» https://doi.org/10.1038/sigtrans.2017.23
- Yin L, Li X, Hou J. Macrophages in periodontitis: A dynamic shift between tissue destruction and repair. Jpn Dent Sci Rev. 2022;58:336-47. doi: 10.1016/j.jdsr.2022.10.002
» https://doi.org/10.1016/j.jdsr.2022.10.002
- Florio TJ, Lokareddy RK, Yeggoni DP, Sankhala RS, Ott CA, Gillilan RE, et al. Differential recognition of canonical NF-kappaB dimers by Importin alpha3. Nat Commun. 2022;13(1):1207. doi: 10.1038/s41467-022-28846-z
» https://doi.org/10.1038/s41467-022-28846-z
- Pan X, Hussain MM. Bmal1 regulates production of larger lipoproteins by modulating cAMP-responsive element-binding protein H and apolipoprotein AIV. Hepatology. 2022;76(1):78-93. doi: 10.1002/hep.32196
» https://doi.org/10.1002/hep.32196
- Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science. 2017;357(6354):912-6. doi: 10.1126/science.aan0677
» https://doi.org/10.1126/science.aan0677
- Feng Y, Chen Z, Tu SQ, Wei JM, Hou YL, Kuang ZL, et al. Role of Interleukin-17A in the pathomechanisms of periodontitis and related systemic chronic inflammatory diseases. Front Immunol. 2022;13:862415. doi: 10.3389/fimmu.2022.862415
» https://doi.org/10.3389/fimmu.2022.862415
- Chang C, Loo CS, Zhao X, Solt LA, Liang Y, Bapat SP, et al. The nuclear receptor REV-ERBalpha modulates Th17 cell-mediated autoimmune disease. Proc Natl Acad Sci U S A. 2019;116(37):18528-36. doi: 10.1073/pnas.1907563116
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ye Tian, Xinran Liu, Qiuyu Lu, Jiaxin Li, Tianqi Wang, Mei Tian, Yan Ding, Jinle Li

This work is licensed under a Creative Commons Attribution 4.0 International License.
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons do tipo atribuição CC-BY.